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Abstract

Despite recent advancements in unified adverse weather
removal methods, there remains a significant challenge of
achieving realistic fine-grained texture and reliable back-
ground reconstruction to mitigate serious distortions.

Inspired by recent advancements in codebook and vector
quantization (VQ) techniques, we present a novel Adverse
Weather Removal network with Codebook Priors (AWRCP)
to address the problem of unified adverse weather removal.
AWRCP leverages high-quality codebook priors derived
from undistorted images to recover vivid texture details and
faithful background structures. However, simply utilizing
high-quality features from the codebook does not guarantee
good results in terms of fine-grained details and structural
fidelity. Therefore, we develop a deformable cross-attention
with sparse sampling mechanism for flexible perform fea-
ture interaction between degraded features and high-quality
features from codebook priors. In order to effectively in-
corporate high-quality texture features while maintaining
the realism of the details generated by codebook priors, we
propose a hierarchical texture warping head that gradu-
ally fuses hierarchical codebook prior features into high-
resolution features at final restoring stage.

With the utilization of the VQ codebook as a feature dic-
tionary of high quality and the proposed designs, AWRCP
can largely improve the restored quality of texture details,
achieving the state-of-the-art performance across multiple
adverse weather removal benchmark.

*Equal contributions.
†Yun Liu is the corresponding author.

1. Introduction

The restoration of images under adverse weather condi-
tions, such as heavy haze or rain, is a major topic of research
in the field of computer vision. The original images may
suffer from severe weather-induced distortions, like intense
rain streaks or dense hazing effects, which obscure the true
background and deteriorate the performance of high-level
vision tasks. Therefore, a difficult inverse problem arises,
whereby degraded images are likely to experience signifi-
cant losses of detail and structure, requiring restoration.

With the advent of deep learning techniques, adverse
weather removal methods [33, 49, 41, 10] has achieved re-
markable progress. An increasing number of studies are fo-
cusing on achieving all-in-one adverse weather removal in
one go as a primary objective. This entails the elimination
of all weather-related degradation through the utilization of
a single, unified model. Classical adverse weather removal
methods employ neural architecture search to find an opti-
mal network design [33], use advanced decoders with learn-
able weather queries to decode clean features in solving this
task [49], explore diffusion model for adverse weather re-
moval [41]. However, these methods are still limited in their
performance due to their inability to robustly capture high-
quality clear background features from seriously degraded
images. The only feature source that them can employed
is only from degraded images, which obviously is a huge
drawback in structure rebuilding and realist texture restor-
ing by these models. Additionally, it should be noted that
the irreversible nature of severe texture loss poses a sig-
nificant challenge for these methods. Previous methods al-
most all pay more attention on reconstruct clean features
in multi-scale feature stage, ignoring the benefits of restor-
ing fine-grained details in the final high-resolution feature
level. In conclusion, recent methods for mitigating adverse
weather conditions have demonstrated impressive perfor-
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mance across various types of weather-induced degradation.
However, there is still a substantial room for improvement
that requires further exploration.

When presented with an image that is degraded due to
unfavorable weather conditions, the task of restoring it to
a pristine state becomes an incredibly difficult problem be-
cause of the various sources of degradation present. Conse-
quently, it can be difficult to find a reliable statistical prior
that can address the issue effectively. For deep networks,
these challenges are magnified, as they strive to capture
ideal, noise-free features as latent variables in a network
that only possesses a lone encoder.

The aforementioned deliberations and inferences im-
pel us to contemplate deploying codebook priors as a po-
tential solution to the current challenge.Training a VQ-
GAN [12] on high-quality, noise-free images has the po-
tential to produce a Vector-Quantized (VQ) codebook that
possesses high-quality feature priors. A well-trained VQ
codebook holds the potential to offer a comprehensive
high-quality feature set, aiding in the handling of various
types of weather-induced degradation. However, due to the
feature misalignment between degraded features from de-
graded images and high-quality features from codebook pri-
ors, the straightforward fusion of high-quality features from
the vector quantization (VQ) codebook may not yield ade-
quate results in the context of adverse weather removal [53].
Moreover, undesirable effects from various sorts of noise
observed in the degraded features could additionally impact
the quality of reconstructed superior-quality characteristics.

To address these issues, we introduce two special de-
signs, which allow AWRCP to effectively explore robust
codebook priors and keep fidelity in restored results, sur-
passing previous state-of-the-art methods in restoration per-
formance. For facilitate pliable feature interaction and fu-
sion, we propose a Parallel Decoder Design that integrates
Deformable Cross-Attention. This design effectively intro-
duces high-quality features and maintains structural consis-
tency between rstored results and clean background. Our
Deformable Cross-Attention (DCA) utilizes paired high
and low-quality features to guided sparse sampling phase,
flexibly adapt features with distinct quality. With the help
of sparse sampling, DCA efficiently perform context mod-
eling between two source of features and fuse them adap-
tively. Its aim is to ameliorate the issue of feature mis-
alignment that arises between degraded and high-quality
features. For the restoration of fine-grained details, Hier-
archical Texture Warping Head is proposed by us to explore
hierarchical high-quality features in high-resolution feature
level, restoring fine-grained details step-by-step. We are the
first work that successfully exploit codebook priors for ad-
verse weather removal and achieve a state-of-the-art perfor-
mance across all standard weather task benchmarks.

Our contributions can be summarized as follows:

• We propose a novel framework AWRCP for adverse
weather removal using high-quality codebook priors
learned by a pre-trained VQGAN. Compared with pre-
vious works, the AWRCP introduces codebook priors
to formulate adverse weather removal task as a fea-
ture matching and fusion problem between degraded
and high-quality features, enabling the leading perfor-
mance.

• We propose a Deformabel Cross-Attention with Sparse
Sampling for high/low-quality feature fusion. Such
a manner bridge the misalignment between heteroge-
neous features, avoiding, effectively avoids drawbacks
from codebook priors.

• A novel Hierarchical Texture Warping Head is de-
signed to refine textures in high-resolution feature
stage by introducing hierarchical prior features.

2. Related Works
2.1. Adverse Weather Removal

Over the past decade, researchers have shown great in-
terest in developing algorithms to eliminate the effects of
adverse weather [59, 38, 37, 7, 5, 6, 57, 29, 28] and im-
age/video restoration [47, 58, 22, 23, 27, 30, 26, 18, 65,
19, 16, 17, 67, 20, 15, 68, 40, 60, 61]. These algorithms
include single-image deraining [34, 46, 24], single-image
dehazing [11, 44, 54], single-image desnowing [39, 8, 9],
multiple degradation removal [62, 64], and all-in-one ad-
verse weather removal.

2.1.1 Single Weather Removal

(i) Dehazing: Single image dehazing has made remark-
able progress in the past few years. AECR-Net [54] de-
signed a contrastive learning framework to help the net-
work learn discriminative knowledge from negative sam-
ples. (ii) Deraining: For single image deraining, Atten-
GAN [43], leverages the combination of generative adver-
sarial networks (GANs) and attention mechanisms to re-
store images degraded by raindrops. IDT [55] proposed a
transformer-based approach that integrates a complemen-
tary window-based transformer and a spatial transformer,
facilitating the accurate modeling of short- and long-range
dependencies in rainy scenes.(iii) Desnowing: Compared
to dehazing and deraining, single-image snow removal is a
more challenging image restoration task. Desnow-Net [39]
developed a two-stage framework to remove snowy degra-
dation progressively. JSTASR [8] proposed a framework to
remove haze and snow simultaneously. However, as with
dehazing and deraining, these methods also face difficul-
ties achieving satisfactory results on other types of adverse
weather.
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2.1.2 Multiple Degradation Removal

With the recent advancements in CNNs and ViTs, it has
become possible to develop a generic network that can fo-
cus on multiple image restoration tasks. One such network
is MPRNet [62], which proposes a multi-stage approach
that utilizes multi-patch and multi-level strategies to pro-
gressively restore degraded images. Another network is
NAFNet [3], which devises a simple nonlinear activation-
free network to efficiently restore degraded images by
adopting a simplified channel attention mechanism to re-
fine features in each block. Additionally, Restormer [64]
proposes a channel-wise self-attention mechanism that per-
forms global modeling in the channel dimension, leading to
excellent performance on multiple image restoration tasks.

Previous multiple degradation removal methods achieve
encouraging performance in different degradation scenes
with a unified architecture. However, in order to handle
multiple degrading effects, the above approaches have to
manually choose and load the specific pre-trained weights
to match the degradation type, which suffers from limita-
tions for real-world applications.

2.1.3 All-in-one Adverse Weather Removal:

The goal of all-in-one adverse weather removal is to create a
unified network with a fixed pre-trained weight that can ef-
fectively address the issue of adverse weather. The first so-
lution proposed is All-in-One [33], which employs AutoML
(NAS) in an end-to-end approach to extract clean features
from various weather-type encoders. However, due to its
high number of parameters, it may not be suitable for edge
applications in real-world scenarios. TransWeather [49]
is the first transformer designed specifically for adverse
weather removal, with a weather type decoder that can de-
code different features from various weather degradations.
While it represents an improvement over All-in-One, there
is still room for further improvement in its performance.
Another approach is TKL&MR [10], which is a distillation
framework that transfers knowledge from multiple teacher
models to a single student model. This enables the unified
model to cover multiple weather tasks with a single pre-
trained weight. However, its complex distillation paradigm
and use of multiple pre-trained teacher models may require
a longer training time to achieve leading performance in the
student model. WeatherDiffusion [41] is a novel method
based on diffusion for mitigating adverse weather condi-
tions. This technique effectively harnesses the potential
of diffusion models for weather removal, and has achieved
state-of-the-art results across multiple benchmarks. How-
ever, the slow inference speed severely limits its practical
applications.

2.1.4 VQ Codebook Learning

The VQ autoencoder was originally introduced in the VQ-
VAE [50] framework. It leverages a vector quantiza-
tion codebook to address the problem of posterior col-
lapse [14]. VQGAN further improves the visual quality of
reconstructed images by introducing perceptual and adver-
sarial loss items for better codebook learning. The well-
trained codebook could help many image restoration tasks
like face restoration [13] and image super-resolution [2].
FeMaSR [2] expands the technique of discrete codebook
learning to facilitate blind super-resolution. VQFR [13]
frame the problem of blind face restoration as a code predic-
tion task. Inspired by the promising performance of these
approaches, we are the first to leverage the high-quality
codebook prior for adverse weather removal.

3. Methodology
3.1. Vector-Quantized Codebook for Priors

VQ Codebook. We first make a brief review of VQGAN
and its codebook. Given a high-quality clean image patch
x ∈ RH×W×3 is first passed through the encoder E to
produce its output feature ẑ = E(x) ∈ Rh×w×nz , where
nz is the dimension of latent vectors. Then the vector-
quantized representation of zq is calculated by finding the
nearest neighbours of each element ẑi ∈ Rnz , in the code-
book Z ∈ RK×nz with K discrete codes as follows:

zq = q(ẑ) :=

(
arg min

zi∈Z
∥ẑ − ẑi∥

)
∈ Rh×w×nz . (1)

where q(·) denotes the element-wise quantization. The De-
coder G maps the quantized representation zq back to the
RGB space. The overall reconstruction mechanism can be
formulated as:x̂ = G(zq) = G(q(E(x)) ≈ x.

Since the feature quantization operation of Eq. 1 is non-
differentiable, we follow VQGAN and simply copy the gra-
dients from G to E for backpropagation. For further im-
proving the quality of codebook, we introduce perceptual
loss and adversarial loss as training objective of VQGAN
and its codebook.

Analysis. To gain a more comprehensive insight into the
potential and limitations of using well-trained VQ code-
book for adverse weather removal, we conducted several
preliminary experiments and derived the following obser-
vations.

Observation I. As illustrated in Fig. 2, the well-trained
VQGAN produces vivid realistic details and textures into
the reconstructed image. However, due to the information
loss by the vector-quantization, the object structure of re-
construction has also been distorted to certain extent. Thus,
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Figure 1. Overview of AWRCP framework. It comprises an encoder, which maps degraded images to a latent space, and a parallel
decoder that is equipped with deformable cross-attention, enabling the flexible utilization of high-quality codebook priors.

(a) Input Image (b) Reconstruction

Figure 2. (a) Input clean image. (b) Image reconstructed by the
VQGAN that only trained on high-quality images. More realistic
fine details textures have been introduced into the reconstruction
results of VQGAN, but the object structure has also been distorted
and warped.

simply fusing the features from the pre-trained codebook is
obviously suboptimal for us. It is intuitive that the signifi-
cant step in our research is to devise an appropriate solution
that can effectively utilize the high-quality features from the
codebook while circumventing the structural distortion of
the original background. Therefore, we choose the parallel
architecture as the design style of our Decoder, which could
keep the structure features of original background and in-
troduce high-quality codebook features.

Observation II. We present an investigation into the re-
construction results produced by the highly proficient VQ-
GAN model without any fine-tuning on paired data, with a
particular focus on degraded images. As depicted in Fig-
ure 3, our findings illustrate that VQGAN is able to miti-
gate the effects of adverse weather conditions to some de-
gree. However, some areas of extreme degradation still
exceed its ability to fully restore the patches. Moreover,
VQGAN’s ability to restore images trained solely on high-
quality sources is limited as it encounters difficulty in prop-
erly matching the relevant codebook entry. Therefore, it
is evidently inadequate to directly reuse features from the
Encoder and Decoder of VQGAN. To further employ hi-

erarchical high-quality features to boost texture restoration,
we propose introducing a novel deformable cross-attention
technique as a high-quality prior feature fusion mechanism,
as well as a texture warping head.

Our novel modules can be constructed as a new De-
coder Dd, which learns from scratch with paired data to
balance the texture restoration while still preserving back-
ground structures.

3.2. Adverse Weather Removal with Codebook Pri-
ors

Based on the aforementioned observations and analy-
ses, we formulate the problem of removing adverse weather
conditions into three phases: code matching, prior feature
fusion, and texture refinement. The overall framework of
the proposed method is illustrated in Fig. 1. The train-
ing phase of our solution can be divided into two stages.
In the first stage, we pre-train a VQGAN on high-quality
data to obtain a latent discrete codebook with high-quality
code entries and a well-trained Decoder G. In the second
stage, AWRCP based on the pre-trained codebook and G,
and learns from a widely-used Allweather [49, 33, 41] train-
ing dataset.

Encoder for Code Matching. We develop an efficient
CNN-based encoder with robust feature extraction ability
as our new degraded image encoder Ed for accurate code
matching. The encoder Ed mainly consists of several effi-
cient convolutional encoder blocks, downsampling the fea-
tures to 1

16 resolution step by step.

Latent Transformer for Contextual Modeling. We em-
ploy the transformer to excavate the disrupted background
structure and perform effective global modeling of contex-
tual content on the background structure. As shown in
Fig.1, in the latent layer of our network, we utilize 6 self-
attention layers to model global dependency relationship of
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(a) Input (b) Reconstruction 

Figure 3. (a) Degraded images by adverse weather. (b) Recon-
structed results by the well-trained VQGAN that only learns from
high-quality images. The vector-quantized phase of features re-
sults in a loss of information, leading to the introduction of dis-
torted structures and textures.

Figure 4. The figure illustrates how our DCA performs sparse sam-
pling on two feature sets with different qualities. Our sampling
mechanism does not independently predict the offsets and scales
of different features. Instead, it utilizes both feature sets simul-
taneously to obtain four sets of parameters for conducting sparse
sampling.

zd for next step feature restoration, and zdT is the finally
globally attended features.

Deformable Cross-Attention with Sparse Sampling.
As mentioned and analyzed earlier, the reconstructed results
from VQGAN reveal that high-quality features from the
codebook are not flawless. Structural deformation and tex-
ture distortion lead to a more severe misalignment between
high-quality and degraded features. There are face restora-
tion methods that suggest a simple fusion of high-quality
and degraded features in a pixel-wise manner. However,
such an approach overlooks contextual structure, resulting
in suboptimal performance. Taking into account above is-
sues surrounding codebook prior features and feature fu-
sion, we present a novel Deformable Cross-Attention
(DCA) with sparse sampling, that aims to flexibly model
global contextual structures and local textures with the lin-
ear complexity, and reconstruct degraded features into a bet-
ter representation that is close to the clean feature by utiliz-
ing high-quality codebook priors.

Differ with vanilla cross-attention operation, our DCA

aims to dynamically sample two distinct features from dif-
ferent sources in a sparse and global manner. By employing
sparse sampling, it is possible to reshape each feature to a
pre-determined resolution size (c, h, w,Nw

x , Nw
y ), thereby

enabling efficient global cross-attention with linear com-
plexity. As shown in Fig. 4, the light sub-network consists
of an average pooling layer, a max pooling layer, a light
convolution layer with 1 × 1 kernel and activation func-
tion. The two distinct feature F d

i , F
G
i are concatenated in

the channel dimension, and then the maxpool and avgpool
operations in sub-network are used to aggregate global in-
formation respectively, and then the two are added together
to get feature for the predicting of scales and offsets.

Sd
i , O

d
i , S

G
i , OG

i = Sub-network ◦ Concat(F d
i , F

G
i ) (2)

Where Sd,G
i and Od,G

i ∈ R2N represent the predicted
scales and offsets for sparse sampling. We leverage these
scales and offsets to sample V pd

i ∈ R
N
M2 ×C , Kpd

i ∈
R

N
M2 ×C and QpG

i ∈ R
N
M2 ×C from F d

i ∈ RN×C and
FG
i ∈ RN×C , respectively. Here, p represents the window

size. Therefore, for each window feature F pd

i ∈ R
N
M2 ×C

and F pG

i ∈ R
N
M2 ×C , cross-attention can be expressed as

follows:

Attni
(
QpG

i ,Kpd

i , V pd

i

)
= Softmax

(
QpG

i KpdT
i√

D
+ p

)
V pd

i

(3)
Please refer to our Supplemental Materials for details and
deeper analysis of our deformable cross-attention layer.

Parallel Decoder Design. Through observation and anal-
ysis we mentioned above, we design a parallel decoder
architecture to gradually perform interaction between de-
graded features and high-quality features by deformabel
cross-attention layers. Our decoder design differs from that
used in face restoration method VQFR [13], as our main
branch restores features from degraded sources while an-
other branch directly inherits from the pre-trained VQGAN
decoder. This design allows us to maintain consistency be-
tween restored results and the clean background, while pre-
serving the quality of the prior features.

Hierarchical Texture Warping Head. For further allevi-
ating the texture defects in results, we futher provide a so-
lution to refine high-resolution features by the guidance of
hierarchical high-quality codebook features. Specifically,
in ith stage of our Hierarchical Texture Warping Head, we
employ the deformable convolution and channel/spatial at-
tention layers to build texture warping module, align the
features FG

i from VQGAN Decoder G with the feature F d
i

from Dd:
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F tw
i = TWM ◦ Concat(F d

i , F
G
i ) (4)

where F tw
i denotes the warped features by our Texture

Warping Module (TWM). F tw
i will be fused with features

of corresponding stage in the head for the texture refine-
ment. We notice that the utilization of channel/spatial at-
tention could further boost the feature warping of F tw

i in a
cheap way. The effectiveness of the proposed Hierarchical
Texture Warping Head module is detailed in our ablation
study section.

3.3. Model Objective

We present the detailed model objective of VQGAN and
AWRCP in this section. Let’s denote the degraded image
as xd, the restored result by AWRCP as yr, the correspond-
ing ground truth image as yg , and the high-quality input
image for VQGAN training as xh. Furthermore, the recon-
structed result by VQGAN is denoted as xr. In the first
training stage, the VQGAN only learns from high-quality
images without any degradation or noises. In the second
training stage, the codebook of VQGAN and its Decoder
G are frozen, and a new encoder Ed is developed for bet-
ter code matching and improved restoration performance.
Accordingly, the objectives of VQGAN and AWRCP for
training are as follows.

3.3.1 VQGAN

Due to the non-differentiable vector-quantized operation,
we train VQGAN and it’s codebook by copying the gradi-
ents of G to E. And we adopt four image-level reconstruc-
tion losses for VQGAN: L1 loss Lrec for basic pixel recon-
struction, perceptual loss Lper [31] for perceptual quality,
adversarial loss Ladv for texture generation, and semantic
guided loss Lsemantic to encourage the texture to be condi-
tioned on semantics.

Pixel Reconstruction Loss. We utilize the L1 loss in the
RGB color space as the basic reconstruction loss, which can
be denoted as:

Lrec =
∥∥xr − xh

∥∥
1

(5)

Codebook Loss. For codebook optimization, we employ
codebook loss to reduce the distance between codebook and
input feature embeddings and update codebook:

Lcodebook =
∥∥sg(zd)− zdq

∥∥2
2
+ β

∥∥sg (zdq )− zd
∥∥2
2

(6)

where sg(·) is the stop-gradient operation, and β = 0.25.

Adversarial Loss. Following VQGAN [12], we utilize
the adversarial loss item to improve texture quality of re-
constructed xr:

Ladv = [logD (xh) + log (1−D (xr))] (7)

Semantic Guidance Loss. The codebook is learned
purely by gradient descent where similar patterns are clus-
tered independent of their semantics. In order to maintain
consistency between the semantic information and textures
of codebook embedding, we regularize the learning of code-
book by incorporating perceptual features that hold rich se-
mantic information by adding semantic guidance loss fol-
low FeMaSR [2]:

Lsemantic = ∥Conv (zqd)− ϕ(xh)∥
2

2
(8)

where conv denotes a 1 × 1 convolution layer to adjust
the dimension of zqd and ϕ(xh). ϕ denotes the pre-trained
VGG19 network.

Finally, the training objective of VQGAN is:

Lvq = λrLrec + λcLcodebook + λaLadv+

λsLsemantic + λpLper

(9)

3.3.2 AWRCP

For better restoration performance, we adopt PSNR loss [4]
as the reconstruction loss of AWRCP. The loss function can
be calculated as:

Lpsnr = −PSNR(AWRCP(xd), yg), (10)

In addition, perceptual level of the restored image is also
critical. We also applied the perceptual loss to improve the
restoration performance of AWRCP. Overall loss function
can be expressed as:

LAWRCP = λ1Lpsnr + λ2Lper, (11)

where the λ1 and λ2 are set to 1 and 0.2.

4. Experiments
4.1. Datasets

We utilize five standard benchmark image restoration
datasets considering various adverse weather conditions,
such as real and synthetic snow, heavy rain with haze, and
real and synthetic raindrops and rain streaks.
Snow100K [39] is a widely-used desnowing benchmark
for evaluation of snow removal methods. Its test datasets
consists of three synthetic sub-test sets: Small, Middle,
Large (Snow100k-S/M/L).
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Snow100K-S [39] Snow100K-L [39]

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
SPANet [51] 29.92 0.8260 23.70 0.7930
JSTASR [8] 31.40 0.9012 25.32 0.8076
RESCAN [34] 31.51 0.9032 26.08 0.8108
DesnowNet [39] 32.33 0.9500 27.17 0.8983
DDMSNet [66] 34.34 0.9445 28.85 0.8772
MPRNet [62] 34.97 0.9457 29.76 0.8949
NAFNet [3] 34.79 0.9497 30.06 0.9017
Restormer [64] 35.03 0.9487 30.83 0.9121

All-in-One [33] - - 28.33 0.8820
TransWeather [49] 32.51 0.9341 29.31 0.8879
TKL&MR [10] 34.80 0.9483 30.24 0.9020
WeatherDiff64[41] 35.83 0.9566 30.09 0.9041
WeatherDiff128[41] 35.02 0.9516 29.58 0.8941

AWRCP(Ours) 36.92 0.9652 31.92 0.9341

(a) Image Desnowing

Outdoor-Rain [32]

PSNR ↑ SSIM ↑

CycleGAN [69] 17.62 0.6560
pix2pix [21] 19.09 0.7100
HRGAN [32] 21.56 0.8550
PCNet [25] 26.19 0.9015
MPRNet [63] 28.03 0.9192
NAFNet [3] 29.59 0.9027
Restormer [64] 29.97 0.9215

All-in-One [33] 24.71 0.8980
TransWeather [49] 28.83 0.9000
TKL&MR [10] 29.92 0.9167
WeatherDiff64[41] 29.64 0.9312
WeatherDiff128[41] 29.72 0.9216

AWRCP(Ours) 31.39 0.9329

(b) Image Deraining & Dehazing

RainDrop [43]

PSNR ↑ SSIM ↑

pix2pix [21] 28.02 0.8547
DuRN [36] 31.24 0.9259
RaindropAttn [45] 31.44 0.9263
AttentiveGAN [43] 31.59 0.9170
IDT [56] 31.87 0.9313

All-in-One [33] 31.12 0.9268
TransWeather [49] 30.17 0.9157
TKL&MR [10] 30.99 0.9274
WeatherDiff64[41] 30.71 0.9312
WeatherDiff128[41] 29.66 0.9225

AWRCP(Ours) 31.93 0.9314

(c) Removing Raindrops
Table 1. Quantitative comparisons in terms of PSNR and SSIM (higher is better) with state-of-the-art image desnowing, deraining, adverse
weather removal methods. Best and second best values are indicated with bold text and underlined text respectively. Above half of the
tables show comparisons of methods individually evaluated for each task. Bottom half of the tables show performance results of our
unified multi-weather method AWRCP on all four test sets with the state-of-the-art adverse weather removal methods All-in-One [33],
TransWeather [49], TKL&MR [10] and WeatherDiff [41].

Outdoor-Rain [32] is a classical dataset for simultaneous
image deraining and dehazing. This dataset contains dense
synthetic rain streaks and heavy hazy degradation. Its test-
ing dataset has 750 high-resolution images for evaluation.

RainDrop [43] contains images of raindrops that intro-
duce real artifacts on the camera sensor and obstruct the
view. For quantitative evaluations, the dataset includes
a testing subset, referred to as Raindrop-A in prior re-
search [41, 49], which comprises 58 images.

4.2. Training Details

VQGAN. For the training of VQGAN, we employ Adam
optimizer with a fixed learning rate of 1× 10−4. We utilize
the high-quality images from widely-used DIV2k [1] and
Flickr2k [35] to train our VQGAN in the first training stage.

AWRCP. For the training setting of AWRCP, our man-
ner only need train at once on a mixed adverse weather
dataset Allweather from TransWeather [49], which has
18,069 adverse weather samples from the training dataset of
Snow100K, Outdoor-Rain and Raindrop. We augment the
training dataset with randomly rotated by 90, 180, 270 de-
grees and horizontal flip. The training image patches with
the size 256×256 are extracted as input data of our AWRCP.
We utilize Adam optimizer with the initial learning rate of
5×10−4, and adopt the CyclicLR to adjust the learning rate
progressively, where on the triangular mode, and the gamma
weight is 1.0, the base momentum is 0.9, the max learning
rate is 8×10−4 and the base learning rate is the same as ini-
tial one. We utilize Pytorch [42] framework to implement
our method with 8 NVIDIA A100 GPU with total batch size
of 160. For training stage, we train on the mixed adverse

weather dataset for 2000 epochs totally. We empirically set
λr, λc, λa, λs and λp as {1, 1, 1, 0.25, 0.2}. Please refer to
our Supplemental Materials for details of AWRCP’s archi-
tecture.

4.3. Quantitative Comparison.

We present a comparative analysis of metrics between
synthetic and real datasets, as summarized in the Table 1a,
1b, 1c. We re-trained recent multiple degradation removal
methods MPRNet [62], NAFNet [3] and Restormer [64]
as weather-specific methods on each benchmark for a fair
and convinced comparison. And We also re-trained uni-
fied adverse weather removal method TKL&MR [10] on
allweather [49, 33] training dataset for an exhaustive com-
parison. The results indicate that our proposed method out-
performs existing approaches by a significant margin across
three different degradation types.

4.4. Visual Comparison.

We also perform the visual comparison and the results
are shown in Fig.5 and 6. The results show that our method
can comprehensively eliminate snow degradation, includ-
ing fine snow marks and large snow spots. In contrast,
the latest WeatherDiffusion [41] method still exhibits some
slight snow degradation, and its ability to restore details is
not ideal. As for restoring harsh weather conditions, our
AWRCP method is very effective in removing complex haze
and rain marks and produces more attractive visuals com-
pared to previous methods.
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(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT

(a) input (b) All-in-One (c) TKL&MR (d) MPRNet (e) TransWeather

Figure 5. Visual comparisons of synthetic rain and fog image from the Outdoor-Rain [33] testing dataset. The image can be zoomed in for
improved visualization.

(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT

(a) input (b) All-in-One (c) TKL&MR (d) MPRNet (e) TransWeather

Figure 6. Visual comparisons of the synthetic rain and fog image from the Outdoor-Rain [33] testing dataset. The image can be zoomed in
for improved visualization.

4.5. Further analyzing VQ-GAN’s distortion in ob-
ject structures.

There are two main factors that cause structure dis-
tortion when using VQ-GAN: (i) According to rate-
distortion theory[48], the best achievable reconstruction re-
sult depends on the number of bits utilized. To achieve
the best possible reconstruction result, VQ-GAN requires
HWlog2K bits to represent a H × W image as codes,
where K is the codebook size. Therefore, a larger code-
book size is necessary in order to maintain reconstruction
quality while reducing resolution. However, VQ-GAN with
a large codebook can become inefficient and unstable be-
cause of the codebook collapse problem during the learn-
ing phase. Therefore, to trade efficiency and reconstruc-
tion performance, the version of VQ-GAN incorporated in

Table 2. Ablation studies on Parallel
Decoder Design.

Setting Model PSNR SSIM
i Dd 28.12 0.8924
ii Fixed G 23.01 0.8642
iii Finetune G 27.23 0.8719
iv Ours 31.39 0.9329

Table 3. Ablation studies on De-
formable Cross-Attention.

Setting Model PSNR SSIM
i WCA 30.21 0.9108
ii WCA+DeConv 30.71 0.9218
iii SFT 30.12 0.9185
iv Ours 31.39 0.9329

AWRCP has a codebook with a limited size, leading to in-
formation loss and distortion. (ii) Furthermore, the texture
quality of VQ-GAN is optimized by an adversarial loss in
our work, but the structure quality is not optimized by any
specific loss. So the reconstruction results of VQ-GAN can
have high-quality texture but suffer from structure distortion
problem.
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(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT

(a) input (b) All-in-One (c) TKL&MR (d) MPRNet (e) TransWeather

Figure 7. Visual comparisons of the real-world raindrop image. The image can be zoomed in for improved visualization.

Table 4. Ablation studies on Hierarchical Texture Warping Head.
Setting Model PSNR SSIM

i w/o HTWH 30.91 0.9261
ii w/o DeConv 31.21 0.9301
iii w/o CA&SA 31.44 0.9312
iv Ours 31.39 0.9329

4.6. Ablation Study

In order to verify the efficacy of each key component
of AWRCP, we conducted a series of ablation experiments.
Specifically, we discussed the effectiveness of Parallel De-
coder Design, Deformable Cross-Attention and Hierarchi-
cal Texture Warping Head on the Outdoor-Rain test set. All
of these variants were trained using the same settings as our
AWRCP.
Effectiveness of Parallel Decoder Design. In this sub-
section, we discuss the performance impact of decoder de-
sign. For exploring it, we propose 3 variants to replace the
parallel decoder design in AWRCP, which are: (i) using
only Dd to generate high-quality features from the code-
book; (ii) employing a fixed, pretrained G of VQGAN as the
decoder; and (iii) fine-tuning the fixed, pretrained G of VQ-
GAN as the decoder. Table. 2 shows that utilizing only Dd

is not powerful enough to achieve excellent performance.
Using a fixed, pretrained G or fine-tuning it yields unsatis-
factory results due to the huge divergence between image
reconstruction and image restoration. Our full decoder so-
lution delivers the best results in terms of PSNR and SSIM.
Effectiveness of Deformable Cross-Attention. To
demonstrate the superior performance of our Deformable
Cross-Attention, we compared it with several classical
feature fusion manners. As shown in Table. 3, we compared
with three different solutions: (i) Vanilla window-based
cross-attention [5] (WCA) to perform feature fusing;
(ii) utilizing Deformable convolutional layers to warp
high-quality features and employing WCA to fuse them

(WCA+DeConv); (iii) using classical Spatial Feature
Transform [52] to fuse different features (SFT). We
can observe that our manner achieves better restoration
performance compared with other solutions.
Effectiveness of Hierarchical Texture Warping Head.
To study the effectiveness of the proposed Hierarchical Tex-
ture Warping Head, three variant settings are presented in
Table. 4: (i) Without Hierarchical Texture Warping Head
(w/o HTWH); (ii) removing deformable convolution layer in
Texture Warping Module (w/o DeConv); (iii) removing both
channel attention layer and spatial attention layers in Tex-
ture Warping Module (w/o CA&SA). Results indicate that
each component of the TWM is essential for the head, as it
can improve the ability of the deformable convolutions to
cope with misalignment between different features due to
the presence of channel and spatial attention layers.

5. Conclusion
In this paper, we propose a novel paradigm for im-

proving adverse weather removal using codebook priors.
Through careful observation and analysis, we introduce a
high-quality codebook obtained from a well-trained VQ-
GAN model for the task of adverse weather removal. By
effectively leveraging codebook priors, AWRCP is able to
recover realistic texture details and achieve superior restora-
tion performance. Extensive experiments demonstrate that
the proposed framework achieves state-of-the-art perfor-
mance.
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