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Abstract

Modern deep learning techniques on automatic multi-
modal medical diagnosis rely on massive expert annota-
tions, which is time-consuming and prohibitive. Recent
masked image modeling (MIM)-based pre-training methods
have witnessed impressive advances for learning meaning-
ful representations from unlabeled data and transferring to
downstream tasks. However, these methods focus on nat-
ural images and ignore the specific properties of medical
data, yielding unsatisfying generalization performance on
downstream medical diagnosis. In this paper, we aim to
leverage genetics to boost image pre-training and present
a masked relation modeling (MRM) framework. Instead
of explicitly masking input data in previous MIM methods
leading to loss of disease-related semantics, we design rela-
tion masking to mask out token-wise feature relation in both
self- and cross-modality levels, which preserves intact se-
mantics within the input and allows the model to learn rich
disease-related information. Moreover, to enhance seman-
tic relation modeling, we propose relation matching to align
the sample-wise relation between the intact and masked fea-
tures. The relation matching exploits inter-sample relation
by encouraging global constraints in the feature space to
render sufficient semantic relation for feature representa-
tion. Extensive experiments demonstrate that the proposed
framework is simple yet powerful, achieving state-of-the-
art transfer performance on various downstream diagnosis
tasks. Codes are available at https://github.com/
CityU-AIM-Group/MRM .

1. Introduction
In the medical diagnosis [44, 34, 38, 28, 6, 5], the large-

scale multimodal biobank data, e.g., images and genet-
ics, is necessary for a reliable diagnosis, overcoming the
limited scale and disease information of a single-modality
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Figure 1. Comparison of different masking strategies on natu-
ral and medical data. (a): Existing MIM methods mask out in-
put natural images and infer the missing content to learn semantic
representations via reconstruction task. (b): Recent pre-training
approaches for disease diagnosis explicitly employ MIM on in-
put medical data (e.g., medical images and genome), whilst they
are prone to lose tiny disease regions and cause non-tractable re-
construction. (c): Our method masks token-wise feature relation
across multimodal data and matches sample-wise relation between
the intact and masked features, preserving intact semantic regions
and enriching relation information.

dataset. However, the prohibitive expert annotations of
large-scale datasets make it difficult to train a conventional
deep model [44, 45, 41, 46, 47]. Particularly, in this multi-
modal scenario, the requirements of the experts in various
medical fields prevent enough annotation access, severely
limiting the grounding of the automatic diagnosis system.

To address this, the most prospering trend [16, 43, 4,
34, 13, 35, 36, 12, 27] is self-supervised pre-training, e.g.,
masked image modeling (MIM) [16, 43, 13, 42], aiming to
train a label-free model with adequate generalization capac-
ity. Existing MIM methods [16, 43, 4, 25, 13, 42, 49] mask
out a high portion of patches within input images and in-
fer the missing content, as suggested in Figure 1 (a). They
make use of contextual information to glance the semantics
and reconstruct the entire images, which performs a mask-
and-reconstruct task to pre-train the model without anno-
tation and transfer meaningful representations to various
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downstream tasks for improving label-efficient fine-tuning.
Though achieving great success, most works [16, 43,

4, 40, 10, 25, 19] are designed for natural images, ignor-
ing the essential differences between medical data and nat-
ural images. Therefore, we empirically find that existing
MIM CANNOT works well in medical data (see Table 1),
and even totally fails to reconstruct diseases (see Figure 3).
The reasons derive from a critical observation regarding
the significant data differences, which can be summarized
into two challenges. Firstly, compared with natural images,
there are limited semantic regions in medical data. As
shown in Figure 1 (a), the semantic-rich foreground is al-
ways the main body of the natural image, while the rest
non-informative background region only represents a mi-
nority part. Differently, in the medical image (Figure 1
(b)), the majority of regions are backgrounds, and the in-
formative disease regions are usually on a tiny scale. Un-
der the strategy of masking entire tokens in existing MIM
methods [16, 43, 4, 40, 10, 25, 19], if the disease tokens
are masked out, the disease-related semantic is totally miss-
ing with a catastrophic information loss, leading to a non-
tractable reconstruction. This issue also exists between ge-
nomics and natural images. The semantic regions in ge-
nomics, i.e., the disease-related patterns, mainly lie in a mi-
nority of genome segments [28, 5, 7]. Hence, instead of
masking the whole input token, these observations motivate
us to delve into the masking of token-level relation, which
preserves abundant semantic discriminability and adequate
self-supervision, as illustrated in Figure 1 (c) Left.

The second challenge is the limited semantic relation.
In a natural image, the background and foreground relation-
ship, e.g., the bird in the sky and the person in a room, tends
to be prosperous and abundant, serving a critical role in
semantic-level learning [39, 24]. In contrast, in each med-
ical data sample, the disease-aware relation is limited and
insufficient to provide enough discriminative evidence. The
reason lies in that the medical datasets are usually collected
from the same human organ, e.g., the fundus, containing
redundant and similar anatomical patterns, e.g., the capil-
lary, which severely prevent the relation modeling between
the disease and the complex medical scene. This chal-
lenge hampers reliable relation learning in existing MIM
methods, and may incur an inevitable overfitting to non-
informative relation within the background [40, 25, 23, 3].
Hence, considering the limited semantic relation in each
data sample, we are committed to going beyond the self-
supervised learning for an independent and individual data
sample, and propose to encourage global constraints for ex-
ploiting inter-sample relation (see Figure 1 (c) Right).

To combat above challenges, as shown in Figure 1 (c),
we present MRM, a masked relation modeling from a uni-
fied view of relation, containing relation masking and re-
lation matching, to rationally pre-train multimodal medical

images with genetics. To preserve intact semantic informa-
tion within raw input, we devise relation masking strategy
to allow the model to learn disease-related semantics. In-
stead of masking out input data, the relation masking inves-
tigates token-wise relation within feature representations in
both self- and cross-modality levels and masks out the rela-
tion among all multimodal tokens. The relation masking en-
dows the model to explicitly learn global dependency from
raw data without missing disease-related semantic informa-
tion. Furthermore, to improve the semantic relation model-
ing, the relation matching is designed to provide global con-
straint by aligning the feature relation across multiple sam-
ples. Specifically, relation matching exploits sample-wise
relation in both self- and cross-modality levels to encour-
age the relation consistency between the intact and masked
features. This enjoys the complementary advantages of per-
sample pixel-wise reconstruction loss and boosts the trans-
fer ability of the model. With the pre-trained model, we can
obtain the feature representation that can be transferred to
supervised downstream diagnosis tasks for boosting label-
efficient fine-tuning, alleviating the severe demand for spe-
cialized annotations.

In summary, our contributions fall into four parts:

• We identify the challenges of current MIM methods
on medical data, and present MRM, a masked relation
modeling using multimodal medical data to facilitate
image representation learning.

• Towards the issue of limited semantic regions in med-
ical data, we design relation masking to mask token-
wise feature relation across self- and cross-modality.
Different from MIM explicitly masking inputs, rela-
tion masking preserves disease semantics within in-
puts, endowing a powerful mask-and-construct task.

• Moreover, to enrich the semantic relation among dis-
eases, the relation matching is proposed to capture
abundant disease-related relation by aligning sample-
wise feature relation between intact and masked fea-
tures in both self- and cross-modality levels.

• Extensive transfer evaluation on various downstream
tasks using two public medical pre-training datasets
demonstrate that our framework performs superior
transfer ability over state-of-the-art methods.

2. Related Work

2.1. Visual Pre-training

In recent years, self-supervised visual pre-training [8, 9,
15, 17, 11, 16, 43, 48, 4] has achieved exceptional trans-
fer performance in various downstream visual tasks, which
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Figure 2. Overview of masked relation modeling (MRM). MRM contains relation masking to mask out token-wise feature relation with
preserving disease-related semantics, and the relation matching to enforce sample-wise relation consistency for global semantic modeling.

can be divided into two categories. The first is contrastive-
based methods [8, 15, 17, 35, 35] that aim to project sim-
ilar samples nearby while pull dissimilar ones far away in
the feature space. For instance, SimCLR [8] imposes two
embeddings from a sample under different views consis-
tency via InfoNCE loss, and BYOL [15] merely pushes
the positive pairs together with a momentum encoder for
boosting transfer performance. Moreover, inspired by the
progress of masked language modeling on natural language
processing [20], masked image modeling (MIM)-based ap-
proaches [16, 48, 43, 4, 3, 10, 3] are proposed to pre-train
visual models and exhibit remarkable transfer performance.
MAE [16] formulates a pixel-wise reconstruction task to
mask out a high portion of input patches and infer the
masked ones with visible tokens via an autoencoder. Af-
terwards, many followups [43, 3, 19, 10] devise MIM mod-
els to improve the representation learning. However, they
mainly focus on natural images and ignore the essential
differences between the medical data and natural images,
thereby delivering unsatisfying transfer results [27, 49].

2.2. Medical Self-supervised Learning

Most works [35, 36, 2, 34] on medical self-supervised
learning extend the ideas of contrastive learning and de-
velop customized strategies to pre-train models. 3D-
SSL [36] adopt a series of proxy tasks to present a 3D ver-
sions self-supervised model and achieves compelling trans-
fer results. ContIG [34] crafts a multimodal pre-training
framework using image and genome data via contrastive
learning and delivers competitive transfer ability. Although
efficiency, these contrastive-based approaches strongly rely
on well-defined data augmentations to construct positive

pairs, which are difficult for medical data, especially for
structured data, e.g., genetics. Most recently, some stud-
ies [13, 42, 27, 49] adopt MIM to self-supervised pre-train
medical models. MedicalMAE [49] introduces a self pre-
training paradigm by employing MAE [16] to pre-train the
model and achieve superior performance. To perform mul-
timodal pre-training, M33AE [13] randomly masks out the
tokens of image and language inputs and aims to infer the
whole data using visible tokens. All of them still adopt input
masking strategy, which may incur tiny disease-related re-
gion missing and non-tractable reconstruction. Differently,
we design a novel relation masking strategy in the feature
space and retain intact disease-related information.

2.3. Learning from Images and Genetics

Genetics can provide comprehensive information for
many disease diagnosis and treatment planning [38, 28, 6,
5, 7], which attract much attention from researchers. Many
works [44, 34, 38] formulate a multimodal learning task by
jointly leveraging genetics and medical images to exploit
complementary knowledge. Considering that the genetics
may be difficult to acquire in many clinical applications, re-
cent studies [34, 7] aim to design pre-training models using
images and genetics for improving practical image-based
diagnosis. However, they merely use contrastive constraint
to perform self-supervised learning, while they fail to adopt
the efficient mask-and-reconstruct task to pre-train models.
In this work, we aim to leverage genetics with images to
boost the visual representation learning via semantic rela-
tion modeling, which discovers both inner-sample and inter-
sample relation to achieve more effective pre-training.
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3. Masked Relation Modeling
In this section, we start by introducing the preliminar-

ies of vision Transformer and masked image modeling. We
then present the masked relation modeling (MRM), con-
taining relation masking and relation matching. The overall
pre-training and transfer inference of the framework are de-
scribed at the end of the section.

3.1. Preliminaries

Vision Transformer (ViT). Given an image x ∈ Rc×h×w,
ViT first splits it into n = hw/p2 non-overlapping patches
xP = {x1;x2; ...;xn}, xi ∈ Rc×p×p, where p × p de-
notes the size of each patch. Afterwards, the patches xP

are tokenized as a sequence of token embeddings e =
{e1; e2; ...; en}, ei ∈ R1×d, where d is the dimension of
each token, via a linear projection with positional embed-
dings. The embeddings e are then processed by a cascade
of multi-head self-attention layers to capture global infor-
mation, where the self-attention is described as follow:

Attention(e) = Softmax(
1√
d
QKT )V, (1)

where K = eWK , Q = eWQ, V = eWV , K,Q, V ∈
R1×d is the key, query and value obtained by the linear
projection via WK ,WQ,WV , respectively. Each layer of
the ViT encoder contains a multi-head self-attention block,
and the feature representation is produced by multiple lay-
ers within the encoder.
Masked Image Modeling (MIM). The input patches xp are
randomly masked out with a high ratio, denoted as masked
patches xM . The remaining visible patches xV are fed into
ViT encoder f(·) to capture features z = f(xV ), which
are then sent to a lightweight decoder h(·) to recover the
missing patches x̂ = h(z) of the input data. The over-
all framework is optimized by mean-squared error (MSE)
reconstruction loss function LMIM between the recovered
patches x̂ and masked patches xM as:

LMIM = E||xM − h(f(xV ))||22. (2)

Overview of Masked Relation Modeling (MRM). As il-
lustrated in Figure 2, the proposed MRM consists of the
relation masking strategy to mask out feature relation and
preserve intact disease-related semantics, and the relation
matching to offer global constraints for relation modeling.
With the input image xI and genome xG, the ViT encoder
fI and self-normalizing network (SNN) [22] fG produces
masked feature representations zI,M , zG,M for image and
genome via relation masking. Parallelly, the intact repre-
sentations zI , zG are obtained by two encoders without rela-
tion masking. Afterwards, the masked features zI,M , zG,M

are aggregated with the intact features zG, zI from the other
modality to yield the fused features zFI , z

F
G , respectively.

These fused feature are then put into the image decoder hI

and the genome decoder hG to reconstruct original data x̂I

and x̂G. The relation matching is employed on intact and
masked feature representations with the data reconstruction
loss to jointly optimize the overall framework.

3.2. Relation Masking

Due to the medical data usually appearing tiny disease
patterns, current input-level masking strategies may discard
disease-related semantics and hardly learn informative fea-
ture representation. To address this problem, the relation
masking is proposed to mask token-wise feature relation
from self- and cross-modality perspectives in a cascading
manner, which can maintain intact input disease-related in-
formation during pre-training. The operations of relation
masking for image and genome are parallel, for brevity, we
adopt the image branch to introduce.
Self-modality relation masking. In the i-th relation mask-
ing block, given z0I as the input image token, we first calcu-
late KS

I , Q
S
I , V

S
I as its key, query and value, respectively.

Then, the normalized feature dependency in tokens is ob-
tained by computing the relation between the key KS

I and
query QS

I of the image feature as follows:

Rself = Softmax(
1√
d
QS

I · (KS
I )

T ). (3)

This self-modality relation Rself reflects the token-wise se-
mantic correspondence within the image feature. The to-
kens with stronger relation contain more interactive and in-
formative semantics. To enable the model to capture intra-
modality feature representation via the reconstruction task,
on the top of self-modality relation, we aim to break the
strong dependency across informative regions by relation
masking. Specifically, we mask out high-intensity elements
with a ratio τI in self-modality relation:

RM
self[p, q] =

{
Rself[p, q] if Rself[p, q] < rpself

0 else, (4)

where rpself refers to the intensity of the top-τI element
among the p-th row of the self-modality relation Rself ma-
trix. Note that the masked elements are selected in each row
of the self-modality relation matrix to remove the semantic
correspondence for all tokens with the same intensity. Af-
terwards, the masked relation matrix RM

self is forwarded to
produce the token zSI = RM

selfV
S
I for subsequent data flow.

With the self-modality relation masking, the relative impor-
tant dependency within the modality is discarded and we
enforce the model to reconstruct the original image with the
remaining weak feature relation. Thus, the model can cap-
ture disease-related feature representation of images.
Cross-modality relation masking. In an attempt to incor-
porate multimodal knowledge, after the self-modality self-
attention layer, we perform cross-modality attention be-
tween the image and genome features. Precisely, obtained
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the image and genome tokens zSI , z
S
G masked via self-

modality relation masking, we compute token-wise cross-
modality relation to capture semantic correspondence be-
tween image and genome features:

Rcross = Softmax(
1√
d
QC

I · (KC
G )T ), (5)

where KC
G means the key of genome feature zSG, and QC

I

represents the query of image feature zSI in the cross-
attention layer. This cross-modality attention can amal-
gamate two modality knowledge and improve the feature
representation towards disease-related information. Then,
to allow the model to learn complementary multimodal
knowledge and the relation between two modalities, we per-
form cross-modality relation masking by removing strong
semantic correspondence between image and genome fea-
tures:

RM
cross[p, q] =

{
Rcross[p, q] if Rcross[p, q] < rpcross

0 else, (6)

where rpcross denotes the intensity of the top-τI element
among the p-th row of the cross-modality relation matrix
Rcross. With the masked relation RM

cross, we can obtain the
fused image token zCI = RM

crossV
C
G , where V C

G means the
value of the genome feature.
Reconstruction with relation masking. We feed the input
data into two networks shared parameters, where the first
network consists of a ViT encoder to yield intact image fea-
ture zI and a SNN encoder with self-attention blocks to pro-
duce genome feature zG. Parallelly, the second network em-
ploys the proposed self- and cross-modality relation mask-
ing in first two attention blocks to generate masked features
zI,M , zG,M for image and genome, respectively. After-
wards, the masked features are incorporated with the intact
feature from the other modality and produce amalgamated
features zFI = concat[zI,M ; zG], z

F
G = concat[zG,M ; zI ] for

images and genome. The fused features are then put into
the decoders hI(·), hG(·) to reconstruct image and genome
x̂I = hI(z

F
I ), x̂G = hG(z

F
G). The overall loss function for

the reconstruction of image and genome is:

Lrecon = ||hI(z
F
I )− xI ||22 + ||hG(z

F
G)− xG||22. (7)

The relation masking strategy exploits the token-wise fea-
ture relation for mask-and-reconstruct task. It is worth not-
ing that although the strong relation is removed, the intrin-
sic information within the data is retained [32]. Therefore,
with the original complete image and genome as inputs, our
relation masking can preserve the intact disease-related se-
mantics. With the relation masking-based reconstruction
task, the self-modality relation is encouraged to be recov-
ered by the model to capture disease-related information

within each modality, and the cross-modality relation is en-
forced to reconstruct to learn abundant multimodal knowl-
edge to improve the disease-related representation for effec-
tive downstream diagnosis tasks transfer.

3.3. Relation Matching

Considering that the disease-aware relation among dis-
eases is limited in medical data, to provide sufficient se-
mantic relation, we propose relation matching, a global con-
straint to align the sample-wise relation across self- and
cross-modality samples to perform global constraints in the
feature space.
Self-modality matching. Assume one minibatch con-
tains B multimodal pairs {xi

I , x
i
G}Bi=1, we can obtain

the intact feature representations {ziI , ziG}Bi=1 and masked
ones {ziI,M , ziG,M}Bi=1 via the proposed relation masking
strategy. Firstly, we compute the sample-wise relation
{Ri,j

II }Bi,j=1, {R
i,j
GG}Bi,j=1 across all intact features of image

and genome, respectively:

Ri,j
II = sim(ziI ; z

j
I)

Ri,j
GG = sim(ziG; z

j
G),

(8)

where sim(·; ·) denotes the similarity between two features,
here we adopt the cosine similarity. Similarly, we acquire
the sample relation among masked features:

Ri,j
II,M = sim(ziI,M ; zjI,M ),

Ri,j
GG,M = sim(ziG,M ; zjG,M ).

(9)

We aim to ensure the relation consistency between intact
and masked features. The matching objective for self-
modality feature relation can be formulated as:

Lself =
1

2B2

B∑
i=1

B∑
j=1

||Ri,j
II −Ri,j

II,M||22 + ||Ri,j
GG −Ri,j

GG,M||22.

(10)
Cross-modality matching. Furthermore, to incorporate
multimodal information and bridge the gap of different
modalities, we compute the cross-modality relation:

Ri,j
IG = sim(ziI ; z

j
G),

Ri,j
IG,M = sim(ziI,M ; zjG,M ),

(11)

where {Ri,j
IG }Bi,j=1 represents the cross-modality relation

across intact multimodal features, and {Ri,j
IG,M}Bi,j=1 means

the relation across masked ones. We intend to ensure the
cross-modality relation to be invariant between masked and
intact features. The cross-modality feature relation can be
calculated as:

Lcross =
1

B2

B∑
i=1

B∑
j=1

||Ri,j
IG −Ri,j

IG,M||22. (12)
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Table 1. Comparison with state-of-the-art pre-training algorithms via fine-tuning evaluation on four downstream retinal image-based tasks.
Method Masking Level APTOS RFMiD PALM CRP

Input Relation QwKappa ↑ ROC-AUC ↑ Dice-Score ↑ MSE ↓ ROC-AUC ↑
Training from scratch (baseline) − − 83.25 92.91 79.44 3.405 58.05

Contrastive-based Pre-training Methods
SimCLR [8] − − 84.50 93.75 73.18 3.426 63.92

MoCo v3 [17] − − 85.03 94.02 75.73 3.421 65.33
ContIG [34] − − 86.27 94.59 80.25 3.184 73.57

MIM-based Pre-Training Methods
MAE [16] ! % 84.06 92.71 74.28 3.488 64.29

SimMIM [43] ! % 84.67 93.80 72.73 3.450 66.08
MultiMAE [3] ! % 85.59 94.26 75.92 3.411 67.51

M3AE [13] ! % 86.85 94.72 77.35 3.394 68.39
mc-BEiT [25] ! % 87.15 94.37 77.40 3.372 66.38
AttMask [19] ! % 87.73 94.91 78.59 3.262 69.40

MRM % ! 89.83 96.31 81.45 3.107 75.90

With the self- and cross-modality feature relation, we
can formulate the overall relation matching objective as:

Lmatch = Lself + Lcross. (13)

The relation matching encourages global constraints in
the feature space to provide sufficient semantic relation,
which enjoys the complementary advantages of pixel-wise
data reconstruction loss in Eq. (7).

3.4. Pre-training and Transfer Inference

In the pre-training phase, the image and genome as mul-
timodal inputs are fed into the model. We adopt the pro-
posed relation masking to generate masked features, and
employ the relation matching as the global constraint with
the data reconstruction loss to jointly optimize the overall
framework:

Loverall = Lrecon + λLmatch, (14)

where λ denotes the balanced coefficient to control contri-
butions of the reconstruction task and the relation matching.
During the phase of downstream image-based fine-tuning,
we discard the genome branch and utilize the image en-
coder to extract the feature representation without relation
masking. The pre-trained encoder following a randomly ini-
tial task-relevant head is fine-tuned on downstream tasks for
evaluation.

4. Experiments
We pre-train MRM on two multimodal datasets involv-

ing retinal images with genetics, and pathology images
with genetics, respectively. To evaluate the quality of the
representations learned on retinal images, we transfer the
pre-trained model to four downstream retinal image-based
tasks. As for the model pre-trained on pathology images, we
assess it on a downstream pathology image-based task. The
gene-image association analysis is performed to study the
relation between images and genetics towards disease diag-
nosis. Finally, we extend our method to image pre-training
to verify the effectiveness on single modality.

4.1. Experimental Setup

4.1.1 Retinal Images with Genetics

Pre-training. We use UKB [33] to conduct the self-
supervised pre-training, which is one of the largest multi-
modal images and genetics datasets. Following the previous
work ContIG [34], we leverage the retinal fundus dataset as
the pre-training set, which contains 155,238 images, and
the genetics including 155,238 Raw-SNP samples, 145,206
PGS samples and 93,216 burden scores.
Downstream Transfer. We introduce four tasks to evaluate
and compare the effectiveness of the model pre-training.

1) Diabetic Retinopathy Detection (APTOS). The AP-
TOS [1] is a fundus disease dataset including 35,126 2D
images across five categories. All images are resized as
224 × 224 for efficient fine-tuning. We split 80% as the
training set to fine-tune the pre-trained MRM model, and
the remaining 20% as the test set is used to evaluate the per-
formance. The Quadratic Weighted Kappa (QwKappa) [14]
is adopted as the metric to measure the agreement between
the prediction and ground truth.

2) Retinal Fundus Disease Classification (RFMiD). The
Retinal Fundus Multi-disease Image Dataset (RFMiD) [29]
consists of 3200 annotated retinal fundus images of 46 eye
diseases. RFMiD formulates a multi-label classification
task since the images may contain multiple conditions. We
split 80% as the training set and 20% as the test set. The
area under the ROC curve (ROC-AUC) is used as the met-
ric to evaluate the classification results.

3) Pathological Myopia Segmentation (PALM). The
PALM dataset [18] contains 1200 images with disc and at-
rophy segmentation annotations. We use 800 images as the
training split and 400 images as test split. The dice score is
adopted as the segmentation evaluation metric.

4) Cardiovascular Risk Prediction (CRP). The retinal
fundus images of UKB dataset can also be utilized to
CRP including age, sex, smoking status, systolic and di-
astolic blood pressure (SBP, DBP), and body mass index
(BMI) [31], formulating a regression with classification
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Table 2. Transfer results on downstream pathological image task.

Method GG

Acc ↑ ROC-AUC ↑
Training from scratch (baseline) 73.83 90.16

Contrastive-based Pre-training
SimCLR [9] 74.24 90.62

MoCo v3 [11] 74.78 90.90
ContIG [34] 75.14 91.25

MIM-based Pre-Training
MAE [16] 73.75 90.44

SimMIM [43] 73.96 90.80
MultiMAE [3] 74.45 91.03
mc-BEiT [25] 74.82 91.35
AttMask [19] 75.36 91.75

MRM 76.17 92.07

task. We use mean squared error (MSE) as the metric for
numerical factors, i.e., age, BMI, SBP, DBP, and the ROC-
AUC for the categorical factors, i.e., sex and smoking status.

4.1.2 Pathology Images with Genetics

Pre-training. We use TCGA-GBM with TCGA-LGG
dataset [37] to conduct the pre-training, which consists of
736 paired samples of pathology slides and genetic profiles.
We resize the curated pathology slides with the shape of
224× 224 as inputs. Considering each patient has multiple
curated slides, we select one of them associated with one
genetic profile as an input pair.
Downstream Transfer. We leverage glioma grading (GG)
to evaluate performance. The GG can improve the treatment
planning for accurate determination. The TCGA dataset
contains WHO grading labels including grade II, III and IV.
We fine-tune the pre-trained model on training set with 80%
data split and evaluate the performance on 20% data split.
The accuracy and ROC-AUC are employed as the metrics
to measure the classification results.

4.2. Implementation Details

Following prior works [16, 44], we adopt ViT-base as the
image encoder and SNN network as the genome encoder to
learn representations. The ViT and SNN models are trained
via AdamW [26] and Adam [21], respectively, both with an
initial learning rate of 1 × 10−3. We use PyTorch [30] to
implement our models, and train all models for 50 epochs
with the batch size of 256 for UKB and 8 for TCGA. In
relation matching, for efficiency, we randomly select 8 pair
of multimodal features to perform matching constraint for
two datasets. All comparisons [8, 11, 34, 16, 43, 3, 13, 25,
19] share the same settings to achieve a fair comparison.
The balanced coefficient λ in Eq. (14) is set as 1.0, and the
masking ratios τI , τG for images and genetics are equal to
75% and 50%, respectively.

4.3. Comparison with State-of-the-arts

In this section, to assess the quality of feature representa-
tions to various downstream tasks, we fine-tune the encoder

Table 3. Ablation study of each proposed component in relation
masking and relation matching on retinal image-based tasks.

Masking Matching APTOS RFMiD PALM CRP

RM
self R

M
cross Lself Lcross QwKappa ↑ROC-AUC ↑Dice-Score ↑MSE ↓ROC-AUC ↑

83.65 90.49 72.51 3.496 61.57

✓ 86.37 93.48 75.29 3.352 67.21
✓ 85.10 92.71 74.20 3.418 64.82

✓ ✓ 87.50 94.28 77.23 3.283 70.52

✓ ✓ ✓ 88.27 94.94 78.49 3.216 73.73
✓ ✓ ✓ 88.65 95.51 79.77 3.162 74.27

✓ ✓ ✓ ✓ 89.83 96.31 81.45 3.107 75.90

with an initial task-relevant head together on the training
set, and evaluate the downstream tasks on the test set.
Retinal Images with Genetics. We compare MRM pre-
trained on UKB with state-of-the-art methods [8, 11, 34, 16,
43, 3, 13, 25, 19] on four downstream retinal image-based
tasks in Table 1. MRM achieves 89.83%, 96.31%, 81.45%,
3.107 and 75.90% scores on APTOS, RFMiD, PALM and
CRP tasks, respectively, outperforming other comparisons
by a clear margin in all tasks including disease classifica-
tion, segmentation and regression. Particularly, compared
with MIM-based pre-training methods, MRM is superior
over the second best one AttMask [19] with 2.10%, 1.40%,
2.86%, 0.155 and 6.50% scores on four tasks. These re-
sults reflect that masking out relation and retaining intact
information within the input can obtain better feature rep-
resentation than MIM-based input masking and per-sample
reconstruction strategies for medical data.
Pathology Images with Genetics. To verify the versa-
tility of the proposed framework, we pre-train MRM on
pathology image-genome dataset TCGA and fine-tune the
model on downstream grade grading task to evaluate the
transfer results. From Table 2, compared with other pre-
training methods, MRM yields state-of-the-art performance
with 76.17% accuracy and 92.07% ROC-AUC scores, in-
dicating its effectiveness and flexibility on various types
of medical images. Hence, the proposed MRM is able to
achieves significantly better self-supervised leaning.

4.4. Ablation Study

We ablate the effectiveness of each component in MRM
on retinal image dataset.
Effectiveness of relation masking. We study the effec-
tiveness of the proposed self- and cross-modality relation
masking. We start from a baseline that trains the autoen-
coder to construct the multimodal data, we first mask out a
portion of self-modality relation in both image and genome
branches. From Table 3, the self-modality relation masking
brings performance gains by 2.72%, 2.99%, 2.78%, 0.144
and 5.64% scores on APTOS, RFMiD, PALM and CRP
tasks, respectively. Then, we further mask out the cross-
modality relation, the results show consistent increases by
1.13%, 0.80%, 1.94%, 0.069 and 3.31% on four tasks. To
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Figure 3. Comparison of reconstruction results of different
methods. From left to right suggests the original input and the
reconstructed images by MAE [16], AttMask [19] and our MRM.
We can observe that MRM can preserve the disease regions framed
in blue while MIM-based methods lose them.

qualitatively verify the impact of the relation masking, we
visualize the reconstruction images of different methods.
Figure 3 illustrates that MIM-based approaches [16, 19]
lose the tiny disease regions, while MRM can reconstruct
almost complete disease regions. These advantages indicate
that our relation masking in self- and cross-modality levels
can preserve the disease semantics thereby improving the
quality of the feature representation.
Impact of relation matching. To observe the impact of
the self- and cross-modality relation matching, on the top
of the model with relation masking, we employ the self-
modality matching constraint. As implied in Table 3, self-
modality matching leads to the transfer result improvements
by 0.77%, 0.66%, 1.26%, 0.067 and 3.21% scores on AP-
TOS, RFMiD, PALM and CRP tasks, respectively. When
adding the cross-modality relation matching, the perfor-
mance continuously grows by 1.56%, 1.37%, 2.96%, 0.109
and 2.17% scores on four downstream tasks. The results il-
lustrate that both self- and cross-modality relation matching
can boost the representation learning, and they can render
complementary constraints to achieve sample relation in-
variant when masking the feature relation.
Masking ratios. To understand the influence of masking
ratios τI and τG for images and genetics, we fine-tune the
pre-trained model on diabetic retinopathy detection task un-
der different masking ratios. Firstly, we mask the self- and
cross-modality relation for image features with different ra-
tio τI including 10%, 25%, 50%, 75% and 90%. From Fig-
ure 4 (a), the best choice for τI is 75%, and the performance
decreases when diminishing or enlarging the ratio. As the
ratio reduces from 75% to 10%, the transfer result drops
remarkably by 1.35%. Moreover, we analyze the effect of
masking ratio τG for genetics and find that 50% is good for

Figure 4. Ablation study. (a) Masking ratios τI and τG for image
and genome. (b) Balanced coefficient λ of two loss functions.

Table 4. Results of gene-image association analysis.
Method Found Regions ↑

Training from scratch 4

SimCLR [9] 5
MoCo v3 [11] 6
ContIG [34] 10

MAE [16] 8
SimMIM [43] 10
MultiMAE [3] 13
mc-BEiT [25] 14
AttMask [19] 16

MRM 18

representation learning and transfer results.
Loss balanced coefficient λ. We study the sensitivity of
MRM towards the balanced coefficients λ for controlling
two loss functions Lrecon and Lmatch in Eq. (14), as shown in
Figure 4 (b). It can be observed that the performance rises
with the balanced coefficients λ increasing from 0.1 to 1.0,
while it plunges when λ is larger than 1.0. These suggest
that the proposed relation matching leads to beneficial rep-
resentation learning with the appropriate range of λ, either
too strong or too weak of the relation matching constraint
damage the quality of the feature representation.

4.5. Gene-image Association Analysis

To obtain an interpretable understanding on how genet-
ics can improve images representation learning, we conduct
gene-image association analysis for all models. This as-
sociation analysis is a statistical tool for finding individual
genetic regions correlated with image features according to
the disease traits. The better the image representation, the
more associated regions are expected to be discovered. Ta-
ble 4 shows the number of independent regions each model
finds, where we observe that MRM finds the most disease-
related regions from genetics, explaining why genetics can
improve image representation learning in our model.

4.6. Extension to Single Modality Pre-training

To study the application of the proposed MRM on single
modality, we pre-train MRM using merely image modality
on retinal dataset from UKB, and evaluate the feature rep-
resentation on downstream tasks. Specifically, during the
pre-training phase, we remove the cross-modality attention
layers and adopt self-attention with self-modality relation
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Table 5. Transfer results with single image modality pre-training
on retinal image-based tasks.

Method APTOS RFMiD PALM CRP

QwKappa ↑ ROC-AUC ↑ Dice-Score ↑ MSE ↓ ROC-AUC ↑

Training from scratch 79.26 89.27 77.58 3.446 53.56

SimCLR [8] 81.43 90.51 72.52 3.453 59.25
MoCo v3 [17] 82.20 91.82 73.97 3.437 61.73
ContIG [34] 82.89 91.55 79.17 3.306 67.40

MAE [16] 78.31 88.62 73.05 3.503 60.32
SimMIM [43] 79.91 89.47 71.39 3.468 61.09
MultiMAE [3] 80.55 90.91 74.52 3.427 62.14
mc-BEiT [25] 82.59 91.78 75.84 3.388 63.61
AttMask [19] 83.80 92.36 76.50 3.285 64.77

MRM 85.46 93.11 80.26 3.245 70.15

masking to capture the representation. The image feature
is directly fed into the image decoder to reconstruct the im-
age without multimodal fusion. As for the relation match-
ing, only self-modality matching is employed for image fea-
tures. Table 5 indicates that MRM exhibits the best transfer
ability across four downstream tasks, verifying the effec-
tiveness of MRM with single image modality pre-training.

5. Broader Impact and Limitations
The proposed MRM framework, consisting of relation

masking and relation matching, can enable the model to
capture relation information by token-wise feature masking
and sample-wise global relation constraint, thereby learn-
ing better feature representation. Extensive experiments
across various downstream diagnosis tasks demonstrate that
the MRM has superior transfer ability over state-of-the-art
methods, and it can also applies single image modality pre-
training to achieve compelling performance. Moreover, in
this work, we assume the data distribution between down-
stream datasets and the pre-training dataset is identical, and
do not consider the issue of data domain shift. Hence, in
future work, we will improve our framework towards data
domain shift issue between pre-training dataset and various
downstream datasets.

6. Conclusion
In this work, we present MRM framework to jointly

leverage medical images and genetics for self-supervised
pre-training. Instead of explicitly masking inputs, we de-
sign the relation masking to mask out feature relation and
enable the model to capture informative patterns, which can
retain intact disease-related semantics. Moreover, to enrich
semantic relation, we present relation matching by exploit-
ing inter-sample relation to encourage global constraints in
the feature space. Extensive experiments verify the effec-
tiveness of MRM on various downstream diagnosis tasks.
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