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Abstract

Although convolutional neural networks (CNNs) have
been proposed to remove adverse weather conditions in sin-
gle images using a single set of pre-trained weights, they
fail to restore weather videos due to the absence of tempo-
ral information. Furthermore, existing methods for remov-
ing adverse weather conditions (e.g., rain, fog, and snow)
from videos can only handle one type of adverse weather.
In this work, we propose the first framework for restoring
videos from all adverse weather conditions by developing
a video adverse-weather-component suppression network
(ViWS-Net). To achieve this, we first devise a weather-
agnostic video transformer encoder with multiple trans-
former stages. Moreover, we design a long short-term tem-
poral modeling mechanism for weather messenger to early
fuse input adjacent video frames and learn weather-specific
information. We further introduce a weather discrimi-
nator with gradient reversion, to maintain the weather-
invariant common information and suppress the weather-
specific information in pixel features, by adversarially pre-
dicting weather types. Finally, we develop a messenger-
driven video transformer decoder to retrieve the residual
weather-specific feature, which is spatiotemporally aggre-
gated with hierarchical pixel features and refined to pre-
dict the clean target frame of input videos. Experimen-
tal results, on benchmark datasets and real-world weather
videos, demonstrate that our ViWS-Net outperforms cur-
rent state-of-the-art methods in terms of restoring videos
degraded by any weather condition.

1. Introduction

Adverse weather conditions (including rain, fog and
snow) often degrade the performance of outdoor vision

†Lei Zhu (leizhu@ust.hk) is the corresponding author.

systems, such as autonomous driving and traffic surveil-
lance, by reducing environment visibility and corrupting
image/video content. Removing these adverse weather ef-
fects is challenging yet a promising task. While many
video dehazing/deraining/desnowing methods have been
proposed, they mainly address one type of weather degra-
dation. As they require multiple models and sets of weights
for all adverse weather conditions, resulting in expensive
memory and computational costs, they are unsuitable for
real-time systems. Additionally, the system would have
to switch between a series of weather removal algorithms,
making the pipeline more complicated and less practical for
real-time systems.

Recently, Li et al. [18] proposed an All-in-One bad
weather removal network that can remove any weather con-
dition from an image, making it the first algorithm to pro-
vide a generic solution for adverse weather removal. Fol-
lowing this problem setting, several single-image multi-
adverse-weather removal methods [8, 38] have been devel-
oped to remove the degradation effects by one model in-
stance of a single encoder and single decoder. While sig-
nificant progress has been witnessed for the single-image
multi-adverse-weather removal task, we believe that video-
level algorithms can achieve better results by utilizing the
temporal redundancy from neighboring frames to reduce the
inherent ill-posedness in restoration tasks.

Therefore, a generic framework that can transform an
image-level algorithm into its video-level counterpart is
highly valuable. However, two bottlenecks need to be ad-
dressed: 1) how to effectively maintain the temporal co-
herence of background details across video frames, and 2)
how to prevent the perturbation of multiple kinds of weather
across video frames.

To tackle the aforementioned bottlenecks, we present the
Video Adverse-Weather-Component Suppression Network
(ViWS-Net), the first video-level algorithm that can re-
move all adverse weather conditions with only one set of
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pre-trained weights. Specifically, we introduce Temporally-
active Weather Messenger tokens to learn weather-specific
information across video frames and retrieve them in our
messenger-driven video transformer decoder. We also de-
sign a Long Short-term Temporal Modeling mechanism for
weather messenger tokens to provide early fusion among
frames, and support recovery with temporal dependences of
different time spans. To impede the negative effects of mul-
tiple adverse weather conditions on background recovery,
we develop a Weather-Suppression Adversarial Learning by
introducing a weather discriminator. Adversarial backprop-
agation is adopted, between the video transformer encoder
and the discriminator, by gradient reversion to maintain the
common background information and simultaneously sup-
press the weather-specific information in hierarchical pixel
features. Since there has been no public dataset for video
desnowing, we synthesize the first video-level snow dataset,
named KITTI-snow, which is based on KITTI [22]. We
conduct extensive experiments on video deraining, dehaz-
ing, and desnowing benchmark datasets, including RainMo-
tion [39], REVIDE [49], and KITTI-snow, as well as several
real-world weather videos, to validate the effectiveness and
generalization of our framework for video multiple adverse
weather removal. Our contributions can be summarized as
follows:

• We propose a novel unified framework, ViWS-Net,
that addresses the problem of recovering video frames
from multiple types of adverse weather degradation
with a single set of pre-trained weights.

• We introduce temporally-active weather messenger to-
kens that provide early temporal fusion and help re-
trieving the residual weather-specific information for
consistent removal of weather corruptions.

• We design a weather-suppression adversarial learning
approach that maintains weather-invariant background
information and suppresses weather-specific informa-
tion, thereby preventing recovery from the perturba-
tion of various weather types.

• To evaluate our framework under multiple adverse
weather conditions, we synthesize a video-level snow
dataset KITTI-snow. Our extensive experiments
on three benchmark datasets and real-world videos
demonstrate the effectiveness and generalization abil-
ity of ViWS-Net. Our code is publicly available at
https://github.com/scott-yjyang/ViWS-Net.

2. Related Work
Video Single-Weather Removal. We briefly introduce dif-
ferent video single-weather removal methods. For video de-
raining, Garg and Nayar first modeled the video rain and de-
velop a rain detector based on the photometric appearance

of rain streak [12, 13]. Inspired by these seminal works,
many subsequent methods focusing on handcrafted intrin-
sic priors [1–4, 25, 34, 50] have been proposed in the past
decades. Recently, deep neural networks have also been
employed along this research line [5, 17, 23, 39, 42–45].
Yang et al. [43] built a two-stage recurrent network that
utilizes dual-level regularizations toward video deraining.
Wang et al. [39] devised a new video rain model that ac-
counts for rain streak motions, resulting in more accurate
modeling of the rain streak layers in videos. For video
dehazing, various methods [15, 20, 47] are introduced to
generate more accurate dehazed results. For example, with
the development of deep learning, Ren et al. [33] proposed
a synthetic video dehazing dataset and developed a deep
learning solution to accumulate information across frames
for transmission estimation. To break the limit of poor per-
formance in real-world hazy scenes, Zhang et al. [49] devel-
oped a video acquisition system that enabled them to cap-
ture hazy videos and their corresponding haze-free coun-
terparts from real-world settings. Based on [49], Liu et
al. [27] proposed a phase-based memory network that in-
tegrates color and phase information from the current frame
with that of past consecutive frames. For snow removal,
while most existing learning-based methods [6, 7, 48] fo-
cused on single-image desnowing, no work explored the
better solution for video desnowing using temporal infor-
mation. We propose a novel approach to address the chal-
lenge of removing adverse weather effects in videos. Unlike
previous methods, we adopt a unified single-encoder single-
decoder network that can handle various types of adverse
weather conditions using a single model instance.

Single-image Multi-Adverse-Weather Removal. Most
recently, a body of researchers has investigated single-
image multiple adverse weather removal tasks by one model
instance. Li et al. [18] developed a single network-based
method All-in-One with multiple task-specific encoders and
a generic decoder based on Neural Architecture Search
(NAS) architecture. It backpropagates the loss only to the
respective feature encoder based on the degradation types.
TransWeather [38] proposed a transformer-based end-to-
end network with only a single encoder and a decoder. It
introduced an intra-patch transformer block into the trans-
former encoder for smaller weather removal. It also uti-
lized a transformer decoder with weather type embeddings
learned from scratch to adapt to different weather types.
Chen et al. [8] proposed a two-stage knowledge distillation
mechanism to transfer weather-specific knowledge from
multiple well-trained teachers on diverse weather types to
one student model. Our study draws attention to multi-
adverse-weather removal issue in videos. However, all the
above methods failed to capture complementary informa-
tion from temporal space. Although we can generalize them
to remove adverse weather removal in a frame-by-frame
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Figure 1. Overview of our ViWS-Net framework for Video Multiple Adverse Weather Removal. Given a sequence of video frames,
we divide the frames into patch tokens and concatenate them with the corresponding weather messenger token as inputs. The weather mes-
sengers temporally collect weather-specific information while the weather-agnostic video transformer encoder performs feature extraction
and generates hierarchical pixel features. Simultaneously, a weather discriminator is adversarially learned by the gradient reversal layer
to maintain the weather-invariant information and suppress the weather-specific counterpart. For each frame, the messenger-driven video
transformer decoder leverages the last pixel feature fNs as key and value, the well-learned weather messenger token mNs as queries to
retrieve the weather-specific feature r. Finally, the weather-specific feature r is aggregated together with hierarchical pixel features {f l}Ns

l=1

across both spatial and temporal axis followed by a refinement network to obtain the final clean target frame Ît.

manner, temporal information among video frames enables
our method to work better than those image-level ones.

Adversarial Learning. Deep learning has gained popular-
ity in recent years due to its ability to learn non-linear fea-
tures, making it easier to learn invariant features for multi-
ple tasks. Adversarial learning, inspired by generative ad-
versarial networks [14], has been employed in natural lan-
guage processing to learn a common feature representation
for multi-task learning, as demonstrated in [24, 28, 36].
These adversarial multi-task models consist of three net-
works: a feature encoder network, a decoder network, and
a domain network. The decoder network minimizes the
training loss for all tasks based on the feature encoder
network, while the domain network distinguishes the task
to which a given data instance belongs. Such learning
paradigm has also been used to tackle the domain shift prob-
lem [11, 19, 30, 35, 37] to learn domain-invariant informa-
tion. Inspired by those works, we further explore the com-
mon feature representation of multiple adverse weather in
videos by adversarial learning paradigm.

3. Method
In this work, our goal is to devise the first video-level

unified model to remove multiple types of adverse weather
in frames with one set of model parameters. We follow an
end-to-end formulation of adverse weather removal as:

Ît = D(E(Vq
i )),

V = {It−n, ...,It−1, It, It+1, ..., It+n},
(1)

where Vq
i is the i-th video clip with T = 2n + 1 frames

degraded by q-th weather type, Ît is the recovered target
frame. Different from standard image-level method All-in-
One [18], our ViWS-Net tackles multiple adverse weather
problem more efficiently by one video transformer encoder
E(·) and one video transformer decoder D(·). Next, we
elaborate our solution for Video Multiple Adverse Weather
Removal task.

3.1. Overall Architecture

The overall architecture of our ViWS-Net is displayed in
Figure 1, which consists of a weather-agnostic video trans-
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Figure 2. An illustration of our Long Short-term Temporal
Modeling mechanism. This mechanism is repeatedly applied at
each stage of the transformer encoder.

former encoder, a messenger-driven video transformer de-
coder, and a weather discriminator. Without loss of gen-
erality, we build ViWS-Net based on the Shunted trans-
former [32] consisting of shunted self-attention (SSA) and
detail-specific feedforward layer (DSF). SSA extends spa-
tial reduction attention in PVT [40] to unify multi-scale
feature extractions within one self-attention layer through
multi-scale token aggregation. DSF enhances local details
by inserting a depth-wise convolution layer between the two
fully connected layers in the feed-forward layer.

Given a sequence of video clip with T = 2n + 1
frames {It−n, ..., It−1, It, It+1, ..., It+n} degraded by q-th
adverse weather, our transformer encoder performs feature
extraction and generates hierarchical pixel features while
weather messenger tokens conduct long short-term tempo-
ral modeling for the early fusion in the temporal axis. The
weather discriminator with a gradient reversal layer is ad-
versarially learned by predicting the weather type of video
clips to maintain the weather-invariant background infor-
mation and suppress the weather-specific information in the
pixel features. The messenger-driven video transformer
decoder initializes weather type queries with temporally-
active weather messenger well-learned during encoding to
retrieve the residual weather-specific information from the
suppressed pixel feature. Finally, the hierarchical pixel fea-
tures and weather-specific feature are spatiotemporally in-
tegrated and refined to reconstruct the clean target frame.
Empirically, we set n = 2 to achieve a good trade-off be-
tween performance and computational cost.

3.2. Temporally-Active Weather Messenger

Previous single-image multi-adverse-weather removal
work [38] adopted a fixed number of learnable embeddings
to query weather-specific features from pixel features in
the transformer decoder, termed as weather type queries.
However, hindered by random initialization, they are hard
to tell the robust weather-specific information during de-
coding. Furthermore, these query embeddings are inde-
pendently learned across frames, resulting in the absence
of temporal information in the video scenario. To address
these limitations, we introduce weather messenger in the
video transformer encoder, and the well-learned weather

messengers are adopted as the weather type queries. Specif-
ically, a group of learnable embeddings with size of M ×C
is introduced as weather messenger tokens for each frame,
which is denoted as {m0

i }Ti=1 ∈ RT×M×C . A video clip
with the resolution of H ×W is divided and projected into
T×HW

P 2 ×C overlapped patch embeddings frame-by-frame,
where P and C denote the patch size and the channel di-
mension respectively. Then, we concatenate patch embed-
dings of each frame with the corresponding weather mes-
senger tokens before feeding into the video transformer en-
coder:

{[f0
i ,m

0
i ]}Ti=1 ∈ RT×(HW

P2 +M)×C . (2)

The joint tokens {[f0
i ,m

0
i ]}Ti=1 are taken as inputs for the

first stage of the transformer encoder. Our video trans-
former encoder has Ns = 4 stages and each stage consists
of several blocks of SSA and DSF. The joint token of the
l-th stage is learned as:

{[f l
i ,m

l
i]}Ti=1 = {DSF l(SSAl([f l−1

i ,ml−1
i ]))}Ti=1. (3)

Our weather messengers are temporally active between
blocks of each stage to collect weather-specific informa-
tion from pixel features. To further explore temporal depen-
dence with different spans for the target frame, we conduct a
long short-term temporal modeling mechanism as shown in
Figure 2. Weather messenger tokens of one frame are sepa-
rated into 6 groups and shifted along the temporal axis with
different time steps (0-2) and directions (forward or back-
ward) followed by an inverse operation (shiftback). For the
target frame It, the first 3 groups model short-term depen-
dence by shifting messenger tokens of the neighbor frames
{It−1, It+1} with one time step, while the last 3 groups
model long-term dependence by shifting messenger tokens
of the neighbor frames {It−2, It+2} with two time steps.
Temporal dependences of different spans endow the recov-
ery of the target frame with the comprehensive reference of
weather-specific information from past and future frames.

3.3. Weather-Suppression Adversarial Learning

To construct a weather-agnostic transformer encoder,
inspired by domain adaptation [11], we design Weather-
Suppression Adversarial Learning to learn a great feature
space maintaining weather-invariant background informa-
tion and suppressing weather-specific information. To this
end, we optimize a weather discriminator for classifying the
weather types by adversarial backpropagation.

Notably, a gradient reversal layer (GRL) is inserted be-
tween the video transformer encoder and weather discrim-
inator. During backpropagation, GRL takes the gradi-
ent from the weather discriminator, multiplies it by −λ
and passes it to the transformer encoder. To predict the
weather type of a video clip, we combine information from
all frames of one video clip by computing an attention-
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weighted average of their vector representations. We ap-
ply the gated attention mechanism by using the sigmoid
function to provide a learnable non-linearity that increases
model flexibility. An attention score αi is computed on each
frame as:

αi =
exp {wT

1 (tanh(w2vTi ) · sigm(w3vTi )}∑T
k=1 exp {wT

1 (tanh(w2vTk ) · sigm(w3vT
k )}

, (4)

where w1, w2, w3 are learnable parameters. This process
yields an attention-weighted fused vector representation,
which reads:

v =

T∑
i=1

αivi, (5)

where vi is the vector representation from feature embed-
dings of the frame i. The weather type is finally obtained
from the fused vector by one fully connected layer. While
the weather discriminator W(·) seeks an accurate prediction
for weather types, the video transformer encoder strives to
generate weather-agnostic pixel features. The adversarial
loss can be thus achieved by min-max optimization as:

Ladv = min
θw

λmax
θε

(

Q∑
q=1

Nq∑
i=1

q log[W(E(Vq
i )])

 . (6)

Our weather-suppression adversarial learning develops
from the basic idea that the weather-specific information is
suppressed in hierarchical pixel features in the transformer
encoder by downplaying the discrimination of weather
types. This protects the recovery of the target frame from
perturbations by different weather types, and thus concen-
trates the model on the weather-invariant background infor-
mation. At the training stage, weather-suppression adver-
sarial learning is applied to empower the video transformer
encoder with the characteristic of weather-agnostic. At the
inference stage, video frames are only fed into the video
transformer encoder and decoder for weather removal.

3.4. Messenger-driven Video Transformer Decoder

Intuitively, while weather-suppression adversarial learn-
ing largely impedes the appearance of weather-specific in-
formation, the residual still may exist in pixel features when
the adversarial loss reaches a saddle point. To localize
the perturbation from the residual weather-specific informa-
tion, we design Messenger-driven Video Transformer De-
coder to retrieve such information and recover frames from
hierarchical features using temporally-active weather mes-
sengers described in Section 3.2. Firstly, we adopt the
well-learned weather messengers {mNS

i }Ti=1 to query the
residual weather-specific information. After long short-
term temporal modeling in the transformer encoder, weather
messengers are trained to locate more true positives of ad-
verse weather in pixel features referring to rich temporal in-
formation, than independently-learned query embeddings in

Table 1. The data statistics of RainMotion, REVIDE and KITTI-
snow for our video multiple adverse weather removal. The mixed
training set is composed of the training set from the three datasets.

Weather Dataset Split Video Num Video Length Video Frame Num

Rain RainMotion train 40 50 2000
test 40 20 800

Haze REVIDE train 42 7-34 928
test 6 20-31 154

Snow KITTI-snow train 35 50 1750
test 15 50 750

[38]. With the pixel feature {fNS
i }Ti=1 as key and value, the

transformer decoder generates the weather-specific feature
{ri}Ti=1. Note that the transformer decoder here operates
at a single stage but has multiple blocks, which are simi-
lar to the stage of the transformer encoder. As illustrated in
Figure 1, the weather-specific feature is spatially integrated
with hierarchical pixel features in the convolution projec-
tion block with pairs of an upsampling layer and a 2D con-
volution residual layers frame-by-frame. To recover details
of the background, we subtract the outputs from the origi-
nal frames. After that, we concatenate the outputs of frames
and feed them into the temporal fusion block consisting of
three consecutive 3D convolution layers to achieve temporal
integration. Finally, we obtain the clean target frame Ît by
applying a refinement network, which is a vanilla and much
smaller version of our ViWS-Net, onto the initial recovered
results with tiny artifacts.

The supervised objective function is composed of a
smooth L1 loss and a perceptual loss as follows:

LS = LsmoothL1
+ γ1Lperceptual, with (7)

LsmoothL1 =

{
0.5(Ît −Bt)

2, if |Ît −Bt| < 1

|Ît −Bt| − 0.5, otherwise,
(8)

Lperceptual=Lmse(V GG3,8,15(Ît), V GG3,8,15(Bt)), (9)

where Ît, Bt denote the prediction and ground truth of the
target frame, respectively. The overall objective function
is composed of supervised loss and adversarial loss, which
can be defined as follows:

Ltotal = LS + γ2Ladv, (10)

where γ1 and γ2 are the balancing hyper-parameters, em-
pirically set as 0.04 and 0.001, respectively.

4. Experiments
In this section, we describe in detail the range of experi-

ments that we conducted to validate our proposed method.

4.1. Datasets

Various video adverse weather datasets are used in our
experiments. Table 1 summarizes the information of our
video multiple adverse weather datasets. RainMotion [39]
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Table 2. Quantitative evaluation for video multiple adverse weather removal. For Original Weather, these methods are trained on the
weather-specific training set and tested on the weather-specific testing set. For Rain, Haze, and Snow, these methods are trained on a mixed
training set and tested on the weather-specific testing set. The average performance is calculated on Rain, Haze, and Snow. PSNR and
SSIM are adopted as our evaluation metrics. The top values are denoted in red.

Methods Type Source Datasets
Original Weather Rain Haze Snow Average

Derain

PReNet [31] Image CVPR’19 27.06 0.9077 26.80 0.8814 17.64 0.8030 28.57 0.9401 24.34 0.8748
SLDNet [44] Video CVPR’20 20.31 0.6272 21.24 0.7129 16.21 0.7561 22.01 0.8550 19.82 0.7747
S2VD [45] Video CVPR’21 24.09 0.7944 28.39 0.9006 19.65 0.8607 26.23 0.9190 24.76 0.8934

RDD-Net [39] Video ECCV’22 31.82 0.9423 30.34 0.9300 18.36 0.8432 30.40 0.9560 26.37 0.9097

Dehaze

GDN [26] Image ICCV’19 19.69 0.8545 29.96 0.9370 19.01 0.8805 31.02 0.9518 26.66 0.9231
MSBDN [10] Image CVPR’20 22.01 0.8759 26.70 0.9146 22.24 0.9047 27.07 0.9340 25.34 0.9178
VDHNet [33] Video TIP’19 16.64 0.8133 29.87 0.9272 16.85 0.8214 29.53 0.9395 25.42 0.8960
PM-Net [27] Video MM’22 23.83 0.8950 25.79 0.8880 23.57 0.9143 18.71 0.7881 22.69 0.8635

Desnow

DesnowNet [29] Image TIP’18 28.30 0.9530 25.19 0.8786 16.43 0.7902 27.56 0.9181 23.06 0.8623
DDMSNET [48] Image TIP’21 32.55 0.9613 29.01 0.9188 19.50 0.8615 32.43 0.9694 26.98 0.9166
HDCW-Net [7] Image ICCV’21 31.77 0.9542 28.10 0.9055 17.36 0.7921 31.05 0.9482 25.50 0.8819
SMGARN [9] Image TCSVT‘22 33.24 0.9721 27.78 0.9100 17.85 0.8075 32.34 0.9668 25.99 0.8948

Restoration

MPRNet [46] Image CVPR’21 — — — — 28.22 0.9165 20.25 0.8934 30.95 0.9482 26.47 0.9194
EDVR [41] Video CVPR’19 — — — — 31.10 0.9371 19.67 0.8724 30.27 0.9440 27.01 0.9178
RVRT [21] Video NIPS’22 — — — — 30.11 0.9132 21.16 0.8949 26.78 0.8834 26.02 0.8972
RTA [51] Video CVPR’22 — — — — 30.12 0.9186 20.75 0.8915 29.79 0.9367 26.89 0.9156

All-in-one [18] Image CVPR‘20 — — — — 26.62 0.8948 20.88 0.9010 30.09 0.9431 25.86 0.9130
UVRNet [16] Image TMM‘22 — — — — 22.31 0.7678 20.82 0.8575 24.71 0.8873 22.61 0.8375

TransWeather [38] Image CVPR‘22 — — — — 26.82 0.9118 22.17 0.9025 28.87 0.9313 25.95 0.9152
TKL [8] Image CVPR‘22 — — — — 26.73 0.8935 22.08 0.9044 31.35 0.9515 26.72 0.9165

Ours Video — — — — — — 31.52 0.9433 24.51 0.9187 31.49 0.9562 29.17 0.9394

is the latest video deraining dataset synthesized based on
NTURain [5]. It has five large rain streak masks, making it
more demanding to remove the rain streaks. REVIDE [49]
is the first real-world video dehazing dataset with high fi-
delity real hazy conditions recording indoor scenes. To our
best knowledge, there have not been any public video-level
snow datasets yet. Thus, we built our own video desnowing
dataset named KITTI-snow. The details of KITTI-snow are
presented as follows. At the training stage, we merge the
training set of the three datasets to learn a unified model.
For the testing stage, we evaluate our model on three test-
ing sets, respectively.

KITTI-snow: We create a synthesized outdoor dataset
called KITTI-snow that comprises 50 videos with a total of
2500 frames, all featuring snowy conditions. Specifically,
we randomly collect two groups of videos from KITTI [22].
The first group consists of 35 videos and is treated as the
training set, while the second group includes 15 videos and
is treated as the testing set. Given each clean video, we
synthesize snowflakes with different properties (i.e. trans-
parency, size and position) according to Photoshop’s snow
synthesis tutorial. To better simulate the real-world snow
scene, gaussian blurring is applied onto snow particles. To
model the temporal consistency, we sample the position,
size and blurring degree of snow in different frames of the
same video from the same distribution. The spatial resolu-
tion of video frames is 1000 × 300. Figure 3 presents the
example frames of five videos with different distributions in
our synthetic dataset.

#01 #10 #19

Figure 3. Example frames of five synthesized videos in KITTI-
snow. The snowflakes in each video are sampled from different
distributions.

4.2. Implementation Details

For training details, the proposed framework was trained
on two NVIDIA RTX 3090 GPUs and implemented on the
Pytorch platform. Our framework is empirically trained for
500 epochs in an end-to-end way and the Adam optimizer
is applied. The initial learning rate is set to 2 × 10−4 and
decayed by 50% every 100 epochs. We randomly crop the
video frames to 224 × 224. We empirically set n = 2,
which means that our network receives 5 frames for each
video clip. A batch of 12 video clips evenly composed of
three weather types (i.e., rain, haze, snow) is fed into the
network for each time.

For method details, the number of weather messenger to-
kens M for each frame is set to 48. In order to suppress
noisy signal from the weather discriminator at the early
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Figure 4. Qualitative Comparison between adverse weather removal algorithms. The best algorithms designed for different tasks are
selected to present the results on the example frames degraded by rain, haze, snow, respectively. The color box indicates the detailed
comparison of weather removal.

OursInput Frame TransWeather TKL

Rain
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Figure 5. Visual comparison of different multiple adverse
weather removal methods on three real-world video sequences
degraded by rain, haze, snow, respectively. The color boxes dis-
play zoom-in views highlighting detailed comparisons of weather
removal. Apparently, our network can more effectively remove
rain streaks, haze, and snowflakes of input video frames than state-
of-the-art methods.

stages of the training procedure, we gradually change the
adaptation factor λ from 0 to 1 following the schedule:

λ =
2

1 + exp(−10 · p)
− 1, (11)

where p is the current iteration number divided by the total
iteration number.

Table 3. Quantitative comparison of computational complexity be-
tween the selected models and ViWS-Net. The best values are de-
noted in bold.

Methods Parameters (M) FLOPs (G) Inference time (s)
TransWeather [38] 24.01 37.68 0.49

TKL [8] 28.71 94.05 0.51
EDVR [41] 20.70 335.27 0.63

ViWS-Net(Ours) 57.82 68.72 0.46

4.3. Quantitative Evaluation

Comparison methods. As shown in Table 2, we com-
pared our proposed method against five kinds of state-
of-the-art methods on our mixed dataset. For derain,
we compared our method with one single-image approach
PReNet [31] and three video approaches SLDNet [44],
S2VD [45], RDD-Net [39]. For dehaze, we compared with
two single-image approaches GDN [26], MSBDN [10] and
two video approaches VDHNet [33], PM-Net [27]. For
desnow, we compared with four single-image methods in-
cluding DesnowNet [29], DDMSNET [48], HDCW-Net [7],
SMGARN [9]. For restoration, we compared ours with one
single-image method MPRNet [46] and three video meth-
ods EDVR [41], RVRT [21], RTA [51]. For multi-adverse-
weather removal, we compared ours with the latest four
single-image methods All-in-one [18], UVRNet [16], Tran-
sWeather [38], TKL [8].
Analysis on multi-adverse-weather removal. For quan-
titative evaluation of the restored results, we apply the peak
signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) as the metrics. For the single-weather removal
models (derain, dehaze, desnow), two types of results are
reported: (i) the model trained on their original weather
(i.e., single weather training set) and (ii) the model trained
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Table 4. Ablation study of each critical module in the proposed framework on three weather types. The top values are marked in bold
font. “WS. Adv.” denote weather-suppression adversarial learning.

Combination Module Datasets
WeatherMessenger VideoDecoder WS. Adv. Rain Haze Snow Average

M1 - - - 26.92 0.9273 22.77 0.9052 29.94 0.9462 26.54 0.9262
M2 ✓ - - 30.03 0.9327 23.92 0.9149 30.54 0.9520 28.16 0.9332
M3 - ✓ - 29.33 0.9365 22.84 0.9085 30.89 0.9554 27.69 0.9335
M4 - - ✓ 29.70 0.9316 23.87 0.9152 30.82 0.9521 28.13 0.9330
M5 ✓ ✓ - 31.00 0.9419 24.13 0.9164 30.93 0.9552 28.69 0.9378

Ours ✓ ✓ ✓ 31.52 0.9433 24.51 0.9187 31.49 0.9562 29.17 0.9394

Table 5. Ablation study of the proposed messenger-driven
video transformer decoder. The top values are denoted in bold.

Module Average
TemporalFusion RefineNet PSNR SSIM

- - 28.37 0.9305
✓ - 28.80 0.9357
✓ ✓ 29.17 0.9394

on data of all weather types (i.e., the mixed training set).
For restoration and multi-adverse-weather removal models,
only the results of the model trained on the mixed training
set are reported. For a fair comparison, we retrain each com-
pared model implemented by the official codes based on our
training dataset and report the best result. One can see that,
our method achieves the best average performance when
trained on multi-weather types by a considerable margin of
2.16, 0.0216 in PSNR, SSIM, respectively, than the second-
best method EDVR [41]. Although our method may not
be the best compared to single-weather removal methods
when trained on single-weather data, these methods usu-
ally go to failure when coming to multiple adverse weather
conditions. For example, while the derain method RDD-
Net [39] fails to remove the haze degradation, the dehaze
method PM-Net [27] and desnow method DDMSNET [48]
have poor performance on snow and haze removal, respec-
tively. Also, it can be observed that DDMSNET [48] and
SMGARN [9] still achieve promising results for snow re-
moval when trained on multi-weather types by incorporat-
ing snow-specialized modules. However, these methods
struggle to address other degradations like haze, leading
to lower average performance in multi-weather restoration.
In contrast to existing methods, our approach can achieve
consistent performance across all weather types by rely-
ing solely on a unified architecture and a set of pre-trained
weights.
Analysis on computational complexity. We evaluate
computational complexity (the number of training parame-
ters, FLOPs, inference time) by feeding a 5-frame video clip
with a resolution of 224×224 into our model and the rep-
resentative models. Our ViWS-Net maintains comparable
computational complexity to other methods while achiev-

ing the best results on multi-adverse-weather removal.

4.4. Qualitative Evaluation

Results on our datasets. To better illustrate the effective-
ness of our ViWS-Net, Figure 4 shows the visual compar-
ison under our rain, haze, and snow scenarios between our
method and 5 state-of-the-art methods that are, respectively,
the one with the best average performance for each group
of methods. Obviously, one can notice that our method can
achieve promising results in visual quality in each weather
type. For rain and snow scenarios, the results recovered
by our method contain less rain streaks and snow particles
compared with other methods. For the hazy scenario, our
method can remove more residual haze and much better pre-
serve clean background.

Results on real-world degraded videos. To evaluate the
universality of our video multiple adverse weather removal
network, we collect three real-world degraded videos, i.e.,
one rainy video from NTURain *, one hazy video and one
snowy video from Youtube website, and further compare
our network against state-of-the-art multi-adverse-weather
removal methods. Figure 5 shows the visual results pro-
duced by our network and two selected methods on real-
world video frames. Apparently observed from the detailed
comparison, our method outperforms other methods in all
weather types by effectively removing adverse weather and
maintaining background details.

4.5. Ablation Study

Effectiveness of each module in ViWS-Net. We evalu-
ate the effectiveness of each proposed module including
temporally-active weather messenger, video transformer
decoder, and weather-suppression adversarial learning (WS.
Adv.) as shown in Table 4. We report the result tested on
the weather-specific testing set and trained on the mixed
training set. The baseline M1, which consists of a Shunted
Transformer encoder and a convolution projection decoder,
achieves the average performance on three adverse weather
datasets of 26.54, 0.9262 in PSNR, SSIM, respectively. M2
introduces temporally-active weather messenger tokens in

*https://github.com/hotndy/SPAC-SupplementaryMaterials/
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the transformer encoder based on M1 and advances the av-
erage performance by 1.62, 0.0070 of PSNR, SSIM, re-
spectively, demonstrating the effectiveness of our proposed
Long Short-term Temporal Modeling strategy. M3 presents
the messenger-driven video transformer decoder (weather
type queries are randomly initialized), while M4 brings in
the weather-suppression adversarial learning based on M1.
Both M3 and M4 boost the average performance by a sig-
nificant margin. M5 is developed from M2 and M3, where
the weather type queries are initialized by the well-learned
weather messenger tokens, leading to a better average per-
formance of 28.69, 0.9378 in PSNR, SSIM. Our full model
further applies the weather-suppression adversarial learn-
ing strategy and gains a critical increase of 0.48, 0.0016 in
PSNR, SSIM, respectively, compared with M5.

Effectiveness of video transformer decoder. We further
validate the effectiveness of Temporal Fusion module and
RefineNet module in our elaborated video transformer de-
coder as shown in Table 5. Our reported results were ob-
tained by testing our approach on a mixed testing set and
training it on a mixed training set. It is worth noting that
both of them benefit the average performance.

5. Conclusion

This paper presents ViWS-Net, an innovative method for
simultaneously addressing multiple adverse weather condi-
tions in video frames using a unified architecture and a sin-
gle set of pre-trained weights. Our approach incorporates
Weather-Suppression Adversarial Learning to mitigate the
adverse effects of different weather conditions, and Weather
Messenger to leverage rich temporal information for consis-
tent recovery. We evaluate our proposed method on bench-
mark datasets and real-world videos, and our experimental
results demonstrate that ViWS-Net achieves superior per-
formance compared to state-of-the-art methods. Ablation
studies are also conducted to validate the effectiveness of
each proposed module.
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