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Abstract

Label noise is pervasive in real-world applications,
which influences the optimization of neural network mod-
els. This paper investigates a realistic but understudied
problem of image retrieval under label noise, which could
lead to severe overfitting or memorization of noisy samples
during optimization. Moreover, identifying noisy samples
correctly is still a challenging problem for retrieval mod-
els. In this paper, we propose a novel approach called
Prototypical Mixing and Retrieval-based Refinement (TI-
TAN) for label noise-resistant image retrieval, which cor-
rects label noise and mitigates the effects of the memoriza-
tion simultaneously. Specifically, we first characterize nu-
merous prototypes with Gaussian distributions in the hidden
space, which would direct the Mixing procedure in provid-
ing synthesized samples. These samples are fed into a sim-
ilarity learning framework with varying emphasis based on
the prototypical structure to learn semantics with reduced
overfitting. In addition, we retrieve comparable samples for
each prototype from simple to complex, which refine noisy
samples in an accurate and class-balanced manner. Com-
prehensive experiments on five benchmark datasets demon-
strate the superiority of our proposed TITAN compared with
various competing baselines.

1. Introduction

Content-based image retrieval has been an essential re-
search area in computer vision [7], with various applica-
tions in search engineering [49, 13] and medical image anal-
ysis [19]. Content-based image retrieval can be divided
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into instance-level retrieval [1, 62] and category-level re-
trieval [45, 43, 53]. The former focuses on capturing the
same instance in different environments. In recent years,
category-level retrieval has gained popularity by delivering
samples from a massive database with results grouped by
the same category as the query [36].

The core of successful category-level retrieval is to map
instances to data points in the feature space while preserv-
ing similarity connections. The majority of current ap-
proaches focus on similarity learning [46, 35], which use
pairwise [30] and triplet [16, 50] objectives to maintain se-
mantics in the embedding space. These approaches pro-
mote the proximity of semantically similar samples in the
embedding space and the separation of semantically dif-
ferent samples. An alternative strategy is to utilize prox-
ies [53, 36, 21, 14]. These methods map each class into the
deep feature space to guide semantics learning in a point-
wise manner. A few of studies use binary descriptors to
improve efficiency [44, 56], which results in a candidate set
followed by further refinement for precise image retrieval.

Despite their considerable success, these retrieval sys-
tems often presume that the semantic labels in the training
set are accurate. In real-world applications, this assumption
could be invalidated by the possibility of annotation mis-
takes and inadequate automated collecting tactics [47, 54].
For instance, web-based sources often include tags and cap-
tions, which are usually utilized to provide label informa-
tion for convenience. These approaches could generate ex-
tensive label noise to collected datasets. To address this
issue, this work studies a practical topic named image re-
trieval with label noise. Although there are extensive pa-
pers to study the problem of robust learning in classification
tasks [29, 12, 25], retrieval models under label noise are still
underexplored with unsatisfactory performance in practice.
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Figure 1. Two Mixing mechanisms are demonstrated including the
standard Mixup (top) and our prototypical Mixing (bottom).

However, developing a label-noise resistant retrieval
model is challenging due to two reasons: (1) Erroneous su-
pervision. Extensive label noise could result in erroneous
supervision information, resulting in a significant decline in
retrieval performance. In literature, a few works propose to
refine noisy samples for effective image retrieval [28, 18].
For example, PRISM [28] estimates the probability of an
example being clean with the help of a memory bank. How-
ever, they are prone to result in biased and overconfident
refinement due to their point-wise calculation [60]. (2) Se-
rious Memorization. Although deep neural networks tend to
learn generalized patterns at the beginning stage, the overfit-
ting or memorization of noisy data would compromise the
optimization process gradually [57]. As a consequence, a
robust optimization objective is anticipated to improve the
retrieval performance.

In this study, we propose a novel retrieval method named
Prototypical Mixing and Retrieval-based Refinement (TI-
TAN) for label noise-resistant image retrieval. The essence
of our TITAN is to measure the distributions of different
prototypes in the hidden space. Note that Mixup [58] can
generate synthesis samples, which follows the Vicinal Risk
Minimization (VRM) [5] principle with high generalization
capability. Here, synthetic samples are generated by merg-
ing the original data with samples from the respective pro-
totypical distributions, hence avoiding the possible overfit-
ting of noisy samples. Compared with standard Mixup [58],
our prototypical Mixing considers more about the hidden
structure and does not require mixing different labels. Af-
terward, we build a similarity learning framework that op-
timizes the similarity between samples with the same label
against using different emphases inferred from prototypical
distributions. In addition, to filter potential noisy data, we
retrieve comparable samples for each prototype [55]. The
identical retrieval number for different prototypes with cur-
riculum learning [2] promises accurate and class-balanced
label refinement. Finally, we involve in learning to cluster
to enhance the discriminability for effective image retrieval.
Comprehensive experiments on a variety of datasets verify

the superiority of our TITAN by comparing it to a number
of benchmarks. The contribution of this paper can be sum-
marized as follows:

• This paper studies a less-explored but practical problem
named label noise-resistant image retrieval and proposes
a novel method named TITAN for this problem.

• On the one hand, TITAN measures the distributions of
different prototypes and then generates synthesis data to
prevent the memorization of noisy samples. On the other
hand, TITAN retrieves comparable samples for each pro-
totype from easy to hard, promising accurate and class-
balanced label refinement.

• Extensive experiments on five benchmark datasets
demonstrate the superiority of our TITAN compared with
various baseline methods in different settings.

2. Related Work
2.1. Context-based Image Retrieval

As a basic research topic in computer vision and mul-
timedia communities, context-based image retrieval can be
separated into instance-level retrieval [1, 62] and category-
level retrieval [45, 43, 53]. Recent years have seen an in-
creasing interest in category-level retrieval, which can be
further divided into similarity-based [46, 35] and proxy-
based approaches [53, 36, 21, 14]. Similarity-based ap-
proaches utilize similarity relationships to generate posi-
tive and negative pairs, which are then combined with pair-
wise [30] and triplet [16, 50] losses to optimize deep neu-
ral networks. For instance, GSS [27] tries to distinguish
the pairwise similarity in the whole dataset in an unsuper-
vised manner. In contrast, proxy-based approaches map la-
bels into the embedding space before minimizing the dis-
tance between deep features and their respective proxies.
Hashing-based search engines are also in great demand due
to their high efficiency [44, 56]. Nevertheless, these ap-
proaches do not often account for label noise in real-world
datasets. In contrast, we investigate the issue of label noise-
resistant image retrieval and develop a novel framework
named TITAN to address it.

2.2. Learning with Label Noise

Learning with label noise has been intensive in a variety
of tasks including image segmentation [32], saliency detec-
tion [59], and network analysis [9]. A range of works pro-
poses robust losses to potential label noise [11, 10]. For
example, RINCE [8] modifies the formula for contrastive
learning, which achieves robust performance under noisy
augmented views. Another line of this topic is to choose
samples with noisy labels and clean them [15, 48, 31, 24,
61, 37, 20]. Early attempts usually put forward a threshold,
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Figure 2. An overview of the proposed TITAN. TITAN first estimates the distributions of prototypes for each class, from which we sample
features for Mixing to generate virtual features. Moreover, TITAN retrieves different samples for every prototype to refine noisy samples.
The final losses are composed of both similarity learning and clustering losses.

and samples with losses above the threshold are deemed
noisy. Co-teaching [15] optimizes two networks concur-
rently by utilizing small-loss examples from one network
to optimize the other network. A few of works attempt to
extend robust learning into image retrieval by identifying
noisy samples based on similarity [28, 18]. However, these
works still neglect the overfitting of noisy samples, and re-
finement procedures of label noise remain to be biased and
overconfident, especially when the amount of noisy data in-
creases. In this paper, we incorporate prototypical Mixing
into a similarity learning framework to ease the overfitting
of noisy data. To ensure that the labels are assigned cor-
rectly and balance class sizes, we also filter noisy samples
according to the retrieval process.

3. Methodlogy

3.1. Problem Definition

We start by giving the problem definition. Denote the
training set as D = {(xi, yi)}ni=1 where xi is the i-th sam-
ple and yi is its observe labels. n represents the data size.
We aim to learn a mapping to project data points into an em-
bedding space where similar image pairs should be mapped
into similar deep features and vice versa. In our settings, we
assume that the observed labels could be wrong, which in-
creases the difficulty of discriminative feature learning. To
evaluate our model, we would retrieve similar examples in
the database for the given query sample.

3.2. Overview

Learning effective image representations under label
noise requires us to reduce the extreme overfitting of noisy
samples and clean up noisy labels in the dataset. Here, we
propose a novel method named TITAN for this problem.
Following previous works [18, 28], our TITAN modifies a
popular classification network (e.g., VGG-F and ResNet50)
by adding an MLP layer in place of its head to provide deep
features, i.e., h = H(F (x)) where F (·) is the feature ex-
tractor and H(·) is the MLP head. As illustrated in Fig-
ure 2, our model consists of two essential components: (1)
Prototypical Mixing, which characterizes prototypes using
Gaussian distributions and then generates virtual samples
by incorporating prototype information to relieve the mem-
orization of noisy samples; (2) Retrieval-based Refinement,
which retrieves similar samples for every prototype to fur-
ther refine noisy samples in a balanced way. Then, we elab-
orate on the details of our TITAN.

3.3. Prototypical Mixing for Robust Representation
Learning

The overfitting of neural networks is a major challenge
in deep representation learning [57]. As a consequence,
we must enhance the generalization capacity of the model.
Here, we first characterize the prototypes of various classes
using different Gaussian distributions before developing a
Mixing technique that blends hidden features with samples
derived from these prototypes.

In detail, we characterize the distribution of each class in
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the prototype as a latent Gaussian distribution N(µc,Σc),
and every related hidden feature can be thought of as a sam-
ple from the Gaussian distribution [26]. Note that even if
these samples could be noisy, the centroid measurement of
the distribution is still reliable since all the samples are con-
sidered together with potential label noise neutralized. In
particular, we measure the centroid and the corresponding
covariance matrix based on these samples. In formulation,
denote the hidden feature of xi as zi, we have the estimated
mean vector µc and the covariance matrix Σc of the c-th
class in the formulation of:

µc =

∑N
i=1 1yi=czi∑N
i=1 1yi=c

, (1)

Σc =

∑N
i=1 1yi=c(zi − µc) (zi − µc)

T∑N
i=1 1yi=c

. (2)

Then, we generate a virtual sample from the distribu-
tion, which would be combined with the original sample.
In formulation, we first select the prototype with the maxi-
mal probability for each sample, i.e.,

ŷi = argmax
c

1√
(2π)d|Σc|

e−
1
2 (zi−µc)

TΣ−1
c (zi−µc), (3)

where d denotes the hidden dimension. The mixed hidden
feature can be written as:

z+
i = λzi + (1− λ)z′

i, (4)

where z′
i is randomly generated from N(µŷi ,Σŷi), zi =

F (xi) and xi denotes the original image sample. λ is a
coefficient selected from a Beta distribution following pre-
vious works:

λ ∼ Beta(α, β) (5)

where α and β are two parameters both set to 2 empirically.
To simplify the calculation, we adopt a diagonal Σc for each
distribution with the neglection of the covariance.
Advantages of Prototypical Mixing. Similarly to stan-
dard Mixup, our prototypical Mixing also generates syn-
thetic samples, extending the Empirical Risk Minimiza-
tion (ERM) principle [41] to the Vicinal Risk Minimization
(VRM) principle [5]. In this way, our TITAN has a strong
capacity for generalization and is resistant to the memoriza-
tion of noisy examples. Moreover, our prototypical Mixing
does not need to combine labels to generate synthetic labels,
which could be biased since the label space contains distinct
relationships. Lastly, our TITAN adequately explores pro-
totypical structures in the hidden space, which can serve as
implicit label correction.

Next, we include the mixed samples into a framework for
deep representation learning that maintains similarity. Here,
we concatenate the hidden feature with the mixed feature

into a mini-batch and maximize the similarity between deep
features of positive pairs compared with negative pairs. The
positives for z+

i are mini-batch samples sharing the same
label, i.e., z+

j with yi = yj . In formulation, given the mini-
batch B, the index of positives for z+

i is written as:

Π(i) = {j|xj ∈ B, yi = yj}. (6)

Following previous works [38, 6], the negatives are all the
other samples in a mini-batch, then the similarity learning
objective is constructed as:

LSL = −
∑
xi∈B

1

|Π(i)|
∑

j∈Π(i)

log
exp

(
h+
i · h+

j /τ
)

∑
xj′∈B exp

(
h+
i · h+

j′/τ
)

(7)
where h+

i = H(z+
i ) maps the hidden feature into the tar-

get space and τ is a temperature parameter preset to 0.5
as in [38]. Moreover, we also incorporate the probabili-
ties in Eqn. 3 as the confidence scores, which gives more
emphasis on samples with high confidence. Consequently,
we alleviate the effect of unreliable mixed data and en-
large the range of sample weights. In other words, sam-
ple weights are assigned more heavily to reliable samples.
Let wi =

1√
(2π)d|Σŷi

|
e−

1
2 (zi−µŷi

)TΣ−1
c (zi−µŷi

) denote the

confidence score, and we rewrite Eqn. 7 as:

LSL = −
∑
xi∈B

wi

|Π(i)|
∑

j∈Π(i)

log
exp

(
h+
i · h+

j /τ
)

∑
xj′∈B exp

(
h+
i · h+

j′/τ
) .

(8)
Compared with proxy-based methods [53, 36, 21, 14],

our similarity learning-based objective makes use of pair-
wise labels, which can be more accurate due to the follow-
ing reason. Even if two labels in a positive pair are both
incorrect, there is still a chance that they share the same se-
mantics [51]. Our Mixing strategy further relieves the mem-
orization of noisy samples, producing label noise-resistant
and similarity-preserving deep features.

3.4. Retrieval-based Refinement with Curriculum
Learning

We need to identify and refine those noisy samples
to thoroughly get rid of label noise for better perfor-
mances [53, 36, 21, 14]. Traditional classification tech-
niques consider samples with small training losses to be
clean samples [15], and they often introduce a threshold
to distinguish between clean and noisy data. Nevertheless,
we are unable to directly obtain losses for various samples
in the similarity learning framework. Even worse, a low
threshold could exclude too many noisy samples resulting
in potential underfitting, while a high threshold may have a
limited capacity to filter noisy data. These point-wise meth-
ods could also be biased to refine noisy samples into easy
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classes with small losses [33]. To address the problems,
we provide a retrieval-based refinement module, which re-
trieves comparable samples for each prototype with curricu-
lum learning [2] for precise and balanced refinement.

In particular, we view the centroid of each prototype as
a query and retrieve K samples in the dataset based on the
Euclidean distance. For these retrieved samples, we regard
them as clean if their labels are not consistent with their
queries, otherwise refine their labels. In formulation, the
refined datasets can be written as below:

D̂ = ∪C
c=1 {(xi, c)|zi ∈ NN(µc)}

∪ {(xi, yi)|zi /∈ ∪C
c=1NN(µc)},

(9)

where NN(·) denotes the set of top K nearest samples
in the datasets. Here we set the same K for every proto-
type, which generates an accurate and balanced dataset af-
ter refinement. In comparison, clean sample selection based
on losses could lean toward selecting clean samples from
easy classes. Moreover, we propose to increase the retrieval
number K gradually following the principle of curriculum
learning, which refines noisy samples from easy to hard. To
be specific, we have different Kt at the t-th cycle:

Kt =
t

T
Kmax, (10)

where T denotes the total number of cycles and Kmax de-
notes the maximal retrieval number. To increase framework
efficiency, we would conduct retrieval-based refinement at
the beginning of each cycle.

3.5. Summary

Learn to Cluster. Finally, we enhance the discriminabil-
ity of hidden features by learning to cluster [40]. This is
accomplished by enforcing the accumulation of hidden fea-
tures around their corresponding centroids. Here, we max-
imize the similarity between hidden features and their cor-
responding prototypes compared with the other prototypes
by proposing the following objective:

LC = −
∑
xi∈B

log
exp (zi · µyi

/τ)∑C
c=1 exp (zi · µc/τ)

, (11)

Then the final objective is summarized by combining both
two losses as follows:

L = LSL + ηLC , (12)

where η is a parameter to balance two losses. In prac-
tice, we would first warm up the neural network without
conducting Mixing and then perform prototypical Mixing
and retrieval-based refinement gradually. We would demon-
strate the whole algorithm in Algorithm 1.

Algorithm 1 Training Algorithm of TITAN
Require: Dataset D; Iteration number T ; Max retrieval

number Kmax;
Ensure: The composited projector H(F (·));

1: Warm up the projector;
2: repeat
3: Update the retrieval number Kt using Eqn. 10
4: Estimate the distribution for every prototype using

Eqn. 1 and Eqn. 2;
5: Refine the dataset using Eqn. 9;
6: for k = 1, 2, · · · , kmax do
7: Sample B ⊂ D̂ to construct a mini-batch;
8: Generate synthetic samples using Eqn. 4 ;
9: Calculate the loss objective by Eqn. 12;

10: Update the network parameters by backpropaga-
tion;

11: end for
12: until convergence

4. Experiment

4.1. Settings

Datasets. In order to evaluate the TITAN, we utilize
four widely used datasets with various levels of granular-
ity and size and one real-world noisy dataset. The con-
crete experimental setting is depicted in the Appendix. CI-
FAR10 [23] contains a total of 60k colorful images in 10
categories. CUB200-2011 [42] is the most common dataset
utilized for fine-grained visual classification tasks and con-
tains 11,788 images of 200 subcategories related to bird
species. CARS196 [22] includes 16,185 samples of 196
distinct categories of car models. FLICKR25K [17] con-
tains more coarsely grained categories and is more gener-
alized. Cars98N [28] is a real-world noisy benchmark, it’s
built by collecting 9,558 examples for 98 car models from
Pinterest. Normally the noisy examples in Cars98N usually
consist of the car parts, the interior of the car, or pictures of
other car models.

To investigate the noise-resistant ability, we firstly syn-
thesize two kinds of artificial noise labels, Symmetric and
Pairflip, added to the training set of the none real-world
noise dataset. Following [28], we vary the noise ratio with
three degrees: 10%, 20%, and 50% respectively. Symmet-
ric noise [34] simply flips labels between classes uniformly
while Pairflip noise [34] similarly assigns the corrupted la-
bel to each nearby class.
Baselines. We compare our TITAN with eight base-
lines that have excellent performances in their correspond-
ing field. Concretely, three of these methods are stan-
dard retrieval approaches (i.e., Fast-AP [4], Smooth-AP [3]
and Proxy-Anchor [21]), two are robust noise-resistant ap-
proaches (i.e., REL [52] and Jo-SRC [54]), one is noise-
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Table 1. The MAP@R scores implemented on 512-dimensional feature vectors for retrieval on CIFAR10, CUB, CARS, and FLICKR25K
with three degrees of symmetric label noise.

CIFAR10 CUB200 CARS196 FLICKR25KMethod 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

FastAP 85.07 83.40 65.92 13.85 12.81 8.63 10.78 9.28 6.47 88.95 88.59 87.50
SmoothAP 84.48 81.38 70.11 12.71 11.78 9.78 9.70 8.82 6.19 86.37 85.20 82.30
Proxy-Anchor 87.20 78.04 69.23 16.70 15.86 10.11 12.21 11.11 5.33 89.12 88.69 87.79

Jo-SRC 87.58 85.55 72.86 15.97 14.91 12.91 12.74 11.09 7.10 91.01 90.22 89.43
REL 86.81 84.76 71.90 15.78 15.67 13.86 14.02 13.33 7.96 91.59 91.44 90.60

HEART 85.36 83.15 71.65 17.10 15.79 12.00 15.30 13.59 8.64 92.11 91.81 91.01
T-SINT 87.38 86.26 72.87 17.90 17.36 14.34 14.41 13.01 9.89 90.79 90.45 87.65
PRISM 87.65 86.23 73.05 18.12 17.79 15.29 16.99 15.88 10.02 92.42 92.12 91.23
TITAN (Ours) 89.01 88.01 75.86 19.11 18.69 16.90 17.64 16.36 11.37 94.33 93.89 93.07

Table 2. The MAP@R scores implemented on 512-dimensional feature vectors for retrieval on CIFAR10, CUB, CARS, and FLICKR25K
with three degrees of pairflip label noise.

CIFAR10 CUB200 CARS196 FLICKR25KMethod 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

FastAP 77.42 76.52 56.27 14.06 12.42 11.06 10.60 8.53 6.36 87.53 87.16 85.22
SmoothAP 76.15 74.55 55.86 12.12 11.42 10.56 10.62 9.55 6.84 85.30 85.18 85.02
Proxy-Anchor 75.55 73.82 57.65 16.08 15.11 12.16 13.52 11.45 8.61 90.19 89.26 88.23
Jo-SRC 78.52 76.24 57.77 15.92 14.55 13.45 14.48 13.43 9.20 91.63 91.60 90.11
REL 75.83 75.12 58.72 15.76 14.78 13.05 12.50 11.72 9.09 91.46 90.78 89.19
HEART 77.82 76.11 58.55 16.26 15.33 13.07 13.58 13.36 8.77 91.76 91.72 90.99
T-SINT 79.19 77.94 55.39 16.51 16.14 14.26 14.45 13.69 9.07 91.62 90.74 89.71
PRISM 80.43 80.32 62.05 17.13 15.83 13.13 15.46 15.15 9.38 92.44 92.27 90.91
TITAN (Ours) 83.89 82.99 67.88 18.29 17.36 15.73 16.98 15.82 10.14 94.05 93.90 93.18

robust hash retrieval method (i.e., HEART [38]), two
are noise-robust retrieval methods (i.e., T-SINT [18] and
PRISM [28]).

Table 3. The MAP@R scores implemented on 512-dimensional
feature vectors for retrieval on Cars98N.

Method TITAN(Ours) T-SINT PRISM HEART REL FastAP

Cars98N 7.03 6.53 6.25 5.54 5.38 5.06

Evaluation Criterion. Following [28, 18], we mainly em-
ploy Mean Average Precision@R (MAP@R) as our crite-
rion for evaluation. MAP@R metric is a widely used mea-
sure of average accuracy for multiple queries and is a com-
mon metric for evaluating the quality of retrieval systems.
Note that the value of R is not a fixed value for all bench-
marks, it is equal to the largest number of samples among all
categories in the corresponding retrieved set of the bench-
mark.
Implementation Details. We implement our method using
PyTorch with an NVIDIA 3090 GPU. We adopt mini-batch
Adam for our model training. The mini-batch size is set to
64 and the learning rate for our model is fixed at 5×10−5.

All the images are resized to 224×224, and the training im-
ages have a 50% chance of being randomly flipped hori-
zontally. In all experiments, we use ResNet18 as the feature
extractor with the feature dimension being 512, and follow-
ing [28] we use L2 normalization to make the output of the
neural network be on the unit hypersphere for brief distance
measurement. In particular, we also choose ResNet18 in-
stead of CLIP as the teacher model when reimplementing
T-SINT for a fair comparison.

4.2. Experimental Results

Quantitative Comparison. Table 1 and Table 2 dis-
play the MAP@R results on CIFAR10, CARS, CUB, and
FLICKR25K under Symmetric/Pairflip label noise specif-
ically with noise rate being 0.1, 0.2, and 0.5. From these
experimental results we can make the following observa-
tions: (1) The AP-based retrieval methods (i.e., FastAP
and SmoothAP) often fail to perform as well as proxy-
based retrieval methods in most cases. This may be due
to the proxy-based approach’s use of the feature centers
of each class to protect metric learning from label noise.
(2) The noise-resistant classification methods (i.e., Jo-SRC
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Figure 3. The P-R curves are plotted in the left column and Top-N
precision curves are in the right column.

and REL) achieve limited performance increases compared
with standard retrieval methods, which illustrates that point-
based classification approaches are not suitable for retrieval
tasks under label noise and special techniques need to be
designed to solve the problem. (3) Our proposed TITAN
achieves the best scores on all the benchmarks with different
settings. For CUB200, our TITAN obtain an improvement
of 5.46%, 5.05%, and 9.52% over the best baseline PRISM
under symmetric label noise with noise rate being 0.1, 0.2,
0.5 respectively. For CARS and FLICKR25K, our TITAN
outperforms competitive baseline T-SINT by 21.04% and
4.66% in terms of average MAP@R scores under symmet-
ric noise with different noise degrees. And the same ten-
dency can also be observed on CIFAR10 under both noise
label settings. The exceptional performance of our TITAN
can be attributed to two primary factors. On the one hand,
we improve the accuracy of noisy sample refinement by us-
ing retrieval-based refinement with curriculum learning in-
stead of point-wise refinement. Our model, on the other
hand, is enhanced by prototypical mixing technology that
prevents it from memorizing noisy data, which facilitates
semantic learning.

Table 3 displays the performance on Cars98N with real-

Figure 4. The MAP@R scores w.r.t. different noise rates. Results
with Symmetric noise are plotted in the left column while results
with Pairflip noise are plotted in the right column.

Figure 5. The MAP@R scores of TITAN and PRISM implemented
on CUB and Fickr25k with varying hidden dimensions while the
noise rate is set to 10%.

world label noise. From these results, we can observe that
TITAN also achieves significantly better performance in
real-world settings, which demonstrates the generalizabil-
ity and superiority of our approach.
Qualitative Comparison. Additionally, we plot the P-R
curves and TopN-precision curves of the proposed TITAN
and other compared methods with 512-dimensional feature
vectors on three benchmarks in Figure 3. In the P-R curve,
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Table 4. Ablation results on CIFAR10, CUB, CARS, and
FLICKR25K with noise rate being 0.1.

Method CIFAR10 CUB200 CARS196 FLICKR25K

TITAN w/o LSL 85.04 17.05 15.82 91.98
TITAN w/o LC 84.33 16.67 15.24 91.23
TITAN w/o M 87.56 18.25 16.13 92.65
TITAN w/o R 87.78 18.05 16.08 92.11
TITAN w/o w 88.54 18.77 17.24 93.97
TITAN (full) 89.01 19.11 17.64 94.33

the area enclosed by the curve corresponding to our method
is significantly larger than the remaining three baselines,
which indicates that our method has better retrieval perfor-
mance. In the curve of topN-precision, our method keeps
the highest accuracy rate as the number of retrieved samples
increases, especially when the number of returned samples
is around 100. Overall, we have the conclusion based on
these visualization results that when coming to actual im-
age retrieval, TITAN can achieve promising retrieval per-
formances.
Noise Degree Analysis. We plot the performance trends
under two different types of noise variation, especially for
the high noise rate in Figure 4. This result indicates that
the performance of PRISM decreases rapidly with an in-
crease in noise, as PRISM is unable to construct a clean
memory bank at the beginning if the noise ratio is too high.
Even with a high noise ratio, our proposed TITAN is still
able to deliver the best performance. Due to curriculum
learning and blending the semantic information of the pro-
totype with the sample features, we gradually construct a
relatively accurate prototype for semantic learning. In gen-
eral, our TITAN achieves great performance under various
noise ratios, demonstrating the robustness and superiority
of our proposed TITAN.
Feature Dimension Analysis. Figure 5 shows the MAP@R
results of TITAN and PRISM methods implemented on
CUB and FLICKR25k with feature dimensions varying
from 128 to 2048. It can be found that the MAP@R value
has a small decrease in both 128 and 2048 dimensions for
TITAN, while for PRISM there is no obvious pattern of
change. In general, probably because of the L2 normal-
ization, the MAP@R value does not change much with the
increase of hidden dimension. Note that our method outper-
forms the PRISM for all the cases, which proves the robust-
ness of our method.

4.3. Ablation Study

We present an ablation study to investigate the effective-
ness of the important inner module in our proposed TITAN
and the experiment results are shown in Table 4. Specif-
ically, we design the following model variants as: (1) TI-
TAN w/o LSL removes similarity learning loss for denois-
ing in Eqn. 7. (2) TITAN w/o LC removes cluster learning
loss for retrieval in Eqn. 11. (3) TITAN w/o M removes

the sampled virtual feature in Eqn. 4. (4) TITAN w/o R re-
moves the retrieval-based refinement procedure. (5) TITAN
w/o w removes confidence scores in Eqn. 8. From these
results, we can draw some observations as follows: First,
TITAN w/o LC has lower MAP@R scores than TITAN
w/o LSL, perhaps because in the case of a large number
of sample categories in the training set, using a small batch
size will lead to few positive sample pairs in the mini-batch,
which will affect the learning of similarity. Second, TI-
TAN w/o M performs worse than TITAN, which indicates
that our use of prototypical mixing is effective, it makes the
feature representation more robust and alleviates the over-
fitting of the model to dirty data to some extent. Third,
MAP@R values corresponding to TITAN w/o R drop by
about the same amount as TITAN w/o M, which proves
that Retrieval-based refinement is an important and influen-
tial module in our proposed TITAN, it provides an effective
way to refine noisy samples for pairwise similarity learning
framework in retrieval tasks. Finally, the slightly lower per-
formance of TITAN w/o w compared to TITAN suggests
that confidence scores can improve performance by attenu-
ating the impact of unreliable mixed samples.

Figure 6. Sensitivity analysis of two hyper-parameters on CUB.

4.4. Sensitivity Analysis

We investigate the effect of hyper-parameters η and
Kmax on model retrieval performance on CUB with dif-
ferent noise rates. The loss balance coefficient η controls
the weight between different losses, firstly we vary η in
[0.1,0.3,0.5,0.8,1.0] with other parameters fixed, Figure 6
illustrates the experimental results, we can find that perfor-
mance of our method is not sensitive to η when it varies
from 0.5 to 1.0, which demonstrates that the convergence
of our proposed algorithm is stable. Moreover, we fix all
other parameters and change Kmax in [5,10,15,20,25,30],
which controls the max retrieval number of each prototype,
as shown in Figure 6, the MAP@R results decrease when
Kmax is set in [25,30], the potential reason is that a high
Kmax will cause more samples to change their labels, but
our constructed prototype is not completely reliable at the
early stage of training, this leads to refinement which may
in turn increase the noise rate. From the analysis, we set η
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as 0.8 and Kmax as 20 respectively for the proposed TITAN
as default.

4.5. Case Study

We present the top ten images retrieved by PRISM and
the proposed TITAN on FLICKR25K. As depicted in Fig-
ure 7, the examples enclosed in green boxes represent accu-
rate results, whereas those enclosed in red boxes are wrong
results. Additionally, we have labeled the category of each
image below it. It is evident that the proposed approach
yields significantly more relevant and precise retrieval out-
comes for the given queries, demonstrating the superiority
of our methodology in handling realistic scenarios.

Query Top-10 Retrieved Images

Dog

Car

Car

Ours
P@10:100%

PRISM
P@10:90%

Ours
P@10:100%

PRISM
P@10:90%

Car Car Car Car Car Car Car Car Car

Car Car Car Car Car Car Car Transport Car Car

Dog Dog Dog Dog Dog Dog Dog Dog Dog Dog

Dog Dog Dog Dog Dog Dog Dog Dog Bird Dog

Figure 7. Example of the Top10 returned images with 512-
dimensional feature on FLICKR25K.

4.6. Visulaization Analysis

T-SNE Visualization. We adopt T-Distributed Stochastic
Neighbor Embedding (T-SNE) [39] to compress the dense
feature vectors into the two-dimensional plane to visualize
the correlations between the features embedded and their
one-hot labels, which come from the feature space and the
label space respectively. Figure 8 illustrates the visualiza-
tion of dense vectors generated by our method and the com-
petitive baselines, i.e., PRISM and Jo-SRC. Compared with
the two baselines, our method can generate actually com-
pact clusters and can separate each category more clearly
while at the same time bringing feature vectors with simi-
lar semantic information closer together. This visualization
shows that our method can generate dense features that are
more discriminative, which could facilitate better image re-
trieval.

Figure 8. The t-SNE visualization of 512-dimensional feature vec-
tors on CIFAR10.

5. Conclusion

This paper studies a practical but less-explored prob-
lem of label noise-resistant image retrieval and proposes a
novel method TITAN, which simultaneously corrects label
noise and mitigates the impacts of memorization to solve
the problem. We describe different prototypes with Gaus-
sian distributions in the hidden space, which directs Mix-
ing to generate synthetic samples. In addition, we collect
similar samples for each prototype ranging from easy to
hard during optimization, which refines noisy samples in
a precise and class-balanced way. Extensive experiments
on five benchmark datasets reveal that our proposed TITAN
can outperform various state-of-the-art methods. In future
works, we would extend our TITAN to more scenarios such
as learning to hash and cross-modal retrieval.
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