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Figure 1: We expand StyleGAN to encompass a diverse set of tasks that go beyond the constraints of cropped aligned faces.

Abstract
Recent advances in face manipulation using StyleGAN

have produced impressive results. However, StyleGAN is
inherently limited to cropped aligned faces at a fixed image
resolution it is pre-trained on. In this paper, we propose a
simple and effective solution to this limitation by using di-
lated convolutions to rescale the receptive fields of shallow
layers in StyleGAN, without altering any model parameters.
This allows fixed-size small features at shallow layers to be
extended into larger ones that can accommodate variable
resolutions, making them more robust in characterizing u-
naligned faces. To enable real face inversion and manipu-
lation, we introduce a corresponding encoder that provides
the first-layer feature of the extended StyleGAN in addition
to the latent style code. We validate the effectiveness of our
method using unaligned face inputs of various resolutions
in a diverse set of face manipulation tasks, including fa-
cial attribute editing, super-resolution, sketch/mask-to-face
translation, and face toonification. Project page https:
//www.mmlab-ntu.com/project/styleganex

1. Introduction

StyleGAN [17, 18] has emerged as one of the most suc-
cessful models for generating high-quality faces. Building
upon StyleGAN, researchers have developed a range of face
manipulation models [1, 23, 29, 26, 10, 28, 40, 36]. These
models typically map real face images or other face-related
inputs to the latent space of StyleGAN, perform semantic
editing in the latent space, and then map the edited latent
code back to the image space. This approach enables a vari-
ety of tasks, including facial attribute editing, face restora-
tion, sketch-to-face translation, and face toonification. As
the manipulated faces remain within the generative space of
StyleGAN, the quality of the image output is guaranteed.

Despite its ability to ensure high-quality image output,
the generative space of StyleGAN is limited by a fixed-crop
constraint that restricts image resolution and face layout. As
a result, existing face manipulation models based on Style-
GAN can only handle cropped and aligned face images. In
such images with a limited field of view (FoV), the face
typically dominates the image, leaving little room for back-
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ground and clothing, and often resulting in partially cropped
hair. However, in everyday portrait photos such as selfies,
faces occupy a smaller proportion of the image, allowing for
a complete hairstyle and upper body seen. Portrait videos
such as those from live streaming require an even larger
background area to accommodate face movement. To pro-
cess these types of inputs, which we refer to as normal FoV
face images and videos, existing manipulation models need
to align, crop, and edit the face before pasting the result
back onto the original image [4, 19, 31]. This approach of-
ten results in discontinuity near the seams, e.g., only editing
the hair color inside the cropped area.

While StyleGAN3 [16] was introduced to address un-
aligned faces, a recent study [4] found that even StyleGAN3
requires face realignment before effectively projecting to it-
s latent space. Moreover, StyleGAN3 is still constrained
by a fixed image resolution. Motivated by the translation
equivariance of convolutions, VToonify [37] addresses the
fixed-crop limitation of StyleGAN by removing its shallow
layers to accept input features of any resolution. Howev-
er, these shallow layers are crucial for capturing high-level
features of the face, such as pose, hairstyle, and face shape.
By removing these layers, the network loses its ability to
perform latent editing on these important features, which is
a distinctive capability of StyleGAN. Therefore, the chal-
lenge remains in overcoming the fixed-crop limitation of
StyleGAN while preserving its original style manipulation
abilities, which is a valuable research problem to solve.

In this paper, we propose a simple yet effective approach
for refactoring StyleGAN to overcome the fixed-crop limi-
tation. In particular, we refactor its shallow layers instead of
removing them, allowing the first layer to accept input fea-
tures of any resolution. This simple change expands Style-
GAN’s style latent space into a more powerful joint style la-
tent and first-layer feature space (W+–F space), extending
the generative space beyond cropped aligned faces. Fur-
thermore, our refactoring only changes the receptive field
of shallow-layer convolutions, leaving all pre-trained model
parameters intact. Hence, the refactored StyleGAN (Style-
GANEX) can directly load the original StyleGAN param-
eters, fully compatible with the generative space of Style-
GAN, and retains its style representation and editing abil-
ity. This means that the StyleGAN editing vectors found
in previous studies [26, 10, 28] can be directly applied to
StyleGANEX for normal FoV face editing, e.g., changing
the face pose, as shown in Fig. 1(a).

Based on StyleGANEX, we further design a correspond-
ing encoder that projects normal FoV face images to the
W+–F space for real face inversion and manipulation. Our
encoder builds upon pSp encoder [23] and aggregates it-
s multi-layer features to predict the first-layer feature of
StyleGANEX. The encoder and StyleGANEX form a fully
convolutional encoder-decoder framework. With the first-

layer feature as the bottleneck layer, whose resolution is
1/32 of the output image, our framework can handle im-
ages and videos of various resolutions, as long as their side
lengths are divisible by 32. Depending on the input and out-
put types, our framework can perform a wide range of face
manipulation tasks. In this paper, we select several repre-
sentative tasks, as shown in Fig. 1, including facial attribute
editing, face super-resolution, sketch/mask-to-face transla-
tion and video face toonification. While the focus of these
tasks in the past is limited to cropped aligned faces, our
framework can handle normal FoV faces, showing signifi-
cant advantages over previous StyleGAN-based approach-
es. To summarize, our main contributions are:

• A novel StyleGANEX architecture with extended
W+–F space , which overcomes the fixed-crop lim-
itation of StyleGAN.

• An effective encoder that is able to project normal FoV
face images into the W+–F domain.

• A generic and versatile fully convolutional framework
for face manipulation beyond cropped aligned faces.

2. Related Work

StyleGAN inversion. StyleGAN inversion aims at project-
ing real face images into the latent space of StyleGAN for
further manipulation. Image2StyleGAN [1] analyzes the la-
tent space and proposes W+ space to reconstruct real faces
with latent code optimization. PIE [29] and IDinvert [41]
further consider the editability of the latent code during op-
timization. To speed up inversion, pSp [23] and e4e [30]
train an encoder to directly project the target face to its cor-
responding latent code, which is however hard to recon-
struct fine details and handle occlusions. To solve this is-
sue, Restyle [3] and HFGI [33] predict the residue of latent
codes or mid-layer features to reduce errors, respectively.
Instead of focusing on the latent code, PTI [24] optimizes
StyleGAN itself to fit a target face, which is accelerated by
HyperInverter [8] and HyperStyle [5] to predict offsets of
network parameters with hyper networks. The above meth-
ods are limited to cropped aligned faces for valid face edit-
ing. With the extended W+ –F space, our framework is
able to perform inversion on normal FoV face images.
StyleGAN-based face manipulation. An intuitive way of
StyleGAN-based face manipulation is to optimize the latent
code online to achieve certain objectives such as a pixel-
level constraints [1], sketch-based structure constraints [19]
or text-guided semantic constraints [21, 9]. Another way
is to search for offline editing vectors to add to the la-
tent code for manipulation. Supervised methods identify
meaningful editing vectors based on attribute labels or pre-
trained classifiers [26, 27, 13, 2]. On the other hand, unsu-
pervised methods statistically analyze the StyleGAN laten-
t space to discover semantically significant editing direc-
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tions by principal component analysis [10], low-rank fac-
torization [40] and closed-form factorization [28]. Mean-
while, face manipulation can be directly realized by image-
to-image translation frameworks, where StyleGAN is used
to generate paired training data [32, 37] or to build the
decoder [23, 6, 37]. To achieve spatial editing, method-
s [42, 20] are proposed to manipulate mid-layer features
in addition to the latent code, similar to our W+–F space.
Moreover, BDInvert [14] and StyleHEAT [38] introduces
feature transformations for unaligned face editing. Howev-
er, the above methods, as well as HFGI [33], follow Style-
GAN features’ original fixed resolution, thus still suffer-
ing the crop limitation. Differently, our method predicts
the first-layer feature that can have various resolutions in
StyleGANEX. Moreover, as we will show later in Sec. 5.1,
compared to VToonify [37], StyleGANEX retains the com-
plete style manipulation abilities of the shallow layers of
StyleGAN, with a jointly trained latent code and feature ex-
tractor, preserving vivid details and supporting more diverse
manipulation tasks.

3. StyleGANEX

3.1. Analysis of the Fixed-Crop Limitation

StyleGAN has great potential for handling normal FoV
face images. The generator of StyleGAN is a fully con-
volutional architecture that can naturally handle different
feature resolutions, as convolution operations and the style
modulation of StyleGAN are independent of the input reso-
lution. Additionally, the translation equivariance of convo-
lution operations naturally supports feature translation. As
analyzed in VToonify [37], if we translate or rotate the fea-
ture of the 7th layer of StyleGAN, the resulting face will
also be shifted or rotated, as shown in Figs. 2(a)(b)(d).

The limiting factor originates from StyleGAN’s constant
first-layer feature. First, the first-layer feature has a fixed
resolution of 4×4, limiting the output to 1024×1024 reso-
lution. Second, 4×4 resolution is inadequate to characterize
the spatial information of unaligned faces. We have taken
a step further than the analysis in VToonify [37] to inves-
tigate translation and rotation on the first-layer feature. As
shown in Fig. 2(c), sub-pixel translation fuses adjacent fea-
ture values severely, resulting in a blurry face due to the s-
mall number of elements (only 16) in the first-layer feature.
In Fig. 2(e), the first-layer feature fails to provide enough
spatial information for a valid rotation. In comparison, the
7-th layer has a higher resolution (32×32), making it better
suited for capturing spatial information. However, only a
single layer alone provides limited style control, as the full
facial structural styles are hierarchically modeled by seven
shallow layers. Simply ignoring low-resolution layers, as in
VToonify, disables flexible latent editing over the styles of
these layers, such as pose, age, and face shape.

(a) random face (b) shift layer#7 (d) rotate layer#7(c) shift layer#1 (e) rotate layer#1

Figure 2: Analysis of StyleGAN in generating unaligned
faces. (a) Generated face. (b)(c) Face generated by trans-
lating the feature maps of the 7-th and 1-st layers of Style-
GAN respectively to shift the face by 150 pixels. (d)(e) Face
generated by rotating the feature maps of the 7-th and 1-st
layers of StyleGAN by 10 degrees, respectively.

(b) projected face (c) shift layer#1 (d) rotate layer#1(a) real face photo 

Figure 3: Analysis of StyleGANEX in generating un-
aligned faces. (a) A real face photo. (b) Reconstructed face
by projecting (a) into the W+–F space of StyleGANEX. (c)
Face generated by translating the first-layer feature map to
shift the face by 300 pixels. (d) Face generated by rotating
the first-layer feature map by 10 degrees.

Expanding the shallow layers of StyleGAN to have the
same 32× 32 resolution as the 7th layer, or more generally,
H/32×W/32 resolution for an H ×W image, would pro-
vide enough structure and layout information to combine
the style controllability of shallow layers with support for
normal FoV faces. This is precisely the key idea of Style-
GANEX, and we will introduce our simple solution in Sec-
tion 3.2. As a preview of the performance of the expanded
layers in enabling face manipulation beyond cropped and
aligned faces, Fig. 3 shows that for a 1472 × 1600 normal
FoV face photo, we can obtain its latent code and an addi-
tional 46×50 first-layer feature as the input to StyleGANEX
(inversion method explained in Section 4.2). Face transla-
tion and rotation can be realized by shifting or rotating the
first-layer feature. Additionally, the face can be effectively
edited by applying style mixing [17] or InterFaceGAN edit-
ing vectors [26] to the latent code, as shown in Fig. 1(a).

3.2. From StyleGAN to StyleGANEX

Figure 4 illustrates the generator architectures of Style-
GAN and StyleGANEX. Compared to StyleGAN, we first
replace the constant 4× 4 first-layer feature with a variable
feature whose resolution is 1/32 of the output image. Then,
we remove the upsample operations before the 8-th layer,
allowing features in the seven shallow layers to share the
same resolution as the 7-th layer. However, the convolu-
tion kernels or reception fields of these layers do not match
their input features with the enlarged resolution. To solve
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Figure 4: Refactor StyleGAN to StyleGANEX. For sim-
plicity, learned weights, biases and noises are omitted.

this problem, we enlarge the reception fields by modifying
the convolutions to their dilated versions. For example, the
first layer only needs to change the dilation factor from 1 to
8. With this simple modification, StyleGAN is refactored
to StyleGANEX. Since the first layer becomes variable, the
original W+ latent space is extended to a joint W+ –F s-
pace, where the latent code w+ ∈ W+ provides style cues,
and the first-layer feature f ∈ F mainly encodes spatial
information.

The refactoring of StyleGAN to StyleGANEX has three
key advantages. 1) Support for unaligned faces. The
resolution enlargement and variable first-layer features of
StyleGANEX overcome the fixed-crop limitation. 2) Com-
patibility. No model parameters are altered during refac-
toring, meaning that StyleGANEX can directly load pre-
trained StyleGAN parameters without retraining. In fact, if
we upsample the StyleGAN’s constant input feature by 8×
with nearest neighbor interpolation to serve as f of Style-
GANEX, StyleGANEX degrades exactly to StyleGAN with
the same 1024× 1024 generative space. The computational
cost of the refactoring is also minimal, with generating an
image taking 0.026s and 0.028s for StyleGAN and Style-
GANEX, respectively. 3) Flexible manipulation. Style-
GANEX retains the style representation and editing ability
of StyleGAN, meaning that abundant StyleGAN-based face
manipulation techniques can be applied to StyleGANEX.

4. Face Manipulation with StyleGANEX
4.1. StyleGANEX Encoder

This section introduces our StyleGANEX encoder E,
which is used to project real face images into the W+ –F

…

E

G 4H×4W 
output

w18

style latent codes

optional skip connections

…
w1

H×W 
input

… …

H/8×W/8
feature

pSp fixed StyleGANEXconv layer

multi-layer features of pSp encoder first-layer feature

E encoder

Figure 5: Details of StyleGANEX Encoder.

space of StyleGANEX G. The encoder builds upon the p-
Sp encoder [23], as depicted in Fig. 5. Specifically, for F
space, we concatenate pSp features in the middle layers and
add a convolution layer to map the concatenated features to
the first-layer input feature f of G. For W+ space, the o-
riginal pSp encoder takes a 256 × 256 image as input and
convolves it to eighteen 1 × 1 × 512 features to map to a
latent code w+ ∈ R18×512. To make E accept more gener-
al H ×W images, we add global average pooling to resize
all features to 1 × 1 × 512 before mapping to latent codes.
To support various face manipulation tasks flexibly, we can
extract f and w+ from different sources. Let EF and EW

be the operation of E to extract the first-layer feature and
the latent code, respectively. We have

f, w+ = EF (x1), EW (x2) := E(x1, x2), (1)

where x1 and x2 are the source inputs for face layout and
face style, respectively. Then, a general form of image gen-
eration by G from x1 and x2 is G(EF (x1), EW (x2)). In
some face manipulation tasks like super-resolution [6] and
toonification [37], passing encoder features to the generator
via skip connections helps preserve the details of the input
image. We thus introduce a scalar parameter ℓ to the gen-
eration process, indicating the ℓ shallow layers of G receive
the encoder features (ℓ = 0 means no skip connections):

x̂ = G(EF (x1, ℓ), EW (x2)) := G(E(x1, x2, ℓ)), (2)

where EF (x1, ℓ) provides both f and the skipped encoder
features. For x1 of H ×W resolution, f and the generated
image x̂ will be of H/8×W/8 and 4H×4W , respectively.
The resolution of x2 can be independent of x1 and x̂.

4.2. StyleGANEX Inversion and Editing

To find appropriate f̂ and ŵ+ that precisely reconstruct
a target image x, we perform a two-step StyleGANEX in-
version. Step I projects x to initial f and w+ with E. Step
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(b) encoded face (c) (b)+optimize(a) face photo (d) domain transfer

Figure 6: StyleGANEX inversion.

II optimizes f and w+ to further reduce the reconstruction
error. The training of E follows pSp with reconstruction
losses and a regularization loss [23]:

L = Lrec(x̂, x) + λ1Lreg(EW (x̃)), (3)

where x̂ = G(E(x, x̃, 0)) and x̃ is the cropped aligned face
region of x. We empirically find that using x̃ instead of
x predicts more accurate w+ since StyleGAN is originally
trained on cropped aligned faces. Lreg encourages the pre-
dicted w+ closer to the average latent code to improve the
image quality. Lrec measures the distance between the re-
constructed x̂ and the target x in terms of pixel similarity,
perceptual similarity, and identity preservation:

Lrec(x̂, x) = λ2L2(x̂, x) + λ3LLPIPS(x̂, x) + λ4LID(x̂, x).

As shown in Fig. 6(b), x̂ largely approximates x. But the
background details and clothings are still hard to recon-
struct. Therefore, we further optimize f and w+

f̂ , ŵ+ = argmin
f,w+

LLPIPS(G(f, w+), x), (4)

where f and w+ are initialized by E(x, x̃, 0). The opti-
mized G(f̂ , ŵ+) in Fig. 6(c) well reconstructs x.

After inversion, we can perform flexible editing over x as
in StyleGAN. Figure 1(a) shows two examples: we can ex-
change the last 11 elements of ŵ+ with random samples, to
mix the color and texture styles; we can add InterFaceGAN
editing vectors [26] to ŵ+ to make a young face. Moreover,
as shown in Fig. 6(d), if we load G a pre-trained StyleGAN-
NADA Disney Princess model [9] (let G′ denote the new
G), we can obtain G′(f̂ , ŵ+), a cartoon version of x.

4.3. StyleGANEX-Based Translation

The encoder and StyleGANEX form an end-to-end
image-to-image translation framework in Fig. 5. Depend-
ing on the type of paired training data, it can be trained to
efficiently realize different face manipulation tasks. As with
pSp [23], we will fix StyleGANEX generator and only train
the encoder on the given task.

Face super-resolution. Given low-resolution and high-
resolution training image pairs (x, y), we can train E to re-
cover y from x to learn face super-resolution with the loss

L = Lrec(ŷ, y) + λ5Ladv(ŷ, y), (5)

where ŷ = G(E(x↑, x̃↑, 7)), ↑ is the upsample operation to
make x match the input resolution of E, x̃ is the cropped
aligned face region of x. We add an adversarial loss Ladv to
improve the realism of the generated image.

Sketch/mask-to-face translation. Given a real face y
as target and its sketch or parsing mask x as source, we can
train E to translate x to y with Eq. (3) as objectives. In this
task, we add a trainable light-weight translation network T
to map x to an intermediate domain where E can more easi-
ly extract features. For the style condition, G’s first 7 layers
use the latent code extracted from x to provide structural
styles, while its last 11 layers use the latent code from ỹ to
provide color and texture styles to simplify reconstruction.
Therefore, ŷ = G(EF (T (x), ℓ), E

1:7
W (T (x)) ⊕ E8:18

W (ỹ)),
where ⊕ is concatenation operation, and the superscript of
EW means taking the 1∼7 or 8∼18 elements of w+. ℓ = 1
for sketch inputs and ℓ = 3 for mask inputs.

Video face editing. Given paired original face, edited
face, and its editing vector (x, y, v) (we can simply generate
x = G0(w

+) and y = G0(w
++v) from random latent code

w+ with StyleGAN G0), we train E for face editing with

L = Lrec(ŷ, y) + λ5Ladv(ŷ, y) + λ6Ltmp(ŷ), (6)

where ŷ = G(EF (x, 13), EW (x̃) + v). Ltmp is the flicker
suppression loss [37] to improve temporal consistency.

Video toonification. For video face toonification, we
have paired original face and toonified face (x, y). They
can be generated as x = G0(w

+) and y = G′
0(w

+) from
random latent code w+ following Toonify [22], where G′

0 is
the StyleGAN fine-tuned on cartoon images. Let G′ denote
StyleGANEX loaded with G′

0, then we train E using the
objectives of Eq. (6) with ŷ = G′(E(x, x̃, 13)).

Note that compared to face editing based on Style-
GANEX inversion in Sec. 4.2, the solution in this section
does not require time-consuming latent optimization, and
temporal consistency is enforced by the flicker suppression
loss. Therefore, this solution is more suitable for efficien-
t and coherent video face manipulation, which is a unique
feature of the proposed framework. On the other hand, the
solution based on StyleGANEX inversion is more flexible.
There is no need to train new E for every editing vector v
or fine-funed StyleGAN G′

0.

5. Experimental Results
Implementation details. We follow pSp [23] to set λ2 = 1
and λ3 = 0.8 for all tasks, λ4 = 0.1 for inversion task and
0 for other tasks. We set λ1 to 0.0001, 0.005 and 0 for in-
version, sketch/mask-to-face and other tasks, respectively.
We set λ5 = 0.1 and λ6 = 30 empirically. The translation
network T consists of two downsampling convolutional lay-
ers, two ResBlocks [11] and two upsampling convolutional
layers, with small channel number 16. All experiments are
performed using a single NVIDIA Tesla V100 GPU.
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input inversed image open mouth smile pose glasses gender Ukiyo-e

Figure 7: StyleGANEX inversion and facial attribute/style editing.

Datasets. We process FFHQ [17] to obtain 70,000 aligned
training images of 1280 × 1280 resolution for all tasks ex-
cept two video-related tasks that use StyleGAN generated
data. We use BiSeNet [39] to extract parsing masks and fol-
low pSp [23] to extract sketches from face images. We aug-
ment all training data with random geometric transforma-
tions [15] like scaling, translation and rotation to make faces
unaligned. We use images and videos from FaceForensic-
s++ [25], Unsplash and Pexels as our testing dataset.

5.1. Face Manipulation

Face editing. Figure 7 provides an overview of the per-
formance of face inversion and attribute editing on Style-
GANEX. We apply inversion to normal FoV face photo-
s/paintings and use various editing vectors from InterFace-
GAN [26] and LowRankGAN [40], and the pre-trained
StyleGAN-NADA Ukiyo-e model [9], to edit the facial at-
tributes or styles. As shown, these StyleGAN editing tech-
niques work well on StyleGANEX. We also compare with
pSp [23], HyperStyle [5] and BDInvert [14] in Fig. 8. Since
these baselines are designed for cropped faces, we paste and
blend their edited results back into the original image. For
a fair comparison, we apply the same optimization method
used in our approach to pSp for precise inversion (BDIn-
vert is an optimization-based method and HyperStyle al-
ready uses extra hyper networks to simulate optimization).
For editing that alters structures or colors, even precise in-
version and blending cannot eliminate the obvious discon-
tinuity along the seams, as indicated by the red arrows. In
contrast, our approach processes the entire image as a whole
and avoids such issues. Remarkably, our method success-
fully turns the whole hair into black in Fig.8(b), transfers
the exemplar blond hairstyle onto the target face in Fig.8(c),
and renders the full background with the StyleGAN-NADA
Edvard Munch style in Fig.8(d).
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Figure 8: Comparison on face editing.

(a) input (b) pSp (d) ours-32(c) ours

Figure 9: Comparison on super-resolution.

Face super resolution. We show our 32× super-resolution
results in Fig. 9(d), where both the face and non-face re-
gions are reasonably restored. We further follow pSp to
train a single mode on multiple rescaling factors (4 ∼ 64)
with ℓ = 3 to make a fair comparison. In pSp’s results, the
non-face region is super-resolved by Real-ESRGAN [35].
As in Fig. 9(b)(c), our method surpasses pSp in precise de-
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(a) input (b) pix2pixHD (d) pSp(c) TSIT (e) ours

Figure 10: Comparison on sketch-to-face translation.

(a) input (b) pix2pixHD (d) pSp(c) TSIT (e) ours

Figure 11: Comparison on mask-to-face translation.

tail restoration (e.g., glasses) and uniform super-resolution
without discontinuity between face and non-face regions.
Sketch/mask to face translation. We compare our method
with image-to-image translation models pix2pixHD [34]
and TSIT [12], and StyleGAN-based pSp in Figs. 10-11.
Pix2pixHD’s results have many artifacts and monotonous
colors. TSIT requires the inputs’ side lengths to be divisible
by 128. We find padding the input leads to failed translation.
Therefore, we show its results on centrally cropped inputs,
which are blurry. PSp generates realistic results, which are
however less similar to the input sketch/mask. By compar-
ison, our method can translate whole images and achieve
realism and structural consistency to the inputs. For quan-
titative evaluation, we conduct a user study, where 30 sub-
jects are invited to select what they consider to be the best
results from the four methods. Each task uses eight results
for evaluation. Table 1 summarizes the preference scores,
where our method receives the best score.
Video face editing. We compare with pSp, HyperStyle,
StyleHEAT [38] and STIT [31]. StyleHEAT uses features
of a fixed 64× 64 resolution for unaligned but still cropped
1024 × 1024 face reenactment. Specifically, it generates
videos based on warping the features of the first frame,
which however limits its inversion accuracy. STIT extends
PTI [24] for full video processing by stitching. STIT cannot
well preserve the complex hair details (Fig. 12, yellow box).
As with image face editing, all four baselines are limited
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Figure 12: Comparison on video face editing.
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Figure 13: Comparison on video face toonification.

to editing cropped regions, leading to discontinuity along
the stitching seams. By comparison, our method uses the
first-layer feature and skipped mid-layer features to provide
spatial information, which achieves more coherent results.
Moreover, we can randomly scale the editing vector v (by
multiplying a scale factor) instead of using a fixed v during
training. Then during testing, our method can flexibly ad-
just the editing degree by scaling v for users to select as in
Fig. 12(e).
Video face toonification. Compared with VToonify-T [37],
our method preserves more details of the non-face region
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Table 1: User preference scores. Best scores are in bold.

Task pix2pixHD [34] TSIT [12] pSp [23] ours

sketch-to-face 0.400 0.121 0.029 0.450
mask-to-face 0.108 0.075 0.121 0.696

Task VToonify-T [37] ours

video toonify 0.083 0.917

(a) input (b) two steps (d) only opt(c) transferred (b) (e) transferred (d)

Figure 14: Effect of encoder in StyleGANEX inversion.

(a) input x↑ (b) G (E (x↑, x↑, 7)) (d) G (E (x↑, ሷ𝑥↑, 7))(c) G (E (x↑, x↑, 7))

~x↑

ሷ𝑥↑

~

Figure 15: Input choice to provide valid style information.

and generates shaper faces in Fig. 13. The reason is that
VToonify-T uses a fixed latent code extractor while our
method trains a joint latent code and feature extractor, thus
our method is more powerful for reconstructing the details.
Moreover, our method retains StyleGAN’s shallow layers,
which helps provide key facial features to make the stylized
face more vivid. Table 1 shows a quantitative comparison
on ten results, and our method obtains the best user score.

5.2. Ablation Study

The effect of Step II of our two-step inversion is verified
in Fig. 6. We further study the effect of Step I in Fig. 14.
With Step I providing a good prediction of w+ and f , Step
II only needs 500-iteration optimization for precise recon-
struction (Fig. 14(b)) and valid domain transfer to Disney
Princess (Fig. 14(c)). However, if we directly optimize a
mean w+ and a random f , the result is poor even with 2,000
iterations (indicated by a red arrow in Fig. 14(d)) and the
optimized w+ and f overfit the input, which is not suitable
for editing like domain transfer (Fig. 14(e)).

In Fig. 15, we study the input choice to extract w+. The
cropped aligned faces are the default choice. If we in-
stead use the whole image to extract w+, the background
will affect the facial style, leading to poor restoration in
Fig. 15(c). We further find reasonable results (Fig. 15(d))
can still be obtained by cropping the input to decrease the
background proportion. Note that the face is not aligned
in the cropped image (ẍ↑), which is useful for applications
like super-resolution where extremely low-resolution faces
are hard to detect and align. Users can simply manually
crop the face region to provide valid style information.

(a) input (b) ℓ = 0 (d) ℓ = 7(c) ℓ = 3

Figure 16: Effect of skip connections.

(a) input (b) ℓ = 1 (c) ℓ = 0 (d) input (e) ℓ = 1 (f) ℓ = 0

Figure 17: Performance on low-quality sketches.

input inversion blocky shape add grass

redness style mixing

Figure 18: Performance on car.

In Fig. 16, we study the effect of skip connection. With-
out it (ℓ = 0), the glasses cannot be generated. Skip con-
nection provides mid-layer features to preserve the details
of the input. However, too many extra features will alter the
feature distribution of StyleGAN, e.g., always generating
sunglasses as the input has no segmentation of eyes. Thus,
we use ℓ = 3 to balance between input-output consistency
and diversity. Inversely, we can use a small ℓ to enhance the
model robustness to low-quality inputs. For example, we
can generate more realistic faces with ℓ = 0 on DeepFace-
Drawing low-quality sketches [7] as in Fig. 17.

5.3. Results on Non-Facial Dataset

The proposed refactoring is domain-agnostic, thus it can
be applied to StyleGAN pre-trained on other domains like
cars. An example with a wide vertical field of view is shown
in Fig. 18, where we perform optimization-based StyleGAN
inversion, image editing with the editing vectors found by
GANSpace [10] and style mixing on the refactored model.
The resulting manipulated cars look plausible.
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(a) clothes (b) hand

20° 45° roughly align + undo
(c) severely rotated face

Figure 19: Limitations.

5.4. Limitations

First, our framework currently relies on an inefficient op-
timization process for precise reconstruction. While future
work can explore more efficient inversion methods (e.g.,
iterative residue prediction and hyper networks), it is im-
portant to note that this paper focuses on overcoming the
fixed-crop limitation of StyleGAN, rather than the specific
topic of GAN inversion. Second, StyleGANEX is limited
by the feature representation of StyleGAN. While it shows
great potential in handling normal FoV face images, out-of-
distribution features such as complex clothing and human
bodies may not be well handled as in Fig. 19(a)(b). As in
Fig. 19(c), while our method can handle faces rotated 20 de-
grees, it still struggles with handling large rotation angles.
However, this can be easily resolved by rough alignmen-
t of the input image in the middle as our method does not
require accurate alignment. Finally, after translation, we
can undo the alignment to obtain a plausible result as in
right of Fig. 19(c). Third, StyleGANEX, like StyleGAN,
focuses on face manipulation and may not support out-of-
distribution semantical editing of non-facial regions. Last,
StyleGANEX may inherit the model bias of StyleGAN. Ap-
plying it to tasks with severe data imbalance might lead to
unsatisfactory results on under-represented data.

6. Conclusion
We have presented an effective approach to refactor

StyleGAN to overcome its fixed-crop limitation while re-
taining its style control abilities. The refactored model,
called StyleGANEX, fully inherits the parameters of the
pre-trained StyleGAN without retraining, and is thus fully
compatible with the generative space of StyleGAN. We fur-
ther introduced a StyleGANEX encoder to project normal
FoV face images to the joint W+–F space of StyleGANEX
for real face inversion and manipulation. Our approach of-
fers an effective solution to the general issue of StyleGAN
and extends its capability beyond fixed-resolution data.
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