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Abstract

We propose a novel neural deformable model (NDM)
targeting at the reconstruction and modeling of 3D bi-
ventricular shape of the heart from 2D sparse cardiac mag-
netic resonance (CMR) imaging data. We model the bi-
ventricular shape using blended deformable superquadrics,
which are parameterized by a set of geometric parameter
functions and are capable of deforming globally and lo-
cally. While global geometric parameter functions and de-
formations capture gross shape features from visual data,
local deformations, parameterized as neural diffeomorphic
point flows, can be learned to recover the detailed heart
shape. Different from iterative optimization methods used in
conventional deformable model formulations, NDMs can be
trained to learn such geometric parameter functions, global
and local deformations from a shape distribution manifold.
Our NDM can learn to densify a sparse cardiac point cloud
with arbitrary scales and generate high-quality triangular
meshes automatically. It also enables the implicit learn-
ing of dense correspondences among different heart shape
instances for accurate cardiac shape registration. Further-
more, the parameters of NDM are intuitive, and can be used
by a physician without sophisticated post-processing. Ex-
perimental results on a large CMR dataset demonstrate the
improved performance of NDM over conventional methods.

1. Introduction

Cardiac magnetic resonance imaging (CMR) is the gold
standard for non-invasive evaluation of global cardiac func-
tion, i.e., blood pumping of the left ventricle (LV). Due to
the relatively slow imaging speed of MR, current clinical
CMR scan protocols are 2D-based. To recover the 3D ge-
ometry of the LV and right ventricle (RV), we usually scan
a stack of short axis (SAX) and several long axis (LAX) im-
ages. As shown in Fig. 1 (a-f), SAX images cover the range
from the base to the apex of the heart and LAX images in-

clude 2-, 3-, 4-chamber views. Although in-plane resolution
of the image is high enough to capture 2D cardiac anatom-
ical details, the through-plane resolution is much lower, in
order to reduce imaging time. Therefore, the SAX and LAX
images together can only produce a sparse 3D point cloud
of the heart, as shown in Fig. 1 (g). The dense and accurate
3D geometry reconstruction, as shown in Fig. 1 (h), is thus
needed for not only the downstream image analysis tasks,
such as the estimation of LV mass and volume[40], and 3D
cardiac wall strain fields [26, 17, 19], but also other clinical
applications, such as image-guided interventions [32] and
biomechanics finite element-based simulations [39, 37, 16].

3D cardiac geometry reconstruction has a long his-
tory [24, 26, 40, 23, 38, 8, 31, 20]. Most of the previ-
ous methods reconstruct the 3D shape from a sparse point
cloud generated from segmentation results on CMR images.
Those segmentations delineate the myocardium wall, blood
pool of the LV and RV, as shown by the green points in
Fig. 1. As one of the conventional methods, template mesh
adaptation first constructs a template mesh that describes
the mean shape of the target and then registers this template
with the sparse point cloud [38]. The resulting meshes are
usually not accurate for data that have large shape variation
from the mean shape, which leads to a generalization prob-
lem of this kind of approach.

We are inspired by the success of conventional de-
formable models (CDMs) for their efficiency in shape re-
construction and ability to provide intuitive and explainable
shape parameters [26, 28, 23]. CDMs can efficiently de-
scribe the target shape using a set of global and local de-
formation parameters. However, to fit a shape primitive
to a target shape, conventional methods use iterative opti-
mization and fit the primitive to the given data. We pro-
pose a neural deformable model (NDM), which is com-
posed of global deformations using parameter functions and
local deformations using neural diffeomorphic flows. It
can be trained to learn the global and local deformation
parameters, conditioning on the sparse given data, from a
shape distribution manifold. As shown in Fig. 1 (h), NDM
can accurately reconstruct the bi-ventricle shape from the
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Figure 1. Cardiac MR standard scan views and bi-ventricular shape reconstruction. (a-c) Short axis (SAX) views at the basal/middle/apex
region of the left ventricle (LV). (d-f) Long axis (LAX) 2/3/4 chamber (CH) views. Green points show the endo-/epi-cardial border of
LV and the border of right ventricle (RV). (g) Sparse cardiac point cloud with 10 SAX and 3 LAX slices’ data. (h) Bi-ventricular mesh
reconstructed from (g) by our neural deformable model, in which the LV endo-cardial, epi-cardial and RV surfaces are shown in red, blue
and yellow, respectively.

sparse point cloud, as shown in Fig. 1 (g). NDM also
enables implicit learning of dense correspondences among
shape instances, which facilitates accurate shape registra-
tion. Lastly, NDM estimates shape parameters of the heart
directly, which can be used by clinicians without sophisti-
cated post-processing.

Our key contributions in this work can be summarized
as follows: (1) We formulate a new shape modeling frame-
work which can capture global shape information and re-
cover complex shape details accurately; (2) We design a
novel neural deformable model and propose an efficient
coarse-to-fine learning paradigm to learn the global and lo-
cal deformation parameters from a shape distribution man-
ifold; (3) We show how such a shape modeling framework
can be trained to perform clinically meaningful 3D heart
shape reconstruction, registration and interpretation. Fur-
thermore, our method has the potentials to inspire shape re-
construction and registration tasks in other domains.

2. Related Work

2.1. 3D Heart Ventricle Reconstruction

Most existing 3D heart ventricle shape reconstruction
methods are based on template mesh registration. They aim
to register a template mesh which has a dense set of ver-
tices to a sparse input point cloud. Early works [24, 26, 40,
23, 38] use finite element shape models to take advantage
of basis function interpolation and extrapolation and per-
form a least square fitting procedure to fit the initial mesh
to the sparse visual data. The fitting procedure is a time-
consuming iterative process. A recent learning-based tem-
plate mesh registration work [8] can learn to reconstruct bi-
ventricular shape from ground truth shape data, enabling
the usage of not only observed sparse visual data but also
a shape distribution manifold. However, the low resolution
of its 3D binary volume, used as the bridge between the in-
put and template for shape feature transferring, decreases
the 3D shape reconstruction accuracy. The main drawback
of the template mesh registration method is the lack of gen-
eralization, when the shape variation between the template

and the target is too large to accurately register them. Our
method decomposes the geometry correspondence between
the shape primitive and the target into a set of global and lo-
cal deformation parameters, which are learned in a coarse-
to-fine fashion, resulting in accurate shape reconstructions
even in the presence of large variations between the shape
primitive and the target.

2.2. Deformable Models

Deformable models [21, 34, 36, 35, 10] are in the form
of 2D curves, 3D surfaces or volumes whose points are pa-
rameterized in the material coordinate domain. Such mod-
els, also called deformable primitives, are deformed under
the effect of external and internal forces. External forces
are computed from the visual data, to drive the model to
fit the target data. Internal forces are defined within the
model itself, to preserve its smoothness during deforma-
tion. In [27, 26], constant geometric parameters of a prim-
itive are extended to parameter functions to capture local
shape variations. In our work, due to the aforementioned
advantage, we use this parameter function-based primitive
representation and combine it with a neural diffeomorphic
flow [25, 15, 33] for local deformations, to further improve
shape reconstruction accuracy.

2.3. Diffeomorphic Flow

Diffeomorphic flow is a spatial transformation that is
smooth and whose inverse is smooth. In computational
anatomy modeling of the brain, large deformation diffeo-
morphic metric mapping (LDDMM) has been used to com-
pute a time-dependent velocity vector field based on an or-
dinary differential equation (ODE) [3]. To overcome the
computation complexity of LDDMM, a stationary veloc-
ity field (SVF) is introduced to parameterize diffeomor-
phisms [1]. Recent work on neural ordinary differential
equations (NODE) [7, 6] enables the solution of neural dif-
feomorphic flow [25, 15, 33]. We propose to integrate pa-
rameter function-based primitive and neural diffeomorphic
flow parameterized local deformation as a novel neural de-
formable model, which enables the efficient coarse-to-fine
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Figure 2. Geometry representation of a deformable surface model.
(a) Material coordinate domain Ω. (b) The shape primitive and de-
formed surface mapped from the material coordinate domain (il-
lustrated with w = 0) by a neural deformable model (NDM).

learning of its geometric and deformation parameters from
a shape distribution manifold.

3. Method
In this section, we introduce a neural deformable model

(NDM) for bi-ventricle shape reconstruction, mesh genera-
tion and shape registration. We first provide the formulation
of blended deformable superquadrics and then introduce a
learning algorithm that can be applied to the NDM.

3.1. General Geometry and Parameter Functions-
based Deformable Models

As shown in Fig. 2, we formulate a 3D object surface
model in space using material coordinates m = (u, v, w),
which are defined on a domain Ω. Given an inertial frame of
reference Φ in 3D, the positions of points q on the surface
model relative to Φ are represented by the following vector-
valued function of m:

q(m) = (x(m), y(m), z(m))
⊤
, (1)

where ⊤ is the transpose operator. To model the object pose,
we introduce a model-centered reference frame ϕ and rep-
resent the surface points positions as

q = c+Rs+ d, (2)

where c is the origin of model frame ϕ, R is the rotation
matrix1 that describes the orientation of ϕ, s is a shape
primitive defined in the model frame ϕ, and d is a local
deformation function.

A shape primitive s could be a generalized cylinder [14],
geon [4], hyperquadric [18], or superquadric [35]. To model
the bi-ventricular shape, we pick a specific kind of su-
perquadric, an ellipsoid, as our primitive:

ee = a0

a1 cos u cos v
a2 cos u sin v

a3 sin u

 , (3)

1We use a quaternion with unit magnitude to represent it.
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Figure 3. (a) A deformable shape primitive with aspect ratios a1,
a2, a3. (b) Blended deformable shape primitives for the modeling
of bi-ventricular geometry. (c) Axis offset deformations exo, eyo
that translate the center of the ellipse from ce to c′e.

where −π/2 ≤ u ≤ αw, −π ≤ v < π, a0 > 0,
0 ≤ a1, a2, a3 < 1. Specifically, a0 is a scale parame-
ter, and a1, a2 and a3 are the aspect ratio parameters along
the x-, y- and z-axes, respectively. We show an example
ellipsoid in Fig. 3 (a). To create a deformable shape primi-
tive with more intuitive deformation degrees of freedom, we
replace the constant parameters in a superquadric ellipsoid
with parameter functions [27] of u,w:

e = e(m; a0(w), a1(u,w), a2(u,w), a3(u,w))

= a0(w)

a1(u,w) cos u cos v
a2(u,w) cos u sin v

a3(u,w) sin u

 .
(4)

3.2. Shape Blending for Bi-Ventricular Geometry

As shown in Fig. 3 (b), the LV endo- and epi-cardial sur-
faces s(u, v, w = 0, 1) could be modeled by a two-layer
deformable shape, defined in Eq. (4), with w = 0, 1. Con-
sidering the significant shape difference of RV from LV, we
use a blended shape to model the RV. A single blended
shape is the combination of two component shape primitive
parts [10]. We cut out portions of component primitives and
join the remaining portions together:

s(u, v, 2) =

{
e((u, v, 2); ., ., a2(u, 2), .) if 0 ≤ v < π

e((u,−v, 3); ., ., a2(u, 3), .) if − π ≤ v < 0
,

(5)
where e(u, v, 2) and e(u, v, 3) only differ by a2(u). In this
way, we model the bi-ventricular geometry as blended sur-
faces s(u, v, w) with w = 0, 1, 2, α0 = α1 = π/6, α2 = π.

Although (geometry) parameter functions greatly in-
crease the capturing capacity of shape features beyond con-
stant parameter-based superquadrics, we can further apply
global deformations to the underlying shape primitive e
with continuous deformation parameter functions. Here, we
apply axis offset deformations To to e:

s = To(e; exo(u), eyo(u)) =

ex + exo(u,w)
ey + eyo(u,w)

ez

 , (6)
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where exo(u,w), eyo(u,w) are axis-offset parameter func-
tions along the x- and y- axes, respectively. We show an ex-
ample of To deformed ellipsoid in Fig. 3 (c). It is obvious
that To describes the bending deformation along the long
axis of the heart ventricle. Note that, although the parameter
functions are defined with local u, they are of “global” de-
formation effect on each u. Therefore, we call them global
parameters in our work.

3.3. Diffeomorphic Point Flow for Local Deforma-
tions

In Eq. (2), we use local deformation d to describe de-
tails of complex shapes. In our NDM, local deformation is
modeled as diffeomorphic point flows. Let D(q, t) : V ⊂
RN×3 × [0, 1] 7→ V ⊂ RN×3 be a time t ∈ [0, 1] pa-
rameterized spatial mapping such that, for N points q =
q(0) = D(q, 0), q′ = q(1) = D(q, 1) are the final trans-
formed points, and d = D(q, 1)−D(q, 0). A diffeomorphic
mapping is achieved as the trajectory and integration of a
smooth velocity field v : V ⊂ RN×3× [0, 1] 7→ V ⊂ RN×3,
which is governed by an ODE, also known as the flow equa-
tion [12], as follows:

∂D(q, t)

∂t
= v(D(q, t), t) s.t. D(q, 0) = q. (7)

The initial value problem (IVP) in Eq. (7) could be solved
with a neural ODE solver [7] with the dynamic function
the velocity field. According to the Cauchy-Lipschitz the-
orem [5], if the velocity field is Lipschitz continuous, the
resulting transform D is a bi-Lipschitz map, which is also a
diffeomorphism in essence [11].

In this work, we consider the pose (c and R) and shape
parameter functions in the primitive s as generalized defor-
mations. Therefore, our neural deformable model consists
of the following deformation parameter vector:

qN = (q⊤
g , q

⊤
d )

⊤, (8)

where qg = (c⊤,R⊤,a0,a1,a2,a3, exo, eyo)
⊤ is the

global deformation parameter vector and qd = d is the local
deformation parameter vector.

3.4. Architecture of NDM

We learn qN for each shape instance in a coarse-to-fine
fashion: we first learn qg and then we learn qd. As shown
in Fig. 4, our NDM has three branches that predict each qN

of the LV endo-, epi-cardial surfaces and the RV surface, re-
spectively. We use a shared point transformer (PT) encoder
and three point transformer decoders to learn shape embed-
dings from a given sparse point cloud. The PT architecture
is the same as in [41] for semantic segmentation, except that
we replace its last multi-layer perceptron (MLP) layer with
a global average pooling (GAP) layer to get global shape

embedding z. With z, we first use MLPs to predict the
global deformation parameter vector qg . The shape primi-
tive s is then deformed by qg:

sg = s ◦ qg, (9)

where ◦ describes global deformations, and sg is the re-
sulting globally deformed shape primitive, which captures
the coarse target shape features, as shown in Fig. 4. As we
will illustrate next, during training of NDM, we exploit a
marginal space learning method [42] to enforce the global
deformations to account for as much of the target shape as
possible. Then we use a conditional diffeomorphic point
flow generation block D to learn local deformations:

∂D(q; z, t)

∂t
= v(D(q, t); z, t) s.t. D(q; z, 0) = sg.

(10)
We call D the neural ordinary equation (NODE) block. We
use the same NODE block as in [15], except that we exclude
its instance normalization layer. By solving Eq. (10), we
get the final reconstructed shape Q′ = D(q; z, 1). From
Fig. 4, the local deformations can further refine target shape
details. As such, our coarse-to-fine architecture of NDM
results in accurate target shape reconstructions.

3.5. Triangular Mesh Generation

Both global and local deformations in qN are smooth
with inverse smooth. Therefore, qN is a diffeomorphic
mapping and the final shape reconstruction result Q′ pre-
serves the topology of shape primitive s. Since s is an
ellipsoid, we can get the corresponding mesh by connect-
ing any three nearest-neighboring surface vertices. We then
take the edges of this ellipsoid mesh as those of our target
mesh. In this way, we can automatically reconstruct a trian-
gular mesh M from Q′.

3.6. Shape Registration

NDM implicitly learns dense correspondences between
different shape instances, which can be used to register
shapes. As shown in Fig. 5, we first use NDM to fit the
primitive s to the targets M1 and M2. The dense cor-
respondences learned by NDM will map a point q of the
primitive to q1 and q2 for M1 and M2, respectively. Ob-
viously, q1 may not coincide with the point p1 of M1. For
each point p1 of M1, we first look up the nearest neigh-
bouring point q1 reconstructed by NDM, then we map p1 to
q2 via the correspondence p1 → q1 → q → q2. In this way,
we can register M1 to M2.

3.7. Model Training

We use the Chamfer distance (CD) loss [13] to encourage
the geometric similarity between vertices Q′ of the recon-
structed mesh and the ground truth point cloud Q:

Lgeo = LCD(Q′,Q). (11)
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Figure 4. Neural deformable models (NDMs) for bi-ventricular cardiac point cloud upsampling and automated triangular mesh generation.
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Figure 5. Shape registration via the implicitly learned dense corre-
spondence by NDM.

We also include two regularization losses. The first one is
to regularize the amount of local deformations:

Ld = ∥qd∥22 , (12)

where qd = Q′ − sg is the local deformation field. The
second one is to regularize the smoothness of the local de-
formation field:

Ls = ∥▽qd∥22 , (13)

where ▽qd is the gradients of qd over the material coor-
dinates u and v. In summary, the total loss function is the
weighted sum of the geometric similarity loss and the local
deformation regularization terms:

L = Lgeo + λdLd + λsLs, (14)

where λd and λs are the weighting hyper-parameters.
The learning of qN is to search the optimum deformation

parameters. The search space composed of qN is so large
that end-to-end training by optimizing Eq. (14) leads to slow
convergence. We adopt the marginal space learning (MSL)

method [42, 30] to train NDM. More specifically, we de-
compose the training process into a chain of sub-processes,
in which we gradually add one component of the deforma-
tion parameter vector qN into NDM at a time. In this way,
each training sub-process only focuses on one individual
deformation component, to speed up the convergence.

4. Experiments

4.1. Dataset and Pre-Processing

We use a large public 3D CMR dataset [2] of 1, 331 nor-
mal subjects to evaluate our method. Each subject contains
the end-diastole (ED) and end-systole (ES) phases. Both
the low resolution (LR) and high resolution (HR) segmen-
tation masks of each subject are provided in this dataset.
We took the HR data, which was scanned by 3D high spa-
tial resolution of 1.25×1.25×2 mm3 CMR protocols [9] as
our experimental dataset. We extracted vertices from the bi-
ventricular mesh reconstructed from the segmentation mask
volume to form a dense ground truth point cloud. Next, we
generated a sparse point cloud as the input by mimicking
standard clinical 2D CMR scanning. We first determined
the LAX and SAX view planes. Then we sliced the seg-
mentation mask volume at these planes and extracted points
along the segmentation contours. We downsampled these
points using farthest point sampling (FPS) [29] to a fixed
number. We sampled 3 LAX and 10 SAX planes and we
set the input point number as 5, 600. We randomly split the
dataset into 900, 200 and 231 subjects as the training, val-
idation and test sets, respectively. For the pre-processing,
we centered each input point cloud at (0, 0, 0) by subtract-
ing the center coordinates and linearly normalized x, y, z
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coordinates to [−0.85, 0.85]. We also rotated each data set
to align the center line of LV and RV with the y-axis.

4.2. Evaluation Metrics

For quantitative evaluation of the geometric similar-
ity, we followed [8, 22] to use Chamfer distance (CD),
earth mover’s distance (EMD) and point-to-surface distance
(P2F) to measure the geometric similarity between the den-
sified point cloud and the ground truth. For the evaluation
of generated mesh quality, we followed [33] to compute the
normal consistency (NC), easy non-manifold face (ENF) ra-
tio (with δ = 0), and self-intersection (SI) ratio. We also
used CD, EMD, P2F to measure the shape registration accu-
racy. The lower the evaluation metric, the better the perfor-
mance, except for NC, which is the opposite. Note that we
do all the quantitative evaluation in the original data space,
not in the normalized data space.

4.3. Baseline Methods

We compared our method with a state-of-the-art (SOTA)
3D bi-ventricular geometry reconstruction method MR-
Net [8], and a SOTA 3D manifold mesh generation method
NMF [15]. For MR-Net, we first randomly sampled a data
set from the training dataset; then we used our method to
fit the primitive to the ground truth shape; the reconstructed
shape was used as the template mesh. For NMF, the tem-
plate spheres were replaced by the same initial shape prim-
itives as ours. We used their publicly available codes and
followed the same setting of the original work to train their
networks with our training dataset. Note that we computed
the geometric similarity losses of LV-endo, LV-epi and RV
surfaces separately for the training of our method, MR-
Net and NMF. We also trained our model in an unsuper-
vised fashion (Ours-un), with the input sparse point cloud as
the ground truth, which is similar to conventional iterative
optimization-based deformable models. We compared our
accuracy of shape registration based on the learned dense
correspondence with MR-Net, NMF and Ours-un.

4.4. Implementation Details

We implemented NDM with PyTorch. And we set the
hyper-parameters λd = 0.1, λs = 0.05. Adam optimizer is
used with a learning rate of 5e−4 to train our model with a
batch size of 2. During training, we sampled 5, 000, 5, 500
and 5, 000 points from the reconstructed LV-endo, LV-epi
and RV meshes, respectively. All models were trained on
an NVIDIA Quadro RTX 8000 GPU. For evaluation, we
uniformly sampled the same number of 3, 000 points, on
the predicted mesh as the ground truth for the calculation
of CD, EMD and P2F for the LV-endo, LV-epi and RV sur-
faces, respectively.

Phase Method CD ↓ EMD ↓ P2F ↓ NC ↑ ENF ↓ SI ↓

ED

MR-Net 3.09 6.05 1.47 0.762 1.48 0.035
NMF 6.31 6.50 4.40 0.759 1.46 0.019
Ours-un 5.16 6.20 3.11 0.751 1.45 0.002
Ours 2.73 5.80 1.17 0.765 1.46 0

ES

MR-Net 2.37 4.50 1.23 0.750 1.47 0.068
NMF 3.74 4.74 2.46 0.752 1.46 0.027
Ours-un 2.90 4.48 1.63 0.747 1.45 0.002
Ours 1.91 4.07 0.873 0.758 1.46 0

Table 1. Mean Chamfer distance (CD) (mm), earth mover’s dis-
tance (EMD) (mm) and point-to-surface distance (P2F) (mm) for
geometric similarity evaluation. Mean normal consistency (NC),
easy non-manifold face (ENF) ratio and self-intersection (SI) ratio
for cardiac mesh quality evaluation.

Method CD (mm) ↓ EMD (mm) ↓ P2F (mm) ↓
MR-Net 2.44 4.74 1.33
NMF 3.76 4.92 2.45
Ours-un 3.03 4.41 1.91
Ours 1.94 3.95 1.00

Table 2. Mean Chamfer distance (CD), earth mover’s distance
(EMD) and point-to-surface distance (P2F) for shape registration.

4.5. Results

4.5.1 Shape Reconstruction Performance

In Table 1, we show the mean quantitative results of bi-
ventricle shape reconstruction for ED and ES phases. More
detailed quantitative results of LV-endo, LV-epi and RV sur-
face reconstruction are presented in Supplementary Mate-
rial. We also show an example in Fig. 6. Our method sig-
nificantly outperforms baseline methods for both geometric
similarity and mesh quality aspects. MR-Net cannot han-
dle large shape variations between the template mesh and
the target, resulting in significant shape artefacts in the re-
constructions. Such artefacts could produce self-intersected
local surfaces, as demonstrated by the SI value. NMF uti-
lizes multiple deformation blocks to map the template to
the target. However, such multiple deformation method can
only learn coarse shape features. It cannot recover complex
shape details, which gives the worst geometric similarity
between the reconstruction and the ground truth. Ours-un
method only makes use of observed visual data, which is
at the risk of overfitting to sparse observation. Our NDM
method deals with shape reconstruction in a coarse-to-fine
fashion and can learn the implicit shape correspondence
from a shape manifold. Therefore, it can accurately re-
construct the bi-ventricular shape and generate high quality
meshes.

4.5.2 Shape Registration Performance

In Table 2, we show the mean quantitative results of shape
registration from ED phase to ES phase. More detailed
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Figure 6. Bi-ventricle shape reconstruction results. For each method, we show results of both the ED and ES phases, in which the LV
endo-cardial, epi-cardial and RV surfaces are shown in red, blue and yellow, respectively.

MR-Net NMF Ours-un OursBefore Registration

RV

LV Endo

LV Epi

Figure 7. Bi-ventricle shape registration results. For each method,
we show registration result from the ED phase to the ES phase, in
which the (warped) ED and ES phases are shown in red and blue,
respectively.

quantitative results of LV-endo, LV-epi and RV surface
registration are presented in Supplementary Material. We
also show an example in Fig. 7. The shape registration is

achieved via the learned dense shape correspondence. Thus,
the shape registration accuracy reflects the accuracy of im-
plicitly learned dense correspondence. Our method outper-
forms all baseline methods by a large margin. The results
indicate that our method has the potential of achieving accu-
rate heart motion tracking. Note that our method learns 3D
dense correspondence between heart shape instances from
information extracted from 2D image stacks. This is of
great importance for the 3D heart motion field estimation
for 2D-based cardiac MR imaging.

4.5.3 Intuitive Interpretation of NDM Parameters

NDM is not only powerful for shape reconstruction and reg-
istration, but also enables intuitive interpretation of the heart
geometry and deformation parameters, which is a distinct
property not shared by any baseline methods. In Fig. 8,
we show the five different kinds of parameters of the left
ventricle (LV) endo- and epi-cardial surfaces calculated on
the test dataset. We can obtain intuitive information from
these plots. The aspect ratios a′1(u) = a1(u) cos u and
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Figure 8. Learned left ventricle geometric and global long axis off set parameters by NDM. Curves show the mean values; color bands
show the standard deviations.

A1                                               A2                                           A3                                        Ours

Figure 9. Ablation study results of the LV-epi surface reconstruc-
tion. Note the shape reconstruction differences from different
models near the basal region.

Model Ld Ls CD (mm) ↓ SI ↓
A1 ✗ ✗ 4.49 0.049
A2 ✓ ✗ 3.15 0.049
A3 ✗ ✓ 2.88 0.001
Ours ✓ ✓ 2.73 0

Table 3. Ablation of the local deformation regularization terms in
NDM on ED phase data.

a′2(u) = a2(u) cos u describe the short axis LV “radius”
distribution range along the long axis of the heart. The as-
pect ratio a′3(u) = a3(u) sin u describes the long axis LV
“radius” distribution range along the long axis of the heart.
The axis offsets e1(u) (exo(u)) and e2(u) (eyo(u)) describe
the long axis bending information. Importantly, all of these
parameters can be directly used by clinicians without any
complex post-processing. We can also derive other use-
ful information about the LV from these basic parameters,
based on multiple temporal data points. For example, by
comparing a′1, a′2, a′3 for ED phase and ES phase, we get
an LV contraction metric. By studying the metrics based on
populations, we can immediately build an LV myocardium
wall motion atlas.

4.5.4 Ablation Study

In Table 3, we present the effects of local deformation regu-
larization terms proposed in our NDM model. We also show
an example of LV-epi surface reconstruction in Fig. 9. Our
method is different from MR-Net, which uses graph con-
volutional networks and mesh-based metrics for the defor-
mation regularization. We use NODE to learn a diffeomor-
phism point flow. The advantage of this method is that we
can get rid of complex geometric computation in order to
learn plausible shape reconstructions. However, as shown
by model A1, A2 and A3, we still need explicit regular-
ization to achieve the goal. The reconstruction differences
of these models are manifested mainly around the basal re-
gion, where distinct shape variations are observed. Without
the explicit local deformation regularization terms, even the
use of NODE could lead to unpleasant shape reconstruc-
tion overfitting. However, based on our novel design of
the NDM model, we can use simple local deformation total
amount (Ld) and neighbouring smoothness (Ls) regulariza-
tion to achieve accurate shape reconstructions.

5. Conclusion
In this work, we proposed a novel neural deformable

model to reconstruct bi-ventricular shape from sparse vi-
sual data. We inherited a conventional parameter function-
based deformable model and incorporated neural ordinary
differential equation blocks for local diffeomorphic defor-
mations. We designed a coarse-to-fine learning paradigm
to make NDM successfully learn from a shape distribution
manifold. Based on such a learning paradigm, only using
a simple local deformation regularization could overcome
potential overfitting problems. Our NDM model can not
only reconstruct bi-ventricular shape accurately, but also en-
able accurate 3D shape registration. More importantly, our
NDM models provide clinicians with intuitive heart shape
and deformation parameters in a straightforward manner.
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