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Abstract

Grounding 3D object affordance seeks to locate objects’
“action possibilities” regions in the 3D space, which serves
as a link between perception and operation for embodied
agents. Existing studies primarily focus on connecting vi-
sual affordances with geometry structures, e.g., relying on
annotations to declare interactive regions of interest on the
object and establishing a mapping between the regions and
affordances. However, the essence of learning object af-
fordance is to understand how to use it, and the manner
that detaches interactions is limited in generalization. Nor-
mally, humans possess the ability to perceive object affor-
dances in the physical world through demonstration images
or videos. Motivated by this, we introduce a novel task set-
ting: grounding 3D object affordance from 2D interactions
in images, which faces the challenge of anticipating affor-
dance through interactions of different sources. To address
this problem, we devise a novel Interaction-driven 3D Affor-
dance Grounding Network (IAG), which aligns the region
feature of objects from different sources and models the in-
teractive contexts for 3D object affordance grounding. Be-
sides, we collect a Point-Image Affordance Dataset (PIAD)
to support the proposed task. Comprehensive experiments
on PIAD demonstrate the reliability of the proposed task
and the superiority of our method. The project is available
at https://github.com/yyvhang/IAGNet.

1. Introduction

The term “affordance” is described as “opportunities of
interaction” by J. Gibson [14]. Grounding 3D object affor-
dance aims to comprehend the interactive regions of objects
in 3D space, which is not only simply to predict which inter-
action an object affords, but also to identify specific points
on the object that could support the interaction. It consti-
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Figure 1. Grounding Affordance from Interactions. We propose
to ground 3D object affordance through 2D interactions. Given an
object point cloud with an interactive image, grounding the corre-
sponding affordance on the 3D object.

tutes a link between perception and operation for embodied
agents, which has the potential to serve numerous practical
applications, e.g. action prediction [21, 63], robot manip-
ulation [36, 45, 51], imitation learning [17, 50], and aug-
mented/virtual reality [6, 9].

So far, the paradigm of perceiving 3D object affordance
has several branches. One of them involves establishing
an explicit mapping between affordance categories and ge-
ometry structures [10, 20, 46, 66], based on visual appear-
ance. However, affordance is dynamic and multiple, these
geometric-specific manners have limited generalization for
unseen structures. Besides, locking the geometry with a
specific affordance category may lead to the anticipated re-
gion being inconsistent with its affordance when objects
possess multiple similar geometrics, resulting in affordance
regional confusion. Another paradigm is based on rein-
forcement learning, which puts the agent in 3D synthetic
scenarios to interact with several objects actively, taking
the reward mechanism to optimize the whole process [48].
While this type of approach transitions agents from passive
recognition to active reasoning, it needs repeated attempts
in a huge search space when meeting a novel structure, and
is therefore time-consuming.
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Figure 2. Motivation. (a) Clues to correlate regions of objects from different sources. Objects with the same category possess a similar
combination scheme to meet certain affordance properties, it is a similar inherent relation among different instances. And some structures
hint at these properties exhibit closer representations with higher similarity in the latent space. (b) Object affordance may be affected by
dynamic factors, such as the position of the object itself in the scene, other objects in the scene, and the body part of the interacting subject.
These factors can be decomposed into object-subject and object-scene interaction contexts.

These limitations motivate us to explore an affordance-
compatible learning paradigm. Typically, humans can in-
fer object affordance in the 3D physical world by watching
images or videos that demonstrate the interactions. Some
studies in cognitive science [37, 56] point out the existence
of “body image” in human cognition, which claims that hu-
mans have a perceptual experience of the objects they see,
thus facilitating their ability to organize the perception [73]
and operate novel objects. Hence, human-object interaction
conveys the perception that object structure could perform
certain affordance, which is a crucial clue to reason object
affordance. In light of this, we present a novel task setting:
grounding 3D object affordance from 2D interactions in im-
ages, which is shown in Fig. 1.

This challenging task includes several essential issues
that should be properly addressed. 1) Alignment ambigu-
ity. To ground 3D object affordance from 2D source in-
teractions, the premise is to correspond the regions of the
object in different sources. The object in 2D demonstra-
tions and the 3D object we face are usually derived from
different physical instances in different locations and scales.
This discrepancy may lead to confusion when matching the
affordance regions, causing alignment ambiguity. While
objects are commonly designed to satisfy certain needs of
human beings, so the same category generally follows a
similar combination scheme of object components to meet
certain affordances, and these affordances are hinted at by
some structures (Fig. 2 (a)). These invariant properties
are across instances and could be utilized to correlate ob-
jectregions from different sources. 2) Affordance ambigu-
ity. Affordance has properties of dynamic and multiplicity,
which means the object affordance may change according
to the situation, the same part of an object could afford mul-
tiple interactions, as shown in Fig. 2 (b), “Chair” affords
“Sit” or “Move” depends on the human actions, “Mug” af-

fords “Wrapgrasp” or “Contain” according to the scene con-
text, these properties may make ambiguity when extracting
affordance. However, these dynamic factors for affordance
extraction can be decomposed into the interaction between
subject-object and object-scene. Modeling these interac-
tions is possible to extract explicit affordance.

To address these issues, we propose the Interaction-
driven 3D Affordance Grounding Network (IAG) to align
object region features from different sources and model in-
teraction contexts to reveal affordance. In detail, it contains
two sub-modules, one is Joint Region Alignment Module
(JRA), which is devised to eliminate alignment ambiguity.
It takes the relative difference in dense cross-similarity to
refine analogous shape regions and employs learnable lay-
ers to map the invariant combination scheme, taking them
to match local regions of objects. For affordance ambi-
guity, the other one Affordance Revealed Module (ARM)
takes the object representation as a shared factor and jointly
models its interaction contexts with the affordance-related
factors to reveal explicit affordance. Moreover, we col-
lect Point-Image Affordance Dataset (PIAD) that contains
plenty of paired image-point cloud affordance data and
make a benchmark to support the model training and evalu-
ation on the proposed setting.

The contributions are summarized as follows: 1) We in-
troduce grounding 3D object affordance through the 2D in-
teractions, which facilitates the generalization to 3D object
affordance perception. 2) We propose the IAG framework,
which aligns the region feature of objects from different
sources and jointly models affordance-related interactions
to locate the 3D object affordance. 3) We collect a dataset
named PIAD to support the proposed task setting, which
contains paired image-point cloud affordance data. Besides,
we establish a benchmark on PIAD, and the experiments on
PIAD exhibit the reliability of the method and the setting.
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2. Related Works
2.1. Affordance Learning

At present, the affordance area has made achievements in
multiple tasks (Tab. 1). Some works are devoted to detect-
ing the affordance region from 2D sources i.e. images and
videos [7, 11, 25, 33, 54, 60, 78], and there are also some
studies accomplish this task with the assistance of natural
language [32, 38, 39]. They seek to detect or segment ob-
jects that afford the action in 2D data, but cannot perceive
the specific parts corresponding to the affordance. Thus, an-
other type of method brings a leap to locate the affordance
region of objects from 2D sources [12, 35, 47, 34]. How-
ever, the affordance knowledge derived from 2D sources is
hard to extrapolate specific interactive locations of objects
in the 3D environment. With several 3D object datasets pro-
posed [13, 29, 44], some researchers explore grounding ob-
ject affordance from 3D data [10, 43, 66, 48]. Such methods
directly map the connection between semantic affordances
and 3D structures, detach the real interaction, and may de-
ter the generalization ability: structures that do not map to
a specific affordance are usually hard to generalize through
this type of method. T. Nagarajan et al. [48] give a fresh
mind, taking the reinforcement learning to make agents ac-
tively interact with the 3D synthetic scenarios, while it re-
quires repeated attempts by the agents in a given search
space, and is time-consuming. In robotics, affordance is uti-
lized to provide priors for object manipulation and achieve
considerable results, especially the articulated 3D objects
[42, 64, 79]. Several methods utilize the 2.5D data e.g.
RGB-D image to understand the object affordance and serve
the manipulation task [21, 22, 23, 49], for these methods,
the image and depth information are corresponding in spa-
tial and need to be collected in the same scene. In contrast,
our task focus on grounding 3D object affordance from 2D
interactions, in which the 2D interactions provide direct
clues to excavate object affordance efficiently and make the
affordance could generalize to some unseen structures, and
the 2D-3D data is collected from different sources, freeing
the constraints on spatial correspondence.

2.2. Image-Point Cloud Cross-Modal Learning

The combination of point cloud and image data can cap-
ture both semantic and geometric information, enabling
cross-modal learning among them has great potential appli-
cation value in scenarios like autopilot [8]. For this type
of work, aligning features is the premise for completing
downstream tasks e.g. detection, segmentation, and regis-
tration. It is aimed at establishing correspondences between
instances from different modalities [2, 26, 69], either spa-
tial or semantic. To achieve this, many methods use cam-
era intrinsics to correspond spatial position of pixels and
points, then align per pixel-point feature or fuse the raw

Table 1. Affordance Learning. Various works for several tasks in
the affordance community.

Work ‘ Input ‘ Output Task

, 60, Image/Video 2D Mask Detection

, 38, Image, Text 2D Mask Detection
RGBD Heatmap & Action | Manipulation

Point Cloud | Heatmap & Action | Manipulation
Image/Video 2D Heatmap Grounding
Point Cloud 3D Heatmap Grounding

]
1
]
]
]
1

data [24, 59, 62, 68, 77, 80]. Some works utilize depth in-
formation to project image features into 3D space and then
fuse them with point-wise features [18, 41, 72, 75, 76]. The
above methods rely on the spatial prior information to align
features, while in our task, images and point clouds are col-
lected from distinct physical instances, there are no priors
on camera pose or intrinsics, also no corresponding depth
information of the image. Therefore, we align the object re-
gion features that are derived from different sources in the
feature space with the assistance of the correlation invari-
ance between affordances and appearance structures.

3. Method
3.1. Overview

Our goal is to anticipate the affordance regions on the
point cloud that correspond to the interaction in the im-
age. Given a sample {P, I, B,y}, where P is a point cloud
with the coordinates P, € RV*3 and the affordance anno-
tation Pgpe; € RVX1, T € R3>*HXW is an RGB image,
B = {Bsub, Boy; } denotes the bounding box of the subject
and object in I, and y is the affordance category label. The

IAG (Fig. 3) capture localized features Fy € RC*H xW
and F,, € RE*No of the image and point cloud by two
feature extractors ResNet [16] and PointNet++ [52]. Then,
utilizing Boy;/ Bsup to locate the object/subject region in
Fi, outside the B.y; and B,yy, is the scene mask M., use
ROI-Align [15] to get the object, subject, and scene features
F;, F,,F, ¢ RE*HxWi and reshape them to RE*Ni
(N; = Hy x Wy). Next, the JRA module takes F;, F,, as
input and jointly mines the correspondence to align them,
obtaining the joint feature F; (Sec. 3.2). Following, the
ARM module takes F;, F,, F. to reveal the affordance F,
through cross-attention mechanism (Sec. 3.3). Ultimately,
F, and F; are sent to the decoder to compute the affor-
dance logits y and the final 3D object affordance é (Sec.
3.4). The process is expressed as qB,Q = fo(P.,I,B;0),
where fy denotes the network and 6 is the parameter.

3.2. Joint Region Alignment Module

The JRA module calculates the high-dimensional dense
similarity in feature space to approximate analogous shape
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Figure 3. Method. Overview of Interaction-driven 3D Affordance Grounding Network (IAG), it firstly extracts localized features F;, F,,
respectively, then takes JRA (Sec. 3.2) to align them and get the joint feature F';. Next, ARM (Sec. 3.3) utilizes F'; to reveal affordance
F, with Fg, F. by cross-attention. Eventually, F'; and F, are sent to the decoder (Sec. 3.4) to obtain the final results ¢ and g.

regions that contain relatively higher similarity [2]. Mean-
while, to map the inherent combination scheme of object
components, the JRA models the inherent relations between
modality-specific regions and takes it to drive the alignment
of other regions by a transformer-based joint-attention fs.
With the network trained to capture the correspondences
among regions from different sources, the alignment is per-
formed implicitly during the optimization.

Initially, F,, and F; are projected into a feature space
by shared convolution layers f,, obtaining the features
P € RE*No T € RE*Ni_ Then, to correlate the analo-
gous shape regions, the dense cross-similarity is calculated
between each region of P and I, formulated as:

e(Pi.I;)
Zz 1 Z

where ; ; denotes the cross-similarity between the i-th re-
gion of P and the j-th region of I. Taking the relative dif-
ference in ¢ to refine and correlate analogous regions in P
and I, next, applying self-attention layers f;, f,, to model
the intra-structural inherent relation of objects in respective
modalities, the process is expressed as:

P=/f1¢")I=/f(P: ¢), )

where P € RO*Ne T € RE*Ni, Following, we perform
a joint-attention on features with structural relevance to
map the similar inherent combination scheme and drive the
alignment of the remaining regions. The process is formu-
lated as: F; = f5[P,1I], where F; € REX(NoFNo) anq []
denotes joining the image feature sequence and point cloud
feature sequence into a whole one, and F; denotes the joint
representation. The F; is sent to the affordance revealed
module to excavate interaction contexts with F,, F.. And
the affordance knowledge revealed by the interaction con-
texts could mutually optimize the alignment process during
training (see Sec. 3.4).

cp e RNpXNi (1)

Pij =
J e(Pi1))

3.3. Affordance Revealed Module

In general, the dynamic factors related to affordance are
reflected in the interaction, affecting the extraction of affor-
dance representation, and the interaction is mostly consid-
ered to exist between humans and objects. However, the
interaction between objects and scenes (including other ob-
jects) may also affect affordance [43]. To consider both of
these factors, the ARM module utilizes the cross-attention
technique to extract these interaction contexts respectively
and jointly embed them to reveal explicit object affordance.

Specifically, F; is projected to form the shared query
Q =F;W,, F, and F, are projected to form different keys
and values K,/ = FsWy/3, V5 = FcWy,5, where
W .5 are projection weights. Then cross-attention aggre-
gates them to excavate interaction contexts, expressed as:

©1)> = softmax(Q" - Kyp/Vd)- Vi, (3)

where Q € R>*WotNi) Ky 5 V5 € RPNi| d is the
dimension of projection, ®, @ indicate the excavated in-
teraction contexts. Then, jointly embedding ®; and @5 to
reveal affordance, expressed as:

o = fe(©1,05),F, € ROXWNptNi) 4)

where F, is the joint affordance representation, it is split in
the decoder to compute final results, f¢ denotes the concate-
nation, followed by a convolution layer to fuse the feature.

3.4. Decoder and Loss Function

The F; is split to F,, € RE*N» and F; € RONi| F,
is split to F,, € RE*N> and F;,, € RE*Ni in the decoder.
Pooling F,, and F;, respectively and concatnate them to
compute the affordance logits §. F, is upsampled to R“*

by Feature Ifropagation Layers (FP) [52], and the 3D object
affordance ¢ is computed as:

¢ = fs(FP(F,) ©T(Fp)), 0 e RV (5)
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Figure 4. Properties of the PIAD dataset. (a) Data pairs in the PIAD, the red region in point clouds is the affordance annotation. (b)
Distribution of the image data. The horizontal axis represents the category of affordance, the vertical axis represents quantity, and different
colors represent different objects. (c) Distribution of the point cloud data. (d) The ratio of images and point clouds in each affordance class.
It shows that images and point clouds are not fixed one-to-one pairing, they can form multiple pairs. Please refer to supp. for more details.

where fy is an output head, FP is the upsample layer, I
denotes pooling F,, and expand it to the shape of REXN
The total loss comprises three parts: Log, Lxr, LHM-
Where L g computes the cross-entropy loss between y and
1, it supervises the extraction of F, and implicitly opti-
mizes the alignment process. To enable the network focus
on the alignment of affordance regions, we apply the KL
Divergence (KLD) [3] to constrain the distribution between
F,, and F;, formulated as L[ = (Fial |1A?‘l) The reason is
that F';, exhibits the affordance distribution of each object
region in the image, and the affordance-related regions keep
more significant features. Constraining the feature distribu-
tion of f‘i to enhance the affordance region features in Fi,
and with the region correlations established by the align-
ment process, f‘p also tends to exhibit this property, simi-
lar to distillation [19, 71]. Which makes the alignment and
affordance extraction optimize mutually. L, is a focal
loss [28] combined with a dice loss [40], it is calculated by
qAS and Pjgpe;, Which supervise the point-wise heatmap on
point clouds. Eventually, the total loss is formulated as:

(6)

where \j, Ay and A3 are hyper-parameters to balance the
total loss. See more details in supplementary materials.

Liotal = MLcE + Ao Lrxr + XL,

4. Dataset

Collection Details. We collect Point-Image Affordance
Dataset (PIAD), which contains paired image-point cloud
affordance data. The point clouds are mainly collected from
3D-AffordanceNet [10], including the point cloud coordi-
nates and affordance annotation. Images are mainly col-
lected from HICO [4], AGD20K [35], and websites with
free licenses. The collection criteria is that the image should
demonstrate interactions that the object in the point cloud
could afford. For example, if the object point cloud is a
“Chair”, it affords “Sit”, then the image should depict a sub-
ject (usually humans) sitting on a chair. The final dataset
comprises 7012 point clouds and 5162 images, spanning 23
object classes and 17 affordance categories. Notably, ob-

jects in the images and point clouds do not sample from the
same physical instance, but they belong to the same object
category. Paired examples are shown in Fig. 4 (a).
Annotation Details. For point clouds, each point may
afford one or multiple interactions, e.g. one annotation is
a matrix of (2048, 17), 2048 is the point number, 17 rep-
resents the number of affordance types. Each element in
the matrix indicates the probability of a point affording a
specific affordance. Meanwhile, images are annotated with
bounding boxes of the interactive subject and object, as well
as an affordance category label. In our task, we only use the
heatmap in the point cloud annotation that corresponds to
the affordance of the image for training, resulting in a ma-
trix of (2048, 1). By doing so, the affordance category is
detached from the point cloud during inference, and the an-
ticipation of the 3D object affordance category only relies
on 2D interactions. As a result, different affordances can be
anticipated on a point cloud through distinct interactions.
Statistic Analysis. Since images and point clouds are
sampled from different instances, they do not need a fixed
one-to-one pairing, one image could be paired with multiple
point clouds and the count of them is not strictly consistent.
Fig. 4 (b) and (c) show the count and distribution of affor-
dances in images and point clouds. Fig. 4 (d) illustrates
the ratio of images and point clouds in each affordance cat-
egory. PIAD has two partitions: Seen and Unseen. In
Seen, both objects and affordances in the training and test-
ing sets are consistent, while in Unseen, some objects or
affordances in the testing set do not exist in the training set.

5. Experiments
5.1. Benchmark Setting

Evaluation Metrics. To provide a comprehensive and ef-
fective evaluation, we compare serval advanced works in
the affordance area [10, 47, 74] and finally chose four eval-
uation metrics: AUC [31], alOU [53], SIMilarity [57] and
Mean Absolute Error [65] to benchmark the PIAD.

Modular Baselines. Since there are no prior works us-
ing paired image-point cloud data to ground 3D object
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Table 2. Comparison Results on PIAD. The overall results of all comparative methods, the best results are in bold. Seen and Unseen

are two partitions of the dataset. “Green" and * " indicate two types of the comparative modular baselines. “Base.” represents
the baseline. ¢ denotes the relative improvement of our method over other methods. AUC and alOU are shown in percentage.
| Metrics | Base. | MEDF [59] PMF [80]  FRCNN [68] | [5] [67] [11 | Ours
AUCT | 68.49 | 74.88013.3% 75.05013.0%  76.05011.5% | 75.84011.9%  77.5009.5% 78.2408.4% | 84.85+ 0.3
8| aloUt | 6.85 |9.340119.5% 10.130102.4% 11.97071.3% | 11.52078.0%  12.31666.6%  12.94058.5% | 20.51 £ 0.7
A SIM1| 0.367 |0.415031.3% 0.425028.2%  0.429027.0% | 0.427027.6% 0.432026.1%  0.441023.6% | 0.545 & 0.02
MAE | | 0.152 |0.143031.4% 0.141030.5% 0.136027.9% | 0.137028.4%  0.135027.4%  0.127022.8% | 0.098 + 0.01
a| AUCT | 57.34 |58.23023.3% 60.25019.2% 61.92016.0% | 59.69020.3%  61.87<16.1% 62.58014.8% | 71.84 £+ 1.8
0| aloUt | 3.95 | 4.220884%  4.67070.2%  5.12055.2% | 4.71668.8% 5.33049.1% 5.68039.9% | 7.95+ 0.8
g SIM?T| 0318 | 0.32508.3%  0.33006.6%  0.33206.0% | 0.32508.3%  0.33006.6%  0.34202.9% | 0.352 =+ 0.03
P | MAE 1] 0.235 |0.213040.3%  0.211039.8%  0.195034.8% | 0.207038.6%  0.193034.2%  0.188032.4% | 0.127 & 0.01
GT E [ ‘ 1 E Table 3. Ablation Study. We investigate the improvement of JRA
“f%@i ! ‘ ! and ARM on the model performance based on the baseline.
@ | : [} ]
z E g | |
s | | | | JRA ARM | AUC alOU SIM  MAE
5 5 69.92 885 0427 0.132
1 1 8 v 80.29 1431 0495 0.121
. ' ' @ v 78.67 1395 0475 0.126
g. E E v v 8516 21.20 0.564  0.088
E E o 59.14 4.05 0.338  0.202
() ! (b) ! i v 6625 627 0363  0.159
Figure 5. Paradigm Comparison. (a) Ground truth. (b) The E v 65.79 5.99 0.358 0.162
results of 3D-AffordanceNet [10]. (¢) Our results. The top row v v 73.69 8.70 0.383  0.117

shows the regional confusion case in Seen, and the bottom row
displays the generalization in Unseen.

affordance. For a thorough comparison of our method,
we select several advanced image-point cloud cross-modal
works as modular baselines. Methods of comparison are
broadly divided into two types, one is that utilizes cam-
era intrinsics to facilitate cross-modal feature alignment
or fusion, i.e. MBDF-Net (MBDF') [59], PMF [80] and
FusionRCNN (FRCNN) [68], for this type of method,
we remove the step of using intrinsic parameters to align
raw data or features to explore their effectiveness on
PIAD. Another type performs feature alignment directly
in the feature space, without relying on camera intrinsic,
ie. [51,

[67] and [1]. To ensure a fair compari-
son, all methods use the same feature extractors, with the
only variation coming from cross-modal alignment or fu-
sion block. For the Baseline, we directly concatenate
the features that are output from extractors, regarding the
concatenation as the cross-fusion block. More details about
baselines are provided in the supplementary materials.

5.2. Comparison Results

The comparison results of evaluation metrics are shown
in Tab. 2. As can be seen, our method outperforms the
compared baselines, across all metrics in both partitions.

Besides, to display the limitation of methods that lock ge-
ometrics with specific semantic affordance categories, we
conduct an experiment to compare one of these methods
[10] with ours. As shown in Fig. 5, the top row indicates
that the result of this method exhibits regional confusion,
e.g. the region where the chair could be moved or sat is ge-
ometrically rectangular, and it directly anticipates results on
these similar geometries, inconsistent with affordance prop-
erty. Plus, the bottom row shows that directly establishing
a link between object structures and affordances may fail
to anticipate correct 3D affordance in Unseen. In con-
trast, our method anticipates precise results by mining affor-
dance clues provided by 2D interactions. Additionally, vi-
sual comparative results of our method and other baselines
are shown in Fig. 6. As can be seen, the comparative base-
lines could anticipate some 3D object affordance under our
setting, but in comparison, our method obviously achieves
better results, which validates the rationality of our setting,
and also demonstrates the superiority of our method.

5.3. Ablation Study

Effectiveness of JRA. Tab. 3 reports the impact on evalu-
ation metrics of JRA. Fig. 7 provides visual comparison re-
sults. It shows that without the JRA, the result is anticipated
over the entire region that contains the interactive compo-
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Figure 7. Ablation of JRA. The top row is the result of the antic-

ipated affordance with/without JRA. The bottom row is a part of

the cross-similarity matrix of a sample during the training process.

Image Regions

nents, which means the 2D-3D affordance regions of ob-
jects do not match well. Besides, we visualize a part of the
cross-similarity matrix between f‘p and F; in Fig. 7. In the
initial stage, only a few analogous shape regions keep ex-
plicit correspondence, as training proceeds, the JRA maps
the correlation among regions with lower similarity. Mean-
while, the model extracts explicit affordance progressively,
and the affordance introduced into the optimization process
reveals the corresponding affordance regions.

w/o ARM w ARM

Seen

Unseen

Figure 8. Ablation of ARM. The activation map and t-SNE [61]
results with (w), without (w/0) ARM in both partitions.

Effectiveness of ARM. The influence of ARM on evalu-
ation metrics is also shown in Tab. 3. To visually evalu-
ate the effectiveness of ARM, we employ GradCAM [55]
to generate the activation map, and utilize t-SNE [61] to
demonstrate the clustering of affordances in both partitions.
The results are shown in Fig. 8. It shows that ARM makes
the model focus on the interactive regions to excavate the
interaction contexts, and enables the model to differentiate
various affordances from interactions in both partitions.
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(a) (b) (©
Figure 9. Same Image w.r.t. Multiple Point Clouds. (a) Same

object category. (b) Different object categories, similar geomet-
rics. (c) Different object categories and geometrics.

Listen Grasp
Figure 10. Same Point Cloud w.r.t. Multiple Images. Ground-

ing affordance on the same point cloud with images that contain
similar or disparate interactions.

5.4. Performance Analysis

Different Instances. We conduct experiments to verify
whether the model could ground 3D affordance on instances
from different sources: (i) using an image and different
point clouds to infer respectively (Fig. 9 (a)). (ii) using
multiple images and a single point cloud (Fig. 10). The re-
sults indicate that the model can anticipate 3D affordances
on different instances with the same 2D interaction, and can
also anticipate distinct 3D affordances on the same point
cloud through different 2D interactions. Showing that the
model maintains the mapping between object structures and
affordances by learning from different 2D interactions.
Different Object Categories. What will happen if the
object category is different in the image and point cloud?
To explore this issue, we perform experiments with mis-
matched object categories, shown in Fig. 9 (b) and (c).
When objects are of different categories but with similar ge-
ometric primitives, e.g. the handle of “Mug” and the shoul-
der strap of “Bag”, our model still properly infer the 3D af-
fordance. However, when geometric structures are also dis-
similar (Fig. 9 (c)), the model does not make random pre-
dictions. This indicates that the model maps cross-category
invariance between affordance and geometries, which can
be generalized to new instances of geometry.

Multiplicity. One defining property of affordance is mul-
tiplicity: some points may correspond to multiple affor-
dances. Fig. 11 shows that the model makes objects’ multi-
ple affordances compatible, and verifies the model does not

Figure 11. Multiple Affordances. Some objects like “Bag" con-
tains the region that corresponds to multiple affordances.
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Figure 12. Real-Wrold. The first row is scanned by iPhone, the
second row comes from [29], point clouds are sampled from them.
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Figure 13. Failure Cases. Over prediction in the small regions.

anticipate affordance by linking a region with specific affor-
dances. Instead, it predicts by considering the presence of
affordance-related interactions in the same region.

Real World. To validate the model in real-world scenarios,
we use an iPhone to scan objects and real-scan dataset [29]
to test our model, shown in Fig. 12. It shows that our model
exhibits a certain degree of generalization to the real world.
Limitations. Our model exhibits over predictions for some
small affordance regions, shown in Fig. 13. This may be
due to the limited understanding of fine-grained geometric
parts, and aligning the object features in a single scale may
lead to overly large receptive fields. Our feature extension
will refer [13, 27] to tackle this problem.

6. Conclusion

We present a novel setting for affordance grounding,
which utilizes the 2D interactive semantics to guide the
grounding of 3D object affordance, it has the potential to
serve embodied systems when collaborating with multi-
modal grounding systems [30, 58, 70]. Besides, We collect
the PIAD dataset as the first test bed for the proposed set-
ting, it contains paired image-point cloud affordance data.
Plus, we propose a novel framework to correlate affordance
regions of objects that are from different sources and model
interactive contexts to ground 3D object affordance. Com-
prehensive experiments on PIAD display the reliability of
the setting, and we believe it could offer fresh insights and
facilitate research in the affordance area.
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