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Abstract

We propose TextManiA, a text-driven manifold aug-
mentation method that semantically enriches visual feature
spaces, regardless of class distribution. TextManiA aug-
ments visual data with intra-class semantic perturbation by
exploiting easy-to-understand visually mimetic words, i.e.,
attributes. This work is built on an interesting hypothesis
that general language models, e.g., BERT and GPT, encom-
pass visual information to some extent, even without training
on visual training data. Given the hypothesis, TextManiA
transfers pre-trained text representation obtained from a
well-established large language encoder to a target visual
feature space being learned. Our extensive analysis hints
that the language encoder indeed encompasses visual infor-
mation at least useful to augment visual representation. Our
experiments demonstrate that TextManiA is particularly
powerful in scarce samples with class imbalance as well as
even distribution. We also show compatibility with the label
mix-based approaches in evenly distributed scarce data.

1. Introduction
Learning models, e.g., neural networks, are known to

perform well on visual recognition tasks when training
and testing datasets present similar distributions [4]. How-
ever, their performance often degrades considerably when
evaluated in subtly different distributions [69]. One effec-
tive way to enhance the generalization ability of a model
against such data distribution shifts would be data augmenta-
tion [18, 86, 85, 44, 41, 73]. Augmenting data enlarges the
support of the training distribution formed by given samples
and yields the effect of increasing the amount of data even
without additional laborious data collection. By training on
augmented data, decision boundaries are smoothed, and the
generalization ability of the model is improved [73].

There has been a distinctive and successful line of re-
search for label mix-based data augmentation, such as
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Figure 1. Illustration of TextManiA. Our method augments the
target visual feature by leveraging text embedding of the visu-
ally mimetic words, which are comprehensible and semantically
rich. For example, when the text of the existing class “bull” is
manipulated as “red bull” by adding the attribute “red,” we can get
augmented visual features by reflecting the difference of text em-
beddings. In this way, TextManiA densifies sparse visual feature
space using various attributes text.

Mixup [86], CutMix [85], and manifold Mixup [73], which
are effective for model generalization and calibration [25].
The effectiveness of those label mix-based approaches is at-
tributed to semantic perturbation by label mixing [86, 73, 85].
This is a distinctive property from other lines of data aug-
mentation methods, e.g., [74, 44, 41, 64, 13], where they syn-
thesize diverse virtual data that appear differently but retain
class semantics of original contents. However, we found that
the performance of mix-based augmentation methods is no-
ticeably degraded when training with skewed class distribu-
tion having scarce samples for non-major classes, i.e., long-
tailed distribution. In real-world, data often exhibit long-
tailed class distribution (e.g., Pareto distribution), which
cannot be dealt with the prevalent mix-based approaches.
This motivates us to seek a semantically rich data augmenta-
tion effective for limited data regimes, including long-tailed
distribution, scarce data, and few-shot cases.

In this work, we propose TextManiA, a text-driven man-
ifold augmentation for visual features, which is effective for
long-tail classes and scarce data. Our TextManiA is based
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on an interesting hypothesis that general language models,
e.g., BERT [17] and GPT [55], have learned visual informa-
tion to some extent that can be transferred to visual feature
spaces even with no visual training data. With this hypoth-
esis, we semantically enrich the target visual feature space
to be trained by leveraging visually mimetic texts, encoded
with general language models and transferred to the target
space. Specifically, TextManiA encodes meaningful at-
tributes such as “red” and “large” to vectors by computing
the difference between text embeddings with and without
attributes. We add the attribute embeddings to target visual
features to mimic those attributes on the target visual fea-
ture space. Figure 1 illustrates the augmentation process of
TextManiA. The input feature (e.g., the visual feature of
“bull”) is manipulated by adding the attribute vector induced
by the attribute text (e.g., “red”), which yields the augmented
visual feature (e.g., “red bull”). Thanks to the text modality
properties, the augmentations generated by TextManiA are
symbolic, human-interpretable, and easily controllable.

Our approach applies semantic perturbation on a different
level to that of the label mix-based methods [86, 73, 85]. The
mix-based methods augment a sample from a combination
of two different class samples, i.e., applying semantic pertur-
bation in an inter-class way. This further aggravates the class
imbalance problem in the long-tailed (skewed) class distri-
bution cases.1 Our TextManiA, whereas, perturbs data
in an intra-class way. A sample per each class is selected,
and we enrich the semantic granularity of the class using
the sample, thus enabling us to better maintain the amount
of augmentation balances in the long-tailed class distribu-
tion cases. Moreover, TextManiA can densify around the
training samples by extrapolating the class semantics along
augmented semantic attribute axes. With this, our method
can be combined with the label mix-based methods to further
improve performance in evenly distributed sparse data cases
because they are complementary.

To empirically support that our attribute vectors trans-
formed from text embeddings are reasonably designed, we
devise two visualization-based analyses: with t-SNE [72]
and a latent inversion technique. These demonstrate that
attribute vectors lead to visually interpretable manifold aug-
mentation of input. We also evaluate our method with
two different tasks in scarce data regimes: few-shot object
detection and image classification with deficient datasets
and long-tail datasets. Our experiments demonstrate that
TextManiA is an effective and model-agnostic data aug-
mentation method, especially in scarce data cases, by ex-
ploiting the favors of zero-shot attributes. Also, additional
studies show the versatility and compatibility of the design
of TextManiA. Our key contributions are summarized as:

1For example, if data size of major classes is 10 times larger than minor
classes, the probability of choosing a pair of source samples from the
major classes is approximately 100 times more than that of minor classes.

• We propose TextManiA, which enriches the visual fea-
tures by conveying attribute information from the text
embedding to the target visual feature space.

• We validate our hypothesis of the existence of embedded
visual knowledge in pre-trained language encoders despite
no training on visual data.

• We demonstrate that TextManiA is especially helpful in
augmenting sparse samples in long-tail class cases.

• We show that our TextManiA is complementary to other
augmentation methods, and in particular, the combination
of our TextManiA and manifold Mixup [73] noticeably
improves the performance in deficient data cases.

2. Related Work
We brief the related work in the following three perspec-

tives: image data augmentation, foundation models, and
target application tasks. In this work, our TextManiA
augments data by leveraging the text encoder of CLIP [54],
BERT [17], or GPT-22 [55]. For main target applications, we
focus on long-tail and small data classification and few-shot
object detection tasks in the data-scarce regimes.
Image Data Augmentation. Image data augmentation
can be largely divided into whether semantic perturbation
exists. Semantic perturbation, in specific, can be further
split into methods with or without label mixing. Meth-
ods [18, 66, 57, 2, 24, 5, 30, 74, 44, 1, 41, 64, 13, 12] without
semantic perturbation, which have no label change, contain
primitive image processing and transformation operations.
This includes photometric (e.g., color jitter, contrast, blur,
noise, etc.) and geometric (e.g., horizontal reflection, rota-
tion, etc.) operations, and advanced augmentations, includ-
ing Cutout [18] and adaptive combinations [13, 12].

In contrast, Mixup [86], CutMix [85], and manifold
Mixup [73] execute semantic perturbation along with label
mixing. Mixup interpolates two whole input images pixel-
wisely, CutMix interpolates a partial region of an image
with another, and manifold Mixup mixes features from the
images. These mix-based methods also augment labels
of samples by an inter-class semantic perturbation, where
labels of two different class samples are mixed. While the
mixed label is known to be effective for generalization and
model calibration effects [25], we found that the mix-based
methods are heavily affected by class distribution due to
sampling from two sources; thus, their effect is restricted to
evenly distributed datasets. For datasets with skewed class
distributions with tails, the sampling probabilities between
major and minor classes would significantly differ, which
can exaggerate biased sampling to major classes and makes
minor classes more minor.

2GTP-2 is the decoder-only architecture, but we use it as a text embedding
extractor, so we call it text-encoder.
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Our TextManiA, on the other hand, is applied to all of
the given samples uniformly regardless of class distribution.
TextManiA densifies around the sample features by per-
turbing and enriching the semantic meaning of them at an
intra-class level, which does not change the label. More-
over, because of the different semantic granularity of per-
turbation between TextManiA (intra-class) and mix-based
methods (inter-class), two methods can be used complemen-
tarily when class imbalance does not exist.
Foundation Models. Recent foundation models [84, 54,
43, 33, 56, 17, 55] have shown a successful case of reflect-
ing human nuances with visually imitated word composition.
Particularly, language models, e.g., BERT [17] and GPT [55],
show their ability not only in language tasks [78] but also in
vision-language multi-modal tasks [62, 22]. Contrastive
Language-Image Pretraining (CLIP) [54] also achieves
huge success in various tasks even in zero-shot recogni-
tion. Follow-up studies show that CLIP representation is
effective in conducting other visual tasks by bridging vision
and language, e.g., 2D image generation [23, 39, 35, 49],
image manipulation [51, 35] and synthesis [21], and even
3D domain tasks [83, 32, 47].

In TextManiA, we focus on estimating attribute fea-
tures by exploiting BERT, GPT-2, or CLIP text encoder
alone. Distinctively, we only transfer the estimated attribute
feature to augment visual features in a different space, which
makes our work different from knowledge distillation [29] of
foundation models [15, 76, 63]. Rather, our design is an in-
stance of the module neural network structure [27, 3], where
recent module-based designs procedurally train the whole
model module-by-module with the guidance of the well pre-
trained module, e.g., [38, 60, 50, 68, 26]. Also, our work is
applicable agnostically to architectures; thus, more flexibly
applicable than fine-tuning of foundation models [77].
Long-tail Classification. In real world, visual data fol-
low a long-tailed distribution which induces class imbalance
and leads to performance degrading [81]. A representative
line of the methods for long-tail classification is rebalanc-
ing [7, 14, 58], which resamples data or reweights the loss
for tail classes. However, improvement in performance of
the tail classes comes with the sacrifice of head class per-
formance. Note that TextManiA densifies all the given
samples regardless of the class imbalance, and whereby the
model is trained with reasonable variations of training sam-
ples for every class at least, which improves the performance
while minimizing sacrifice of the head class.
Few-Shot Object Detection (FSOD). We tackle FSOD,
one of the sparse sample problems, to demonstrate the ef-
fectiveness of TextManiA and its model architecture ag-
nostic property. FSOD handles novel object classes after
the base training for object detection tasks. The model
rapidly adapts to novel classes using few data by matching-
based [42, 9, 79] or fine-tuning based [31, 67, 75, 53, 82]
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Figure 2. Overview of TextManiA. Given flower image I0 and
class “flower” T0, we construct the variant text T1 by adding the
attribute “red” on T0. Embeddings of T0 and T1 are computed
with text encoders, e.g. CLIP [54], BERT [17], or GPT-2 [55] and
their difference vector, ∆0→1 = eT1 − eT0 is added to the image
feature fI0 after projection proj(·) and weight α. We make the
target feature space semantically rich and plausible by adding the
difference vector, which embeds interpretable information.

methods. TextManiA is evaluated with the fine-tuning-
based FSOD approach [75], which facilitates to use general
model architectures.

3. TextManiA
In image classification, the class label is typically utilized

only as a supervision for measuring the loss. We, instead,
propose to treat the class label as additional information, the
text describing the class, and derive semantic information
from it. However, class label as a text description itself is
too coarse to represent rich semantics within a class. For
example, a class label “dog” does not represent all the details
of the description such as “small size of the brown colored
dog.” To enrich the detailed semantics over the given coarse
class texts, we leverage the attribute words, such as “small
size” and “brown colored,” that can visually modify objects
in images at the semantic level.

3.1. Main Idea

The main idea of TextManiA is to densify distribution
around sparse training samples on the target feature space,
making it semantically rich through the difference vectors
having plausible attribute information, as depicted in Fig. 1.
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Figure 2 illustrates how TextManiA augment data. Sup-
pose we have an image I0 and corresponding class label T0.
The model generally learns the target task using the image
I0 as an input and the class label T0 as supervision. In this
work, we also consider the class label T0 as text information
and extract the embedding vector eT0

∈ Rdc using text en-
coder, e.g., CLIP [54], BERT [17], or GPT-2 [55], where dc
is the text embedding dimension. For obtaining an embed-
ding vector eT0

, we use the text embedding of the encoder
output directly when using CLIP text encoder, or use the
average vector of all the embeddings of the sentence when
using other language models such as BERT or GPT-2.

Specifically, text input T0 is formed with class name
and pre-defined prompts, such as “a photo of,” “a picture
of,” and “a sketch of.” We also synthesize another text
input variant T1 by adding color or size attribute words,
such as “red” and “big,” and compute the embedding vector
eT1 ∈ Rdc . Numerous variants can be created with various
attribute words and their combinations, but we explain the
case of one variant for convenience. Based on the word
vector analogy3 [48], we hypothesize that the relationship
between T0 and T1 is maintained in the text embedding
space, i.e., the difference vector ∆0→1 = eT1

− eT0
would

contain the information of added attributes (this hypothesis is
validated in Sec. 3.2). To exploit the difference vector from
text embeddings, we design our method on the manifold.

We can obtain such diverse attribute vectors from various
attribute text templates; however, their representation space
is not directly related to the visual feature space of the target
model we are interested in. To bridge the gap, we project the
difference vector to the target feature space with a learnable
linear projection layer proj(·). Then, we add the projected
difference vector to the target image feature fI0 ∈ Rdt ob-
tained from the target task encoder with the input image I0,
where dt is the target feature space dimension. A linear layer
for proj(·) would be sufficient to transfer cross-modal in-
formation, referring to the cross-modal transferability under
the contrastive learning case [87] and our experiments.

To inject the stochasticity, a mixing weight α ∈ R is
introduced and randomly sampled from the clamped Nor-
mal distribution in the range over 0.1. Then, we have the
augmented feature vector f̂I0 as,

f̂I0 = fI0 + α · proj(∆0→1). (1)

For the cases having dt = dc, we can set proj(·) operation
to be an identity mapping without any learnable parameter.

We train the target task model with this augmented feature
vector, whose class label is still T0. We note that computing
difference attribute vectors with text encoder is computation-
ally expensive. For efficient training, we pre-compute all
possible combinations of difference vectors {∆} and store
3It was shown that simple algebraic operations can be performed on the
word vectors, e.g., king - man + woman ≈ queen on the embedding space.

Label Mix TextManiA TextManiA + Label Mix

Figure 3. Comparison of a typical label mix-based augmentation,
TextManiA, and their combination, in a sparse data case. Given
two samples for two classes, the augmented samples by a label mix-
based method are at points lying on six lines resulting from the com-
binations of samples, i.e., inter-class perturbation. TextManiA
densifies the sample distribution along semantic attribute axes in
an intra-class. The combination of them yields synergy of their
respective advantages.

them in a look-up table because class names and attributes
can be pre-determined and unchanged during training.

Different from knowledge distillation [15, 76, 63, 29, 36],
TextManiA does not transfer-learn the text embeddings
directly. Instead, the difference vector projected onto the
target domain is injected into the target model, allowing
our method to be applied to arbitrary target models. Since
the visual feature augmentation is solely controlled by text,
TextManiA is human-interpretable and easily controllable.

Compared to label mix-based augmentations [86, 73, 85],
TextManiA has advantages in imbalanced data distribu-
tion. We suppose a scenario where few samples are in one
class and many samples are in another class. The augmented
points by a mix-based method would be located only on the
interpolation lines between the given samples, which limits
the augmentation effects, as depicted in Fig. 3. If we apply a
mix-based method in the long-tailed class distribution cases,
i.e., notably skewed distribution, the class imbalance prob-
lem is further aggravated, and augmentation is more biased
toward major classes. In contrast, TextManiA can equally
densify all the given samples since it augments each sample
independently. Thus, TextManiA can be used in general
regardless of the imbalance factor of class distribution.

On the other hand, in another scenario with small training
data but with uniform class distribution, both TextManiA
and mix-based methods would increase diverse combinations
of samples by augmentation in respective aspects, which
leads to complementary performance improvement. This
will be empirically demonstrated in Sec. 4.

3.2. Characteristics of Attribute Embedding

To scrutinize the relationship between the text T0, text
variant T1 and the attribute embedding ∆0→1, we visualize
their distribution and discuss the characteristics. We also
visualize the difference vector to verify the hypothesis that
the difference vector embeds its corresponding attribute.
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Difference vectors Direct text embeddings

BERT CLIP

Figure 4. The t-SNE plot of difference vectors (e.g., “brown dog” –
“dog”) projected to visual feature space. The colors of the points
represent color attributes used for computing the difference vector,
and we use all the classes in CIFAR-100 for this plot. As a com-
parison, the colored points in the red circle show direct color-text
embedding (e.g., “brown”) projected to the visual feature space.

Embedding Difference vs. Direct Text Embedding. When
guessing the difference between two texts, e.g., “brown X”
– “X,” it would be “brown.” Someone may think of using
the text embedding directly obtained from “brown” instead
of our attribute embedding from “brown X” – “X.” To un-
derstand the difference between the two representations, we
visualize the difference vectors and text embeddings with
BERT and CLIP text encoder in Fig. 4. While the direct text
embeddings in the red circle of Fig. 4 are clustered no mat-
ter with different color-texts, the difference vectors are well
clustered dependent on the color. This observation indicates
that the difference vector is more effective in augmenting the
visual feature space than text embedding. In addition, the
difference vectors obtained from the same attribute word are
similarly clustered regardless of the class “X” but slightly
different. It may imply our attribute embedding has subtle
difference awareness on granularity according to class.

Note that Fig. 4 presents difference vectors in the visual
feature space, and we also observe similar distributions of
difference vectors in the original text embedding space, i.e.,
t-SNE is not employed for clustering the direct text embed-
dings. This observation supports our hypothesis that general
language models, e.g., BERT or GPT, have learned visual
information to some extent. It, also, demonstrates the vi-
sual information is properly transferred to the target visual
feature space.
Do We Need to Rule out Unrealistic Attributes? One
can be curious about how TextManiA handles the unreal-
istic attribute, such as “blue cow.” We intentionally include
such unrealistic attributes, motivated by other contexts in
self- and semi-supervised learning [10, 65, 8], where they
showed the strong benefit of unnatural strong augmentations
to train neural networks. This observation regarding strong

Butterfly Gigantic butterfly

Bird Yellow birdSmall dogDog

Dot pattern butterflyGreen butterfly

Figure 5. The attribute embedding visualization through image
manipulation examples. We analyze how an image is manipulated
when a difference vector, containing specific attribute information,
is injected to the original image feature. (Top) We visualize an ex-
ample of generated image given a specific class and its manipulated
pair by size and color attribute, respectively. (Bottom) From left to
right, we visualize the real image of “Butterfly” and its manipulated
image pair with gigantic, green, and dot pattern, respectively.

augmentation is consistent with the design of TextManiA
containing unrealistic attributes.
Does Difference Vector Embed Attribute? To visually
understand whether attribute editing is reflected while main-
taining class information, we attempt to manipulate im-
ages by changing their features with the difference vectors
∆0→1 = eT1

−eT0
, i.e., we want to visualize the change

effect between fI0 and ea1 = fI0+α∆0→1 in image do-
main. To see the effect in image domain, we need to invert
the change from eI0 to ea1 in image domain, which can be
formulated as the following optimization problem,

argminI ∥Ei(I)− ea1
∥1, (2)

where Ei(·) : I → f denotes the image encoder in Fig. 2.
Direct optimization in Eq. (2) is known to be difficult [88];
thus, we parameterize a given image with an image gener-
ator Gθ with a latent code z, i.e., I(θ) = Gθ(z), which is
known to ease the optimization [71]. Then, we can obtain
the visualization by the following optimization over θ

argminθ ∥Ei(Gθ(z))− ea1
∥1, (3)

where Ei(·), z, and ea1
are frozen during the optimization.

Since our goal is to see the move from fI0 = Ei(I0) to ea1

for the query I0, we initialize θ and z such that Gθ(z) ≃ I0
by the GAN inversion [88]. We use IC-GAN [52] for the im-
age generator and the text embeddings are obtained from the
CLIP text encoders. Note that Ei(·) is trained with random
perturbation of transformed attributes; thus, the visualiza-
tion through Ei(·) is different from that of CLIP encoders.
Details can be found in the supplementary material.

Figure 5 shows that the manipulated image reflects the
added attribute, i.e., the size of the dog is reduced by the size
attribute “small,” and the bird becomes yellow by injecting
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the color attribute “yellow.” The manipulated results imply
that 1) the difference vector indeed embeds the attributes
while preserving its semantics, and 2) our augmentation on
the feature space may have analogous effects to an image-
level augmentation but without implementing complicated
image perturbation operations. Note that these visualizations
are for analysis purposes but not for competing with any
existing image manipulation methods.

4. Experiments
We evaluate TextManiA in various cases presenting

sparse data with different tasks: long-tail classification in
Sec. 4.1, evenly distributed scarce data classification in
Sec. 4.2, and few-shot object detection in Sec. 4.3. We also
conduct additional studies demonstrating the effectiveness of
the design of our method and the versatility of TextManiA
in Sec. 4.4. Additional experimental results and details can
be found in the supplementary material.

4.1. Long-tail Classification

Experimental Setting. We compare TextManiA with the
mix-based augmentations on the CIFAR-100-LT [14] and
ImageNet-LT [46] datasets, where LT stands for long-tailed
distribution. They are artificially truncated to have a long-tail
from each original dataset, CIFAR-100 [37] and ImageNet-
2012 [16]. Long-tail datasets usually have three sets of
classes: Many-shot (more than 100 images), Medium-shot
(20-100 images), and Few-shot (less than 20 images).

For CIFAR-100-LT, we control the imbalance factor (IF)
[11] computed as the ratio of samples in the head to tail class,
N1/NK , where Nk = |Dk|, and Dk is the set of samples
belonging to the class k ∈ {1, · · · ,K}. A larger value of
the IF represents a more severe imbalance in data, which is
more challenging. We evaluate the performance according
to different IFs of 100, 50, and 10.

We utilize ResNet18 as the baseline on CIFAR-100-LT
and ResNext50 on ImageNet-LT. We use the validation set
of the original datasets to measure the Top-1 accuracy. Note
that we apply each augmentation on all the samples without
carefully selecting a set of classes in Table 1.
Results. Table 1 presents the long-tail classification re-
sults on CIFAR-100-LT, which show consistent improvement
with TextManiA. Also, TextManiA with various text en-
coders achieves analogous improvement trend regardless of
the imbalance factor but marginal degradation on Many class
of IF=100 when using general language model, BERT and
GPT-2. While the performance gain is from leaking pre-
trained language information, it is surprising and a virtue
that the language models never exposed to any image can im-
prove the visual recognition performance. In comparison to
single usage of mix-based augmentations, our method shows
higher accuracy because of uniform effects of TextManiA
on samples regardless of class imbalance. The mix-based

(a) Augmentation
Imbalance Factor (IF)

100 50 10

Baseline 38.39 43.33 59.29
TextManiA (CLIP) 40.65 (+2.26) 46.48 (+3.15) 60.17 (+0.88)
TextManiA (BERT) 41.10 (+2.71) 47.17 (+3.84) 60.67 (+1.38)
TextManiA (GPT-2) 41.20 (+2.81) 46.93 (+3.60) 60.94 (+1.65)

Cutout [18] 37.51 42.28 59.26
+ TextManiA 40.35 (+2.84) 45.48 (+3.20) 61.31 (+2.05)

Cutmix [85] 37.93 43.34 59.30
+ TextManiA 40.22 (+2.29) 45.36 (+2.02) 61.30 (+2.00)

Mixup [86] 36.75 40.77 57.50
+ TextManiA 38.40 (+1.65) 43.33 (+2.56) 59.80 (+2.30)

ManiMixup [73] 35.72 40.51 55.26
+ TextManiA 38.60 (+2.88) 43.22 (+2.71) 59.35 (+4.09)

(b) Augmentation
Set of Classes (IF=100)

Many Medium Few

Baseline 71.11 38.42 3.00
TextManiA (CLIP) 71.14 (+0.03) 40.28 (+1.86) 7.53 (+4.53)
TextManiA (BERT) 70.22 (-0.89) 40.73 (+2.31) 9.41 (+6.41)
TextManiA (GPT-2) 70.60 (-0.51) 40.61 (+2.19) 9.93 (+6.93)

Cutout 71.54 35.94 1.06
+ TextManiA 71.94 (+0.83) 40.97 (+2.55) 4.03 (+3.03)

Cutmix 72.02 37.17 0.90
+ TextManiA 72.37 (+0.35) 40.80 (+3.63) 3.90 (+3.00)

Mixup 71.97 33.62 0.36
+ TextManiA 71.97 (+0.00) 36.77 (+3.15) 1.83 (+1.47)

ManiMixup 72.97 29.51 0.70
+ TextManiA 73.20 (+0.23) 36.80 (+7.29) 0.76 (+0.06)

Table 1. Long-tail classification results (%) on CIFAR-100-LT with
ResNet18. (a) The accuracy with respect to the different imbalance
factors, i.e., IF={100, 50, 10}. (b) The accuracy of each class set
with IF=100. Baseline contains random horizontal flip, random
crop and rotation, and normalization, applied in all experiments.
TextManiA without parenthesis uses CLIP for the text encoder.

Aug. CBS All Many Medium Few

Baseline 38.39 71.11 38.42 3.00
Cutmix ✓ 38.23 71.77 37.79 1.90
Mixup ✓ 38.73 71.60 37.64 3.16
ManiMixup ✓ 38.56 71.25 37.88 2.80
TextManiA 40.65 71.14 40.28 7.53

Table 2. Comparison to label mix-based augmentations with class-
balanced sampling (CBS) on CIFAR-100-LT with IF=100. CBS
samples two classes first and then samples data in each classes.

methods, on the other hand, sample two data points from
the total dataset, where the probability that a tail class sam-
ple contributes to a resulting augmented sample is very low.
Even with class-balanced sampling on mixed-based aug-
mentation in Table 2, TextManiA performs better, further
demonstrating our effectiveness.

Particularly in Table 1(b), the mix-based methods have
degraded performance in the Medium and Few-shot classes,
while our TextManiA improves performance. Combining
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Augmentation
Set of Classes

Total
Many Medium Few

Baseline 85.34 70.47 42.80 72.24
TextManiA 85.40 71.75 48.49 73.68

Cutout [18] 85.02 70.32 42.91 72.07
+ TextManiA 85.33 71.70 48.54 73.65

Cutmix [85] 84.85 69.90 35.82 70.77
+ TextManiA 85.30 71.93 47.04 73.52

Mixup [86] 84.96 70.27 40.20 71.63
+ TextManiA 84.55 69.95 35.72 70.66

ManiMixup [73] 84.84 69.97 38.83 71.24
+ TextManiA 85.42 71.98 46.65 73.54

Table 3. Long-tail classification results (%) on ImageNet-LT with
ViT, and color the value as best and second best. Baseline contains
random horizontal flip, random resize crop, color jitter, and normal-
ization, applied in all experiments.

Method Many Medium Few All

LWS [34] 63.34 48.08 27.19 51.14
cRT [34] 61.80 46.20 27.40 49.60
cRT+TextManiA 62.74 48.60 29.67 51.47

Table 4. Long-tail classification results (%) on ImageNet-LT with
ResNext50. We compare with LWS, cRT, and TextManiA on
cRT, and color the value as best and second best.

the mix-based methods with TextManiA improves overall
performance, but the tendency to sacrifice the Medium and
Few-shot classes is the same as before combining. Addi-
tionally, while Cutout has performance degradation due to
the information loss [85], it is not affected by skewness due
to no mix between inter-classes; thus, the performance is
higher than the mix-based one in the long-tailed distribution.

We also evaluate our TextManiA on the large-scale
dataset ImageNet-LT. In Table 3, the best and second best
results are with TextManiA, which demonstrate that our
augmentation method is also effective in the large-scale long-
tailed data distribution, consistent with the CIFAR-100-LT
results in Table 1. The improvement with TextManiA
implies the importance of intra-class perturbation, which can
uniformly affect the samples regardless of the skewness of
the class distribution.

In Table 4, we compare with LWS [34], cRT [34], and
TextManiA on cRT. LWS and cRT are one of effective
methods in recent long-tailed recognition. The result shows
that TextManiA on cRT achieves the best results compared
to the counterparts in all classes except for the Many class,
wherefrom ours achieves second best. Overall, TextManiA
improves well-established works, e.g., LWS, and cRT, and it
demonstrates the compatibility of our method.

Augmentation
Acc.

Top-1 Top-5

Baseline 31.10 59.14
Cutout 32.03 60.53
Cutmix 32.43 61.04
Mixup 32.72 62.47
ManiMixup 33.74 63.29
TextManiA 34.52 (+3.42) 65.74 (+6.60)

Cutout + TextManiA 33.91 (+2.81) 61.58 (+2.44)
Cutmix + TextManiA 35.61 (+4.51) 63.82 (+4.68)
Mixup + TextManiA 37.97 (+6.87) 66.75 (+7.61)
ManiMixup + TextManiA 38.02 (+6.92) 67.28 (+8.14)

Table 5. Classification results (%) on CIFAR-100-10% with
ResNet18. Baseline represents random horizontal flip, random
crop, and normalization, basically applied in all experiments. The
parentheses stands for the improvement compared to the Baseline.

Augmentation
Acc.

Top-1 Top-5

Baseline 65.37 89.82
Cutout 69.17 91.12
Cutmix 69.82 91.76
Mixup 67.54 90.23
TextManiA 70.81 (+5.44) 92.37 (+2.55)

Cutout + TextManiA 69.71 (+4.34) 91.32 (+1.50)
Cutmix + TextManiA 71.05 (+5.68) 92.22 (+2.40)
Mixup + TextManiA 70.56 (+5.19) 91.58 (+1.76)

Table 6. Classification results (%) on CIFAR-100-10% with VIT-
Tiny. The configuration follows Table 5. The parentheses stands
for the improvement compared to the Baseline.

4.2. Evenly Distributed Scarce Data Classification

Experimental Setting. For evaluating the effectiveness
of TextManiA on the scarce dataset, we use 10% data
of the CIFAR-100 [37] and Tiny-ImageNet [40] datasets,
named CIFAR-100-10% and Tiny-ImageNet-10%, respec-
tively. CIFAR-100 has 100 classes with 500 training images
per class, but we only use randomly sampled 50 images per
class. Tiny-ImageNet is a subset of ImageNet-1k [61] with
100k images and 200 classes, but we use 10k images (50
images per class) for simulating a small dataset. Note that
the evaluation set is same with those of the original datasets.

The baseline models of scarce data classification are
ResNet18 [28] and ViT-Tiny [19]. Due to the space limit, de-
tails of training can be found in the supplementary material.
Results. We demonstrate the effectiveness of TextManiA
compared to mix-based augmentations on evenly distributed
scarce datasets. As in Table 5 for CIFAR-100-10%,
TextManiA outperforms other methods when a single aug-
mentation is used. Furthermore, the effect is amplified when
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Augmentation
Acc.

Top-1 Top-5

Baseline 25.94 50.53
Cutout 26.41 50.28
Cutmix 25.94 49.67
Mixup 29.34 54.10
ManiMixup 28.43 53.25
TextManiA 29.37 (+3.43) 52.37 (+1.84)

Cutout + TextManiA 29.14 (+3.20) 52.60 (+2.07)
Cutmix + TextManiA 29.86 (+3.92) 54.31 (+3.78)
Mixup + TextManiA 31.15 (+5.21) 56.71 (+6.18)
ManiMixup + TextManiA 32.39 (+6.35) 58.25 (+7.72)

Table 7. Classification results on Tiny-ImageNet-10% with
ResNet18. The configuration follows Table 5. The parentheses
represents the improvement compared to the Baseline.

our method and mix-based methods are combined, with
particularly good compatibility with Manifold Mixup. The
results demonstrate the importance of intra-class semantic
perturbation along with inter-class in scarce data settings.
This tendency is also observed with another baseline archi-
tecture in Table 6, and datasets in Table 7, implying that
TextManiA is model-agnostic to be applied. The overall
results demonstrate the potential of TextManiA to enrich
the visual feature space using text modalities and develop
more accurate and robust models in scarce data regimes.

4.3. Few-shot Object Detection

Experimental Setting. We evaluate TextManiA on the
PASCAL VOC [20] and MS-COCO [45] datasets with a few-
shot divison following Wang et al. [75]. For VOC, we have
three random splits, which have different divisions into 15
base classes and 5 novel classes among the 20 total classes,
and K = 1, 2, 3, 5, 10 objects are sampled from the novel
classes. We utilize the VOC2007 test set for evaluation
with AP50 metrics and train with the combination of the
VOC2007 and VOC2012 train/val set. For COCO, the base
classes are disjoint with VOC classes while the remaining
classes are used as novel classes, and K = 1, 3, 5, 10, 30
objects are sampled from the novel classes for few-shot fine-
tuning. We use 5k images from the validation set in COCO
for evaluation with mAP metrics and the rest for training.

The baseline [80] is the Faster R-CNN [59] trained with
the base classes first and then fine-tuned with the novel
classes. TextManiA is applied to the novel class samples
during the fine-tuning stage. Following the prior studies, all
the reported results are averaged over 10 repeated runs.
Results. Note that we apply TextManiA only on the clas-
sification head; thus, the quality of the regressed bounding
boxes will remain similar as before applying TextManiA.
As shown in Table 8 for VOC and Table 9 for COCO,
TextManiA improves the AP by improving only the clas-

Split Aug.
K- shot

1 2 3 5 10

All
Baseline 12.82 16.65 20.04 20.64 23.19

TextManiA
17.74 22.40 23.37 25.09 24.22

(+4.92) (+5.75) (+3.33) (+4.45) (+1.03)

1
Baseline 15.11 18.82 22.61 21.97 23.74

TextManiA
21.94 26.44 23.66 25.88 25.14

(+6.83) (+7.62) (+1.05) (+3.91) (+1.40)

2
Baseline 10.86 14.22 18.67 19.34 22.49

TextManiA
14.64 18.49 23.28 23.06 24.44

(+3.78) (+4.27) (+4.61) (+3.72) (+1.95)

3
Baseline 12.49 16.90 18.84 20.61 23.35

TextManiA
16.65 22.26 23.16 26.33 25.08

(+4.16) (+5.36) (+4.32) (+5.72) (+1.73)

Table 8. Few-shot object detection results (AP50) on VOC. The
value in the parentheses indicates the improvement compared to
the Baseline of each split set.

Aug.
K- shot

1 3 5 10 30

Baseline 3.43 4.66 6.10 9.11 12.78

TextManiA
5.39 6.47 7.80 10.03 13.60

(+1.96) (+1.81) (+1.70) (+0.92) (+0.82)

Table 9. Few-shot object detection results (mAP) on COCO. The
configuration follows Table 8.

Aug. Many Medium Few IF=100 IF=50 IF=10

(a)
Baseline 71.11 38.42 3.00 38.39 43.33 59.29
Random 71.37 38.55 2.90 38.43 43.28 60.39
TextManiA 70.22 40.73 9.41 41.10 47.17 60.67

(b) Direct. 71.34 38.64 4.32 38.66 43.44 59.82
Concat. 68.02 35.82 5.35 36.98 42.68 59.44

Table 10. Comparison to (a) random perturbation, and (b) direct
text and concatenated embeddings on CIFAR-100-LT.

sification accuracy, where the result is in a similar line to
the analysis [6] that classification error weighs more than lo-
calization error. The improvement is clearer when K is low.
The results demonstrate the applicability of TextManiA to
enhance the classification accuracy of detection models.

4.4. Further Analyses

Random Baseline. In Table 10-(a), we compare our method
with the Random baseline. We randomly sample a vector
from a Normal distribution N (0, 1) and use it instead of the
difference vector, i.e., augmenting visual features with ran-
dom perturbations on the same manifold of visual features.

The result shows that the Random baseline improves per-
formance by serving as intra-perturb, but marginal compared
to our method considering semantics additionally, which
implies that semantic information embedded in the differ-
ence vector guides the augmentation more effective direction
rather than random.
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CLIP Arch. Aug. ZS LP-10% LP-Full

ResNet50 Baseline 39.47 50.18 63.64
TextManiA - 52.83 64.17

ResNet101 Baseline 45.17 57.37 68.60
TextManiA - 59.49 69.12

ViT-B Baseline 58.21 73.30 79.99
TextManiA - 73.35 79.58

Table 12. Classification results (%) of CLIP with zero-shot (ZS)
and linear-probe (LP) on Full and 10% CIFAR-100. We apply our
TextManiA to the linear-probed CLIP.

Effectiveness of Difference Vectors. While we use the
difference vectors by subtracting the embeddings with and
without attribute words for TextManiA, there could be
another way to extract the attribute information. In Table 10-
(b), we compare with counterparts, direct text embedding
(Direct.) and concatenated embeddings (Concat.). For the
Direct method, we use the text embedding computed from
the attribute word directly instead of the difference vector.
For the Concat method, we concatenate the text embeddings
from with and without attribute words, e.g., [“bull”∥“red
bull”], and use it instead of the difference vector.

The results show that using difference vector
(TextManiA) outperforms using direct text embed-
ding or concatenated embeddings, and imply that remaining
contextual information after subtraction plays an important
role in doing intra-perturbation in a semantic way. Although
the word “blue” can function as both an adjective and a noun,
its exact role in a sentence cannot be determined solely
based on the word itself. Our intention of subtraction is for
attribute words to act as a modifier in the sentence motivated
by word analogy. When we computed the cosine similarity,
embeddings derived directly from “red” and those obtained
from the difference exhibited low similarity because they
contain different contextual information despite the same
origin of a word.

Model LP-Full

VL-LTR 61.04
+TextManiA 61.82

Table 11. Comparison between
the SOTA model with and with-
out TextManiA during linear
probing on CIFAR-100.

Linear Probing with Ad-
vanced Models. Further
demonstrating the com-
patibility of TextManiA,
we apply our method dur-
ing linear probing of the
model. In Table 11, we test
VL-LTR [70], the state-of-
the-art model in long-tail
classification, on CIFAR-100. In Table 12, we use a CLIP
image encoder [54] with various architectures as the baseline
model and linear-probe the model on both 10% and full data
of CIFAR-100. The results demonstrate that TextManiA
is compatible with linear-probed CLIP and VL-LTR models.

Color Size Acc.

31.10
✓ 33.48

✓ 33.89
✓ ✓ 34.52

Table 13. Ablation study
on the attributes with
CIFAR-100-10%.

Ablation Study on Attributes.
In TextManiA, we have con-
sidered color and size attributes.
To confirm the effect of each at-
tribute, we conduct an ablation
study on attributes in Table 13.
The result shows that while each
attribute brings non-trivial gain,
using both brings more gain. We
believe that there are additional attributes we could use and
a more effective method for selecting appropriate attributes,
but leave it for future work.

5. Conclusion

To mitigate the scarce data problem in long-tailed data
distribution, small dataset, and few-shot cases, we propose
a text-driven visual feature manifold augmentation method,
TextManiA. Our method densifies around all the given
individual visual features by adding a difference vector stem
from the text embedding. While the mix-based augmen-
tations inflict semantic perturbation in an inter-class way
by label mixing, TextManiA perturbs the semantic mean-
ing of the visual features at an intra-class level, i.e., having
semantic perturbation while maintaining its class. The intra-
class semantic perturbation is achieved by transferring the
attribute-embedded vectors to visual feature space.

To scrutinize the design of our estimated attribute em-
bedding, we conduct visualization-based analyses: t-SNE
plot and simple manipulation tests. The results empirically
demonstrate that TextManiA readily enriches the sparse
samples with comprehensible manipulation, since the gen-
eral language models also reflect some extent of visual in-
formation. The experiment on the long-tail classification
validates the effectiveness of our method, especially on
the highly skewed class distribution. We additionally show
the compatibility of TextManiA with other augmentation
methods or other models in scarce data cases and during
linear probing. In this work, note that we only use color
and size as attributes; thus, there would be room for further
investigation of other effective attributes.
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