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Abstract

Lightness adaptation is vital to the success of image
processing to avoid unexpected visual deterioration, which
covers multiple aspects, e.g., low-light image enhancement,
image retouching, and inverse tone mapping. Existing
methods typically work well on their trained lightness con-
ditions but perform poorly in unknown ones due to their
limited generalization ability. To address this limitation,
we propose a novel generalized lightness adaptation algo-
rithm that extends conventional normalization techniques
through a channel filtering design, dubbed Channel Selec-
tive Normalization (CSNorm). The proposed CSNorm pur-
posely normalizes the statistics of lightness-relevant chan-
nels and keeps other channels unchanged, so as to im-
prove feature generalization and discrimination. To opti-
mize CSNorm, we propose an alternating training strategy
that effectively identifies lightness-relevant channels. The
model equipped with our CSNorm only needs to be trained
on one lightness condition and can be well generalized to
unknown lightness conditions. Experimental results on mul-
tiple benchmark datasets demonstrate the effectiveness of
CSNorm in enhancing the generalization ability for the ex-
isting lightness adaptation methods. Code is available at
https://github.com/mdyao/CSNorm.

1. Introduction

Lightness adaptation is a vital step in image process-

ing, encompassing tasks such as low-light image enhance-

ment [27, 31], image retouching [29], and inverse tone map-

ping [7]. These tasks have benefited significantly from the

development of advanced neural network architectures. Al-

though numerous powerful lightness adaptation methods

have been proposed, the generalization problem [56, 46] for

lightness adaptation still exists and is rarely explored.

In real-world applications, applying lightness adaptation
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Figure 1: Visual comparisons on known and unknown lightness

conditions. The model equipped with our CSNorm can generalize

well to other unknown lightness while keeping the performance on

the known lightness.

models to unknown lightness conditions is quite challeng-

ing due to the brightness discrepancies between training

and testing data [39, 52]. Existing lightness adaptation ap-

proaches [31, 65, 59, 32, 1, 49, 7, 24] primarily focus on

addressing the challenge of accurate image reconstruction.

However, they often underperform on wide-range scenes

with other lightness conditions due to their over-fitting to

the training lightness component, leading to unsatisfactory

visual effects (Fig. 1) and inadequate generalization in com-

plex real-world scenarios.

An alternative way is constructing a larger mixed-

lightness dataset including more lightness conditions, but

it is impractical for many complicated cases and too time-

consuming for cumbersome acquisition from diverse do-

mains [47, 67]. Besides, existing models suffer from the

drawback of inadequately encapsulating generalization and

discrimination abilities, where the former is responsible for

the performance on unknown lightness conditions and the

latter mainly corresponds to the reconstruction characteris-
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Figure 2: Comparisons of different normalization techniques. Our

proposed CSNorm adaptively normalizes the lightness-relevant

channels for generalization and keeps other channels unchanged

for accurate reconstruction.

tics on the known lightness condition.

In this paper, we focus on designing a mechanism that

empowers existing lightness adaptation methods with the

generalization ability to wide-range lightness scenes. The

key challenge lies in obtaining the above generalization

ability while keeping the discrimination ability. To achieve

this goal, we introduce the normalization technique, which

has the good property of extracting invariant representations

from the given features [22], especially for lightness com-

ponents [40, 17]. However, normalization is a double-edged
sword due to its inevitable loss of information, which might

degrade the reconstruction accuracy [40, 68]. Therefore,

we explore normalizing particular channels that are highly

sensitive to lightness changes while keeping other channels

unchanged (Fig. 2). Such a design enhances the generaliza-

tion ability and keeps the discrimination of features.

To this end, we propose a concept of Channel Selec-
tion Normalization (CSNorm) to purposely select and nor-

malize the lightness-relevant channels. CSNorm consists

of two major parts: an instance-level lightness normaliza-

tion module for eliminating lightness-relevant information

and a differentiable gating module for adaptively selecting

lightness-relevant channels. The gating module outputs a

series of binary indicators to combine the normalized and

original channels, which feasibly enhances the model’s gen-

eralization capabilities and mitigates the information loss

caused by normalization. The proposed CSNorm is simple,

lightweight, and plug-and-play.

To identify lightness-relevant channels in CSNorm, we

meticulously design an alternating training strategy. The

network is alternately optimized with different inputs of

two steps. Specifically, in the first step, the network inputs

the images to learn an essential ability for lightness adap-

tation. In the second step, we slightly perturb the lightness

of the above input image and solely optimize CSNorm with

other parameters frozen. Since the only variable in the input

images is the lightness condition, CSNorm can adaptively

identify lightness-relevant channels and normalize them ac-

cordingly, thereby exhibiting superior performance in terms

of generalization and discrimination.

In summary, we make the following contributions.

• To our best knowledge, this is the first work that

improves the generalization ability of lightness adaptation

methods in wide-range lightness scenarios.

• We propose CSNorm, which selectively normalizes the

lightness-relevant channels according to their sensitivity to

lightness changes. The model equipped with our CSNorm

can generalize well to unknown lightness conditions while

keeping the reconstruction ability on known lightness con-

ditions.

• An alternate training strategy is meticulously designed

to effectively optimize CSNorm for identifying lightness-

relevant channels.

• We conduct extensive experiments to validate the ad-

vantage and versatility of CSNorm over existing lightness

adaptation methods for improving their generalization in

wide-range lightness scenarios.

2. Related Work
2.1. Lightness Adaptation

As a key step in image restoration [66, 41, 12, 57, 33],

lightness adaptation tasks [58, 23, 64, 19, 1], such as low-

light image enhancement [27, 31, 64, 65, 59, 32, 34], im-

age retouching [29, 63], and inverse tone mapping [35, 7,

61, 24, 61], aim to adjust lightness components (e.g., illu-

mination, color, and dynamic range) from a degraded ver-

sion to a normal version. Low-light image enhancement

aims to improve the visibility and quality of images cap-

tured under low-light conditions. In recent years, various

deep learning-based approaches [31, 65, 59, 32, 43] have

shown promising results in this field. For image retouching,

CSRNet [16] formulates pixel-independent operations by

multi-layer perceptrons (MLPs), which learns implicit step-

wise retouching operations. Inverse tone mapping aims to

translate images from high dynamic range to low dynamic

range. HDRTVNet [7] proposes a multi-stage method to

adjust the global intensity and local contrast step-by-step.

SR-ITM [24] proposes a dynamic filter to jointly learn the

super-resolution and inverse tone mapping with a single net-

work. Although prior works have made significant progress

on lightness adaptation, they inherently tend to overfit the

training data, resulting in poor generalization performance.

Our proposed CSNorm enables the model to generalize

to unknown lightness conditions, which only needs to be

trained with limited lightness conditions and avoids time-

consuming data collection. Besides, its lightweight and

plug-and-play nature allows for easy integration into vari-

ous networks.

2.2. Generalization

A well-generalized model exhibits the ability to infer

meaningful patterns, relationships, and features from its

training data and apply them effectively to new, unseen
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Figure 3: The effect of applying normalization for image recon-

struction. As can be seen, the introduction of instance normaliza-

tion is harmful to image reconstruction.

instances. Various methods have been developed to ad-

dress this problem, including domain generalization [46, 4],

self-supervised learning [60, 28, 11], unsupervised learn-

ing [25], contrastive learning [30], and zero-shot learn-

ing [56]. In this paper, we focus on the generalization

problem of lightness adaptation tasks. Domain generaliza-

tion [46, 4, 20] aims to learn the domain-invariant represen-

tation from multiple source domains which could generalize

well on unseen domains. Existing methods tried to address

it mainly from the dataset synthesis aspect [47, 67] or opti-

mization algorithm aspect [26, 8, 9]. Beyond domain gener-

alization, single domain generalization [42, 10] has gained

interest recently. This task aims to learn the model from one

source domain to get a well generalization ability on other

unseen domains. Following the development trajectory of

domain generalization, methods based on adversarial do-

main augmentation have been proposed. However, our pro-

posed method is distinct from existing approaches in that it

is simple, lightweight, and specifically designed to meet the

lightness adaptation requirements.

2.3. Normalization

Normalization plays an essential role in image process-

ing, especially for lightness-relevant tasks. Formally, nor-

malization subtracts the mean value and is derived by stan-

dard to scale the image in classical image processing. In

deep learning-based methods, normalization serves as a

basic layer [21, 54, 50, 2] with various varieties. Re-

cently works [10, 48, 45, 38] point that normalization has

a good property of generalization for neural networks. BN-

Test [37] calibrats the model under covariate shift at the test

stage. ASR-Norm [10] adapts to each individual input sam-

ple to avoid dependency on the testing samples. Though

normalization has been investigated in high-level vision, it

is rarely explored in the low-level lightness adaptation field.

3. Motivation
Since lightness differs and varies substantially in real-

world captures, the processing of the lightness adaptation

method is significantly variable. Consequently, it is chal-

lenging to directly deploy existing networks for real-world

scenarios, particularly in lightness conditions absent from

the training set. An alternative way is to increase the

dataset’s capacity by creating an enlarged mixed dataset,

including extra lightness conditions for training. However,

the exorbitant cost of the data collection makes it a challeng-

ing proposition to pursue. Furthermore, the mixed dataset

has a greater propensity to cause ambiguity during training,

which might bias the network toward particular lightness

and result in an imbalanced training issue [55].

Normalization has good properties of eliminating

lightness-relevant components [17] and reducing the dis-

crepancy between images [36]. It can effectively lessen

the impact of lightness and competently extract lightness-

independent information, which enables the network to

learn robust representations and improve the generalization

ability. Based on this point, we aim to present a general nor-

malization algorithm to address the generalization problem

for lightness adaptation.

Despite these benefits, normalization is a double-edged
sword for networks due to the inevitable loss of informa-

tion (e.g., statistical characteristics including mean and vari-

ance) [40, 68], resulting in inferior reconstruction perfor-

mance. To comprehend the influence of normalization in-

tuitively, we conduct a self-reconstruction task to illustrate

the information loss induced by normalization. As shown

in Fig. 3, we train two auto-encoder networks separately

with and without inserting the IN [50] operation and we

calculate the relative reconstruction accuracy (i.e., PSNR)

on different images. It is obvious that normalization ruins

the network’s reconstruction ability, and in fact, the harm

of information loss caused by normalization outweighs its

potential benefits in terms of generalization. This motivates

us to design CSNorm to selectively normalize the channels,

concurrently considering the generalization ability and re-

construction accuracy for lightness adaptation.

4. Method
4.1. Overview

Based on the above analysis, we propose a simple yet ef-

fective method as shown in Fig. 4. Particularly, we design
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Figure 4: Overview of our proposed method. (a) Channel selective normalization (CSNorm), which consists of an instance-level normal-

ization module and a differential gating module. (b) Differential gating module. It outputs a series of on-off switch gates for binarized

channel selection in CSNorm. (c) Alternating training strategy. In the first step, we optimize the parameters outside CSNorm to keep an

essential ability for lightness adaptation. In the second step, we only update the parameters inside CSNorm (see (a)&(b)) with lightness-

perturbed images. The two steps drive CSNorm to select channels sensitive to lightness changes, which are normalized in xn+1.

CSNorm (Fig. 4a) to improve the network’s capacity for

generalization, which can be used as a plug-and-play mod-

ule for existing lightness adaptation networks. In CSNorm,

a differentiable gating module (Fig. 4b) is introduced to effi-

ciently select the original and normalized features along the

channel dimension and then combine them to be passed to

the next layer. Such a gating module operates as a de facto

channel-selection function.

Further, we propose an alternating training strategy to

force the gating module to select lightness-relevant chan-

nels, which is driven by performance stability under light-

ness perturbations (Fig. 4c). During the training stage, we

only access one dataset with limited lightness conditions

and train the model equipped with our CSNorm. Once

trained, the model can work directly on other unknown

lightness conditions.

4.2. Channel Selective Normalization

As depicted in Fig. 4a, CSNorm consists of two parts:

an instance-level lightness normalization module for elimi-

nating light-relevant information and a differentiable gating

module for adaptively selecting light-relevant channels.

4.2.1 Instance-level Lightness Normalization

To facilitate the subsequent selection of channels, we nor-

malize the channels and adopt IN as the implementation

to operate precisely on individual instances and channels.

Given a feature x with the shape of H × W × C, IN nor-

malizes x by subtracting the mean value μ(x) followed by

dividing the standard deviation σ(x), which is expressed as

x′ = IN(x) = γ
x− μ(x)

σ(x)
+ β, (1)

where μ(x) and σ(x) are calculated independently across

spatial dimensions for each channel and instance, and

γ, β ∈ R
C are scalable parameters learned from data.

Since IN can reduce the lightness discrepancy among in-

stances [22], the normalized feature x′ has a robust repre-

sentation irrelevant to the lightness conditions, enabling the

network to adapt to various lightness scenarios and improv-

ing its generalization capability.

4.2.2 Differentiable Gating Module

To achieve adaptive channel selection with minimum net-

work modification costs, we introduce a differentiable gat-

ing module for channel selection, which feasibly enhances

the model’s generalization capabilities and mitigates the in-

formation loss caused by normalization. As depicted in

Fig. 4a, the differentiable gating module outputs a series

of binary indicators to combine the normalized and original

channels, which can be expressed as

xn+1 = (1− g)� xn + g � x′
n. (2)

where g represents the binary indicators across the channel

dimension, and � is the channel-wise multiplication. The

gating operation activates or deactivates the channels by the

binary indicators to normalize channels selectively. Conse-

quently, the generated feature xn+1 eliminates the effects

of lightness to obtain an invariant representation for gen-

eralization, and retains the essential information with un-

changed channels for accurate reconstruction.
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Specifically, the gating operation is expected to be differ-

entiable and capable of biasing the output to zero or one for

channel selection. Inspired by the pruning methods sam-

pling the filters [62], we construct the gating module as

g = G(αx) =
α2
x

α2
x + ε

, (3)

where αx ∈ R
C is an intermediate vector generated from

the feature x, and ε is a small positive number. Specifically,

to obtain αx, we first employ adaptive pooling to shrink the

spatial size of x to a single pixel, followed by several fully-

connected layers with ReLU activations (Fig. 4b).

When αx = 0, it is obvious that G(0) = 0; when

αx �= 0, we can infer that G(αx) ≈ 1 since ε is small

enough. This function transforms αx to a value close to one

or zero, resulting in an on-off switch gate without requir-

ing additional manual threshold design. Moreover, lever-

aging its differentiable character, we design an alternat-

ing optimization strategy (Sec. 4.3) to adaptively select the

lightness-relevant channels.

It is worth noting that, the gating module can easily fall

into a trivial solution that keeps all the channels unchanged

to preserve the reconstruction accuracy, since the output of

the function can easily be one (when αx �= 0 ). Conse-

quently, we make g to directly multiply with normalized

channels x′ in Eq. 2, pushing the network to prefer nor-

malized channels to keep an elegant balance between the

model’s generalization ability and the discrimination of fea-

tures for reconstruction.

4.3. Alternating Training Strategy

4.3.1 Training Strategy

We propose an alternating training strategy, as illustrated

in Fig. 4c, to locate lightness-relevant channels in CSNorm.

The rationale behind our strategy is that, by slightly perturb-

ing the lightness condition of the input images, CSNorm

is forced to locate and filter out lightness-relevant channels

to achieve optimal performance on both original and per-

turbed images. Specifically, the strategy alternately opti-

mizes the network on the original dataset to learn an essen-

tial ability for lightness adaptation, and optimizes CSNorm

with slightly perturbed input images to identify lightness-

relevant channels. This ensures that CSNorm can efficiently

normalize lightness-relevant channels, exhibiting superior

performance in both generalization and discrimination.

To optimize the network, we separate its parameters into

two groups based on whether they belong to CSNorm, and

use different loss functions to update them, as shown in

Fig. 4c. In the first step, we input the original image and

update parameters outside CSNorm by minimizing the loss

function

L1 = |ô1 − ogt|2, (4)

where ô1 is the output image of the network and ogt is the

FFT

IFFT
FFT

Output

Linear 
Blending

(b) Frequency-based Perturbation

Linear 
Blending

(a) Image-based Perturbation

Figure 5: Comparisons of lightness perturbations. Our frequency-

based perturbation captures the essential component of lightness,

while avoiding interfering with other image components such as

structural information.

ground-truth image. By doing so, the network’s essential

lightness-adaptation capability is maintained and all chan-

nels are preserved in their natural state.

In the second step, we perturb the lightness of the input

image (Sec. 4.3.2) and fix the parameters outside CSNorm.

In other words, we only update the parameters in CSNorm,

by minimizing the loss function

L2 = |ô2 − ogt|2 + |A(ô2)−A(ogt)|2, (5)

where ô2 is the output, and A reprensents the amplitude in-

formation in frequency domain. This enables CSNorm to

adaptively select the lightness-relevant channels to keep the

performance on perturbed images. In particular, since light-

ness is related to magnitude in the frequency domain [18],

we add the amplitude loss |A(ô2)−A(ogt)|2 in Eq. 5 to al-

low the network to focus more on lightness information and

effectively select lightness-relevant channels.

The two steps are alternately optimized by the above two

objectives, and the overall optimization function is given by

L = Lori + δLamp, (6)

where δ is a balance factor.

4.3.2 Lightness Perturbation

As previously discussed, in order to automatically identify

lightness-relevant channels during training, we need to per-

turb the lightness component of input images. These pertur-

bations should capture the essence of lightness adaptation,

while avoiding interfering with other image components

such as structural information. To achieve this, we propose

a frequency-based perturbation scheme that linearly inter-

polates the amplitudes of two images, since amplitude in-

formation contains more lightness information [18] that can

prevent augmentation artifacts (Fig. 5).

Taking the low light enhancement task as an example,

we define the low light and normal light images as ol and
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Figure 6: Visual results of generalized low-light image enhancement on Huawei [15] and LOL [53] datasets. The models are trained on

one dataset (LOL [53] or Huawei [15] dataset) and tested on the other (Huawei [15] or LOL [53] dataset). Equipped with our CSNorm, the

generalization abilities of base networks (DRBN [59] and NAFNet [6]) are significantly improved.

Table 1: Quantitative results of low-light image enhancement methods on synthetic lightnesses in terms of PSNR and SSIM.

Method
LOL [53] Huawei [15]

original interp scale average original interp scale average

CLANE [44] 12.77/0.5703 13.56/0.5852 13.39/0.5806 13.24/0.5787 13.29/0.4399 17.43/0.7220 14.51/0.4202 15.08/0.5274

LIME [14] 17.18/0.6130 17.49/0.9028 17.47/0.8188 17.38/0.7782 17.09/0.5932 15.03/0.7860 16.78/0.5778 16.30/0.6523

RetinexNet [53] 16.77/0.5393 15.02/0.7870 16.33/0.5043 16.04/0.6102 16.65/0.5010 13.12/0.5282 16.54/0.4693 15.44/0.5495

ZeroDCE [13] 15.47/0.6521 16.35/0.7432 15.96/0.6747 15.92/0.6900 12.53/0.4215 8.26/0.5539 11.33/0.4022 10.70/0.4592

LLFlow [51] 24.93/0.8922 18.32/0.9177 23.12/0.8901 22.12/0.9000 20.11/0.6645 12.97/0.7122 18.11/0.6381 17.06/0.6716

SID [5] 20.52/0.8382 15.12/0.7994 19.47/0.8305 18.37/0.8227 18.64/0.6251 12.15/0.6687 18.05/0.6011 16.28/0.6316

SID-CSNorm 21.11/0.8312 16.63/0.8130 20.80/0.8341 19.52/0.8194 18.86/0.6128 12.77/0.6508 18.23/0.6114 16.62/0.6250
DRBN [59] 20.75/0.8426 17.43/0.8745 20.15/0.8673 19.44/0.8614 18.80/0.6449 11.73/0.6797 17.58/0.6303 16.04/0.6516

DRBN-CSNorm 21.05/0.8533 18.52/0.8822 20.64/0.8737 20.09/0.8697 18.81/0.6465 14.87/0.7285 18.74/0.6383 17.47/0.6711
NAFNet [6] 23.02/0.8498 17.21/0.8733 20.22/0.8702 19.48/0.8846 19.07/0.6483 12.53/0.6822 17.75/0.6125 16.45/0.6476

NAFNet-CSNorm 23.10/0.8544 18.75/0.8836 20.97/0.8767 20.27/0.6476 19.26/0.6492 15.02/0.7325 18.81/0.6410 17.69/0.6742

onorm, and their Fourier representations as Ol and Onorm.

We linearly combine the amplitude components of Ol and

Onorm as

A(Ôl) = λA(Ol) + (1− λ)A(Onorm), (7)

where A represents amplitude information and λ ∈ [0, 1]
is randomly sampled. Then the perturbed image ô is recon-

structed through an inverse Fourier transformation F−1 as

ô = F−1(A(Ôl),P(Ol)), where P is phase information.

As shown in Fig. 5, our frequency-based perturbation

mitigates the influence of other factors in the image, such

as structure and noise, and focuses more on the lightness it-

self. The perturbed and original images are used as inputs

for different training steps to optimize CSNorm, enabling

CSNorm to purposely select the lightness-relevant channels

thereby enhancing the network’s generalization ability.

5. Experiments
We do comprehensive evaluations on low-light image

enhancement, inverse tone mapping, and image retouching

to demonstrate the efficacy of our CSNorm.

5.1. Low-light Image Enhancement

Settings. We conducted experiments on the Huawei [15]

and LOL [53] datasets. Representative methods such as

CLANE [44], LIME [14], RetinexNet [53], LLFlow[51],

and ZeroDCE [13] are used for comparison. We select

Table 2: Quantitative results of low-light image enhancement

methods across datasets in terms of PSNR and SSIM.

Train / Test Huawei / LOL LOL / Huawei

CLANE [44] 10.25/0.5602 11.11/0.4152

LIME [14] 15.25/0.7994 15.20/0.5321

RetinexNet [53] 15.35/0.5102 15.32/0.4855

ZeroDCE [13] 15.01/0.5974 12.25/0.4194

SID [5] 17.93/0.7159 16.10/0.5689

SID-CSNorm 18.33/0.7725 17.31/0.6105
DRBN [59] 18.10/0.8033 15.21/0.5477

DRBN-CSNorm 18.65/0.8105 17.42/0.6122
NAFNet [6] 19.05/0.7901 17.02/0.6002

NAFNet-CSNorm 19.63/0.8322 17.53/0.6257

SID [5], DRBN [59], and NAFNet [6] as base networks

and integrate our CSNorm into them. The peak signal-to-

noise ratio (PSNR) and structural similarity index measure

(SSIM) are used as evaluation metrics.

We conduct experiments in synthetic and realistic set-

tings. For the synthetic setting, we simulate two input light-

ness conditions, i.e., interp: the input image is interpolated

by the original low-light and ground-truth images (weight

is 0.5), and scale: the input image x is manipulated as

x′ = Λxη (η = 1.1,Λ = 1.2). For the real-world setting,

we use LOL [53] and Huawei [15] for cross-validation. The

model is trained on one dataset and tested on the other.

Results. Table 1 compares the performance of our pro-

posed method (name with -CSNorm) and baseline meth-
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Figure 7: Visual results of the generalized inverse tone mapping on Kim et al. [24] and HDRTVNet [7] datasets. The models are trained

on one dataset (Kim et al. [24] or HDRTVNet [7] dataset) and tested on the other (HDRTVNet [7] or Kim et al. [24] dataset). The colors

of results seem light-colored since they are visualized in the standard Rec.2020 color space.

Table 3: Quantitative results of inverse tone mapping methods on synthetic lightnesses in terms of PSNR and SSIM.

Method
Kim et al. [24] HDRTVNet [7]

original interp scale average original interp scale average

CSRNet [16] 32.22/0.9472 26.74/0.9545 27.43/0.9282 28.79/0.9433 36.01/0.9717 29.22/0.9764 27.93/0.9417 31.05/0.9632

CSRNet-CSNorm 32.53/0.9496 27.14/0.9562 27.83/0.9301 29.16/0.9453 36.15/0.9730 29.46/0.9766 28.15/0.9428 31.25/0.9641
AGCM [7] 32.44/0.9482 26.87/0.9551 27.51/0.9297 28.94/0.9443 36.25/0.9733 29.36/0.9767 27.98/0.9418 31.19/0.9639

AGCM-CSNorm 32.61/0.9501 27.26/0.9573 27.91/0.9322 29.26/0.9465 36.31/0.9734 29.57/0.9781 28.26/0.9433 31.38/0.9649

ods on Huawei and LOL datasets. While previous meth-

ods achieve good results on original low-light conditions,

they have a poor generalization ability on unknown light-

ness conditions. In contrast, our methods exhibit superior

generalization ability, outperforming corresponding back-

bones by over 0.6dB on the two datasets. Our CSNorm also

keeps the performance on original low-light images. Note

that our objective is to improve the initial network rather

than achieve state-of-the-art performance.

Table 2 shows generalization performance across differ-

ent datasets. It can be seen that, previous methods tend to

overfit the training dataset and have poor abilities for gen-

eralization. Our CSNorm improves the performance of all

base networks, which greatly enhances their generalization

abilities on unknown lightness conditions. We also show

qualitative results in Fig. 6. Even though there is a large dis-

crepancy between training and testing images (two datasets

are separately captured with different lightnesses), the base

networks equipped with CSNorm produce visually pleasing

results on unknown lightness conditions.

5.2. Inverse Tone Mapping

Settings. We perform inverse tone mapping using CSR-

Net [16] and AGCM [7] as base networks, where we deepen

the AGCM We use HDRTVNet [7] and Kim et al. [24] for

training and testing. We conduct experiments on the orig-

inal, the interpolated, and the scaled lightness conditions

same as Sec. 5.1.

Results. Table 3 shows the quantitative results on the

synthetic lightness conditions. CSRNet and AGCM have

Table 4: Quantitative results of inverse tone mapping methods us-

ing realistic datasets in terms of PSNR and SSIM.

Train / Test Kim et al. / HDRTVNet HDRTVNet / Kim et al.
CSRNet [16] 33.47/0.9642 31.06/0.9501

CSRNet-CSNorm 34.02/0.9677 31.35/0.9523
AGCM [7] 33.52/0.9651 31.22/0.9512

AGCM-CSNorm 34.11/0.9687 31.67/0.9539

good performances on original SDR frames but perform

poorly when the lightness condition changes. In contrast,

CSRNet-CSNorm and AGCM-CSNorm, which only add

our CSNorm to base networks, achieve well performances

on unknown lightness conditions. We also show real-world

results in Table 4 and Fig. 7. The results demonstrate that

our CSNorm has a strong generalization ability across dif-

ferent lightness conditions. It is worth noting that, CSNorm

does not affect the performance of the original SDR frames,

which confirms that the selected channels only affect the

lightness-relevant information without altering the overall

data distribution.

5.3. Image Retouching

Settings. We adopt MIT-Adobe FiveK [3] for training and

testing. The experiments are conducted on lightness condi-

tions as Sec. 5.1. We select CSRNet [16], DRBN [59], and

NAFNet [6] as base networks to plug our CSNorm.

Results. We show the quantitative results in Table 5. It

can be seen that, the base network (CSRNet) has a good per-

formance on the original image but suffers from poor gen-

eralization ability. Its performance drops about 5dB when

lightness changes from the original one to the interpolation

10674



Input CSRNet [16]

Ground Truth

CSRNet-CSNorm

NAFNet [6] NAFNet-CSNorm
Figure 8: Visual comparisons of the generalized image retouching

on the MIT-Adobe FiveK [3] dataset. The models are trained on

the original dataset and tested on the scaled lightness condition.

Table 5: Quantitative results of image retouching methods on syn-

thetic lightnesses in terms of PSNR and SSIM.

Method original interp scale average

DRBN [59] 22.11/0.8622 23.54/0.8757 20.51/0.8544 22.05/0.8641

DRBN-CSNorm 22.43/0.8679 23.97/0.8792 20.68/0.8561 22.36/0.8677
CSRNet [16] 23.52/0.8865 24.69/0.8943 22.76/0.8651 23.65/0.8823

CSRNet-CSNorm 23.41/0.8838 25.34/0.9026 22.85/0.8676 23.86/0.8846
NAFNet [6] 23.71/0.8901 24.77/0.8966 22.85/0.8685 23.82/0.8850

NAFNet-CSNorm 23.54/0.8922 25.40/0.9033 22.97/0.8690 24.03/0.8881

Table 6: Quantitative results of normalization methods, where the

models are trained on the LOL [53] dataset and tested on the

Huawei [15] dataset.

Method DRBN-BN DRBN-IN DRBN-BIN DRBN-CSNorm

PSNR/SSIM 16.05/0.5537 16.98/0.5821 17.11/0.5817 17.42/0.6122

one. Based on CSRNet network, our method (CSRNet-

CSNorm) remarkably improves the original model’s aver-

age capability by over 1 dB, which demonstrates CSNorm’s

powerful generalization ability. We also show the visual re-

sults in Fig. 8.

6. Analysis
Feature visualization. We visualize the selected channels

to demonstrate our CSNorm can effectively enhance the

model’s ability to generalize to different lightnesses. We

show the selected channels (i.e., lightness-relevant chan-

nels) in Fig. 10. It can be seen that, the channels extracted

from different lightness conditions have different character-

istics, which may lead to poor generalization ability. Our

CSNorm selects this channel and normalizes it, which sub-

stantially produces lightness-independent information for

generalization.

Comparisons to other normalizations. We compare our

CSNorm with conventional normalization techniques, in-

cluding Batch Normalization (BN) [21], Instance Nor-

malization (IN) [50], and Batch Instance Normalization

DRBN-BNInput & GT

DRBN [59]DRBN-BIN DRBN-CSNorm

DRBN-IN

(a) The models are trained and tested on the LOL [53] dataset.

DRBN [59]DRBN-BIN DRBN-CSNorm

DRBN-BNInput & GT DRBN-IN

(b) The models are trained on the LOL [53] dataset and tested on the

Huawei [15] dataset.

Figure 9: Ablation study on normalization techniques. (a)

CSNorm keeps the base network’s ability. (b) CSNorm can gener-

alize to other unknown lightness conditions.

(BIN) [38], by plugging them into DRBN [59]. Since the al-

ternating strategy is specially designed for our CSNorm and

may be harmful to conventional normalization techniques,

we train BN, IN, and BIN only with the data perturbation.

We show the quantitative and qualitative results in Table 6

and Fig. 9, respectively. Compared with conventional nor-

malization techniques, our CSNorm effectively keeps the

performance on the known lightness condition and has a

well generalization ability to unknown lightness conditions,

which avoids unsatisfied artifacts.

Training strategy and data perturbation. We take ab-

lation studies on training strategy and data perturbation.

For the training strategy, we replace the alternating train-

ing strategy with the mixed training strategy, where the net-

work is trained by mixing original and perturbed data. For

the data perturbation, we replace the frequency-based per-

turbation with linearly blending the input images and the

ground truth images. These aforementioned ablation exper-

iments are conducted on the LOL [53] dataset and tested on

the Huawei [15] dataset. As shown in Table 7, the alter-

nating training strategy gets a better performance compared

with mixed training, while our frequency-based data pertur-

bation improves the model’s generalization, demonstrating
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Before Normalization After NormalizationInput

Figure 10: Visualization of lightness-relevant channels. The chan-

nels are adaptively selected by our CSNorm.

Table 7: Ablation study on training strategy and data perturbation.

Training strategy Mixed Alternating

Data perturbation Linear Amp Linear Amp (ours)

DRBN [59] 14.35/0.5526 14.10/0.5382 - -

DRBN-CSNorm 16.79/0.5950 16.81/0.5972 17.15/0.6097 17.42/0.6122

Table 8: Experiment results of exposure correction in terms of

PSNR (dB) and SSIM.

Method ME [1] Exp0 Exp6

DRBN [59] 19.65/0.8292 18.10/0.7843 13.43/0.7339
DRBN w/o ATS 21.31/0.8345 18.59/0.7321 15.47/0.7917
DRBN w/ ATS 21.63/0.8396 18.98/0.7673 16.31/0.7928

Table 9: Experiments on lightness-only datasets.
Train / Test LOL / LOL LOL / Huawei Huawei / Huawei Huawei / LOL

DRBN [59] 20.98/0.8922 15.13/0.5778 18.94/0.6517 18.76/0.8190

DRBN-CSNorm 24.33/0.8998 17.40/0.5883 19.10/0.6505 19.15/0.8255

the effectiveness of our design. Simply training CSNorm

with a diverse range of lighting conditions images cannot

effectively identify the lightness-relevant channels due to

the influence of content, which is detrimental to the light-

ness generalization. We conduct experiments on the ME

dataset [1] (Table 8). It can be seen that, without the alter-

nating training strategy (ATS), the network cannot general-

ize well to unknown lightness conditions (Exp0 and Exp6

are unknown lower and higher lightness).

Parameters. Our proposed CSNorm is lightweight that

can be plugged into existing networks with nearly no pa-

rameter increase, which avoids the heavy storage cost. For

example, given a feature with 64 channels, our CSNorm

just requires 16.5k parameters to identify and normalize

lightness-relevant channels, owing to the gating module and

the affine transformation in normalization. The CSNorm’s

number of parameters grows linearly with the number of

channels.

Evaluation on known lightness-only datasets. To fur-

ther demonstrate the effectiveness of our CSNorm, we con-

duct experiments on lightness-only datasets. We transform

the color image into Ycbcr color space and use the Y chan-

nel since it represents the luminance or lightness informa-

tion. Experiment results in Table 9 show that our method

can effectively enhance generalization ability without sacri-

ficing the discrimination of the features.

Amplitude-related information. Amplitude-related in-

formation has been proven related to the lightness com-

ponents in previous works [18]. We implicitly utilize the

amplitude-related information as a detailed lightness pertur-

bation manner in the alternating training strategy, enabling

CSNorm to identify the lightness-related channels. Thus,

this amplitude-based lightness perturbation is orthogonal

to CSNorm and its format is not introduced into CSNorm.

Note that other lightness perturbation manner can also drive

CSNorm’s training, e.g., linear interpolation in Table 7,

while our adopted amplitude-based lightness perturbation

experimentally achieves higher performance.

7. Conclusion and Discussion

In this work, we propose CSNorm, a novel normaliza-

tion technique customized for generalized lightness adap-

tation. It purposely normalizes lightness-relevant channels

while keeping other channels unchanged, which empowers

existing lightness adaptation methods with the generaliza-

tion ability to wide-range lightness scenes. Except for the

sufficient generalization ability on the unknown lightnesses,

CSNorm keeps the reconstruction accuracy on the known

lightness. The proposed CSNorm is architecture-agnostic

which we validate, making it simple, lightweight, and plug-

and-play. Extensive experiments on multiple tasks and

benchmark datasets verify the effectiveness of our proposed

CSNorm to enhance the generalization of existing lightness

adaptation methods. We believe our method would inspire

more valuable generalization methods for lightness adapta-

tion, and holds potential for application in other tasks.

Despite the promising preliminary results, there are still

some real-world conditions that have not been considered in

this paper. For images with no discernible details or high-

level noise levels, it is indeed challenging for our CSNorm

due to the loss of necessary information. However, our

lightweight and plug-and-play design may enable it to hand-

ily collaborate with other methods, either by inserting or

by following inpainting or denoising networks. Moreover,

we believe there is great potential to explore more robust

data perturbation methods, e.g., Retinex model-based light-

ness decomposition, to further uncover the capabilities of

our method.
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