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Abstract

Task-Free Continual Learning (TFCL) aims to learn new
concepts from a stream of data without any task informa-
tion. The Dynamic Expansion Model (DEM) has shown
promising results in TFCL by dynamically expanding the
model’s capacity to deal with shifts in the data distribution.
However, existing approaches only consider the recognition
of the input shift as the expansion signal and ignore the cor-
relation between the newly incoming data and previously
learned knowledge, resulting in adding and training unnec-
essary parameters. In this paper, we propose a novel and
effective framework for TFCL, which dynamically expands
the architecture of a DEM model through a self-assessment
mechanism evaluating the diversity of knowledge among ex-
isting experts as expansion signals. This mechanism en-
sures learning additional underlying data distributions with
a compact model structure. A novelty-aware sample se-
lection approach is proposed to manage the memory buffer
that forces the newly added expert to learn novel informa-
tion from a data stream, which further promotes the diver-
sity among experts. Moreover, we also propose to reuse
previously learned representation information for learning
new incoming data by using knowledge transfer in TFCL,
which has not been explored before. The DEM expan-
sion and training are regularized through a gradient up-
dating mechanism to gradually explore the positive forward
transfer, further improving the performance. Empirical re-
sults on TFCL benchmarks show that the proposed frame-
work outperforms the state-of-the-art while using a rea-
sonable number of parameters. The code is available at
https://github.com/dtuzi123/SEDEM/.

1. Introduction
An ideal artificial intelligence system should be able to

constantly learn and acquire new concepts from a changing
environment all the time. Such a capability, which is in-
creasingly emerging as a hot topic in AI, is referred to as
continual/lifelong learning. However, most modern Deep
Learning models fail to achieve the goal of continual learn-
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Figure 1. The diversity evaluation between experts in the Self-
Evolved Dynamic Expansion Model (SEDEM). We draw all sam-
ples from the memory buffer as inputs for each expert. We com-
pare the outputs {y1, · · · , yk} between all previously learnt ex-
perts and the currently k-th updated expert, and use Eq. (1) to
check the model expansion.

ing (CL) since they rewrite previously learnt parameters to
fit new tasks and then suffer from a significant drop in per-
formance on the past tasks. Such a phenomenon is called
catastrophic forgetting [37, 39].

Current work on reducing forgetting in continual learn-
ing (CL) falls into three categories: Memory/experience re-
play [6], regularisation-based approaches [29], and dynamic
network architectures [46]. A simple and efficient approach
among these methods is to maintain a fixed-capacity mem-
ory buffer with training examples, which replays past ex-
amples to the model along with learning new tasks. Reg-
ularisation approaches can be used on memory buffers to
further improve the performance in continual learning [53].
In addition to the memory-based methods, the dynamic ex-
pansion architecture approach increases the capacity of the
model as it learns new tasks, providing better generalisation
performance [16].

Although previous work in CL has shown promising re-
sults, most approaches assume that the task’s identity is
known during training. Nevertheless, such a learning sce-
nario is rarely encountered in the real world. In this work,
we study a more challenging CL scenario called Task-Free
Continual Learning (TFCL) [4], where a model is trained on
a data stream without accessing the task information at any
point in time. Current memory-based approaches can be
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extended for TFCL by developing an efficient sample selec-
tion strategy [3] that selectively stores samples and replays
them at each training time. However, these approaches
would suffer from the interference between the probabilis-
tic representations of old and the newly seen samples [32].
This issue can be solved by using the dynamic expansion
model (DEM) [33, 43, 67] which increases the model’s ca-
pacity to handle incoming samples while freezing previ-
ously learnt experts to preserve prior knowledge. The main
challenge for DEMs is that of learning a compact model
structure without sacrificing much performance. Learning
a lightweight DEM in TFCL can have two main advan-
tages, such as scalability, learning infinite data streams, and
fast inference at the testing phase. However, existing DEM
methods fail to achieve this goal since they do not con-
sider the knowledge diversity among experts when expand-
ing their architecture, resulting in experts learning redun-
dant information.

In this paper, we address two core issues in TFCL, yet
untouched before.
First, instead of previous methods directly detecting the out-
lier samples as expansion signals, we solve the trade-off
between model size and performance by formulating the
expansion process for a DEM as the knowledge diversity
evaluation in the mixture system. Specifically, we evaluate
the diversity among the mixture’s experts through a self-
assessment mechanism. This allows us to control easily the
growth of the model’s complexity. In addition, maintaining
the diversity among experts can allow us to model more un-
derlying data distributions with a compact structure. We call
our mixture system the Self-Evolved Dynamic Expansion
Model (SEDEM) since it evaluates the diversity of the sys-
tem, as shown in Fig. 1, where we assume to have already
learnt k experts (classifiers) (‘Expert 1’,. . . , ‘Expert k’). We
draw all samples from a memory buffer as inputs for each
expert, and then we compare the outputs {y1, . . . , yk} be-
tween all previously learnt experts (‘Expert 1’ ,. . . , ‘Expert
k-1’) and the currently updated expert (‘Expert k’) as the di-
versity score. Expansion signals are provided if and only if
this diversity score is above a certain threshold controlling
the model’s complexity.
Second, as most current works do not explore the benefit
from the knowledge transfer in TFCL, we propose incor-
porating feature representations extracted from all previ-
ously learned experts into a currently updated expert. We
propose the Dynamic Expansible Knowledge Mask Mech-
anism (DEKMM), which generates soft masks to regu-
late these representations when learning incoming samples.
DEKMM continuously updates mask values to progres-
sively explore potential knowledge transfer through a gra-
dient optimisation mechanism. The DEKMM has several
advantages : (1) It does not require the task information for
knowledge transfer; (2) It can find the optimal mask values

maximising the benefits from the positive knowledge trans-
fer; (3) It can dynamically create new mask parameters to
adapt to the expansion of SEDEM without forgetting.

Moreover, a novelty-aware sample selection approach is
proposed to selectively store those training samples that are
sufficiently different from the knowledge preserved by all
previously learnt experts. Such a selective approach encour-
ages the current expert to learn novel information, further
promoting the diversity among experts and improving the
performance of SEDEM.

We perform a series of experiments demonstrating that
the proposed methodology outperforms the state-of-the-art
under all settings while employing fewer experts than other
DEM methods, which is consistent with our theoretical re-
sults. We summarise our contributions as follows :

• We propose a new model for TFCL, namely the Self-
Evolved Dynamic Expansion Model (SEDEM) which
evaluates the diversity among experts as the expansion
signals, inducing a diverse and compact mixture system.

• We propose a novelty-aware sample selection approach
which allows the current expert to learn novel samples,
further promoting the diversity among experts.

• We propose the Dynamic Expansible Knowledge Mask
Mechanism (DEKMM) to regulate previously learnt rep-
resentation information when learning incoming data in
TFCL, maximising the positive knowledge transfer.

• We provide theoretical guarantees for the proposed SE-
DEM, which are consistent with the empirical results.

• The proposed model achieves state-of-the-art perfor-
mance in standard TFCL benchmarks.

2. Related Work

Memory based methods : One efficient approach to relieve
catastrophic forgetting in TFCL is by storing a subset of
training samples for each task into a memory buffer [6, 7,
9, 19, 44, 49, 54, 55, 58]. During subsequent tasks learning,
the memory buffer replays samples that are combined with
newly given data for training the model. The memory-based
approaches have also been enabled with regularization, re-
sulting into a unified optimization framework [29, 26, 36,
5, 11, 10, 35, 15, 47, 53, 38, 2, 20, 72, 21, 23, 17, 14, 52],
where the replayed samples are used to penalize the change
of some network parameters that are important to past tasks
during the optimization. In addition, training a generator to
produce past samples by using a Variational Autoencoder
(VAE) [28] or a Generative Adversarial Nets (GANs) [18]
was considered in several continual learning approaches
[1, 42, 43, 48, 73, 59, 62, 71, 69, 68, 63, 66, 61, 70, 64, 60].
These methods are characterized by the ability to generate
infinite numbers of samples [42] with a fixed size model
which can be used for a growing number of tasks.
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Dynamic Expansion Approaches : The memory-based ap-
proaches, including the generative replay mechanism, are
not scalable for learning an unlimited number of tasks
due to their fixed memory capacity and because of requir-
ing repeated training processes [73]. Recently, the mix-
ture/ensemble model, enabled with an expansion mecha-
nism, was proposed to deal with continual learning chal-
lenges [12, 22, 34, 40, 43, 46, 56, 57, 74, 41, 25, 16]. These
models usually achieve optimal performance on past tasks
while outperforming static models on the multi-domain set-
ting due to their scalability [56].
Task-Free Continual Learning (TFCL) : Recent works have
drawn attention to the TFCL and one promising approach
is to employ a memory buffer for storing selected past
learnt samples. This approach was first investigated in [4]
for training a classifier under TFCL and then it was ex-
tended in the Maximal Interfered Retrieval (MIR) [3] to
train both VAEs and classifiers through a retrieval mech-
anism that selectively stores the most perturbed samples.
Aljundi et al. [5], considered the Gradient Sample Selec-
tion (GSS) as a constrained optimization problem for the
memory buffer. More recently, the sample selection was im-
plemented through a learner-evaluator framework, called
the Continual Prototype Evolution (CoPE) [13], which aims
to maintain a balanced memory buffer, providing improved
performances on imbalanced data streams. Meanwhile,
the Gradient-based Memory EDiting (GMED) modifies the
memorized samples such that to increase the loss in the up-
coming model updates. However, all these approaches rely
on a single memory system, which is not scalable for learn-
ing infinite data streams. The Dynamic Expansion Model
(DEM) approach to TFCL, such as in the Continual Un-
supervised Representation Learning (CURL) [43], aims to
address the learning of infinite data streams. CURL dy-
namically builds new inference models to capture new ex-
periences from a data stream. A Dirichlet process-based
expansion mechanism aiming to increase the model’s ca-
pacity was used in [33]. However, these approaches ignore
the knowledge diversity among the experts when perform-
ing the expansion leading to non-optimal architectures.

3. Methodology
In this section, we describe a new model for TFCL,

namely the Self-Evolved Dynamic Expansion Model (SE-
DEM). We start with defining the problem setting and basic
network architecture.

3.1. Preliminary

Let DS
r = {xS

j , y
S
j }

NS
r

j=1 and DT
r = {xT

j , y
T
j }

NT
r

j=1 be the
training and testing set of the r-th domain/dataset, where
xS
j and ySj are the data sample and its associated class label.

Let V be a data stream consisting of samples from DS
r , ex-

pressed as V =
⋃n

j=1 Br
j , where Br

j ∈ DS
r denotes a batch

of samples (in the experiments the batch size is 10) and n
represents the total number of training steps. During a cer-
tain training step (Sj), the model only accesses Br

j while all
previously seen data batches {Br

1, · · · ,Br
j−1} are not avail-

able. After all training steps are completed, we evaluate the
model’s performance on the testing set DT

r . In addition to
the existing TFCL setting, we also consider a data stream
V consisting of several different data domains, expressed
as V =

⋃w
r=1

⋃n
j=1 Br

j where w is the number of datasets.
This setting is more challenging than those currently con-
sidered for CL since the data stream V consists of several
different underlying data distributions.

Expert in SEDEM : Let Q = {Q1, · · · ,Qk} be a SE-
DEM model with k experts, where each Qj consists of
a feature extractor fωj

: X → Z and a linear classifier
Cγj

: Z → Y where X , Z and Y represent the space of
the sample, features and class labels, respectively. We em-
ploy fωj ◦ Cγj : X → Y to denote the prediction process
where {ωj , γj} are the parameters of expert Qj .

3.2. Expansion mechanism based on self-evaluation

Existing expansion criteria usually detect the outlier
samples as expansion signals [33, 43] and ignore consid-
ering that the experts should learn an information diver-
sity when adding new expert components, leading to non-
optimal network architectures. In this section, we propose
a novel dynamic expansion mechanism that evaluates the
distance between the currently updated expert and the other
experts, as an expansion signal. Let Ci denote a memory
buffer of fixed capacity (the maximum number of memo-
rized samples is λ) where the subscript i denotes that Ci is
updated at Si. Suppose that we have trained SEDEM with
k experts on Ci at Si, where Qk is the currently updated
expert while all previously learnt experts {Q1, · · · ,Qk−1}
are frozen to preserve past knowledge. The similarity mea-
sure between Qk and {Qj | j = 1, · · · , k− 1} at Si, is used
as an expansion signal :

max
{
Lb(Q1,Qk), · · · ,Lb(Qk−1,Qk)

}
≤ β , (1)

where Lb(Qj ,Qk) is the similarity measure function :

Lb(Qj ,Qk) =
1

m

m∑
t=1

{
Le(fωj ◦ Cγj (xt), fωk

◦ Cγk
(xt))

}
(2)

where xt ∼ Ci. Le(y, y
′) returns 1 if y = y′, otherwise,

returns 0. A large value for the left-hand-side expression
of Eq. (1) indicates that adding Qk can maintain the di-
versity of knowledge among the experts. We dynamically
add a new expert (Qk) to Q if Eq. (1) is fulfilled during
the training. The expansion threshold β controls the trade-
off between the model size and generalization performance
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Figure 2. The learning procedure of the proposed SEDEM having k experts, where we omit the expert selector, DEKMM and the testing
phase for simplicity. First, at the training step (Si), we perform the sample selection (Eq. (4)) if the memory buffer size increases more than
λ. Second, we only update the current Qk expert’s classifier and VAE, using Eq. (8) and Eq. (9). Third, we check the model expansion
using Eq. (1) if the memory buffer is full. If Eq. (1) is satisfied, we add a new expert Qk+1 into Q.

and its range is considered as β ∈ [0, 1] in Eq. (1). A large
β encourages the model to add more experts, resulting in
better performance. In contrast, a small β makes the model
to have fewer experts, which would lead to a degenerated
performance. The detailed theoretical analysis for choos-
ing β is provided in Appendix-A3 from the Supplemental
Material (SM).

3.3. Novelty-Aware Sample Selection

Memory buffers in other CL studies [4, 5] are mainly
used for storing past samples which are then replayed to re-
lieve forgetting during the training. In this paper, instead of
trying to preserve all past information, we propose a new
sample selection approach aiming to store novel samples
that are different from the knowledge preserved by previ-
ously trained experts. Such a sample selection approach
can encourage the current expert to learn novel information,
further promoting the knowledge diversity among experts
during expansion. Let us suppose that we have trained k
experts in the SEDEM model at Si, and then we calculate
the selection score for each memorized sample as :

Ls(x
m
j ) = − 1

k − 1

k−1∑
d=1

C∑
t=1

{
ymj (t) log(pdj (t))

}
, (3)

where C is the total number of classes and {xm
j , ymj } is the

j-th labelled sample drawn from Ci. pdj (t) is the SoftMax
probability for the t-th class, predicted by fωd

◦ Cγd
(xm

j )
and ymj (t) is the t-th dimension of the one-hot form of ymj .
Eq. (3) estimates the average cross-entropy for each sam-
ple using all previously learnt experts. A large Ls(x

m
j ) in-

dicates that xm
j is novel with respect to the already learnt

knowledge and should be added to the memory buffer. Then
we perform the sample selection :

Ci = {xm
j | Ls(x

m
j ) > Ls(x

m
j+1), j = 1, · · · , λ} , (4)

where λ is the memory buffer size. Eq. (4) favours to pre-
serve data with large average cross-entropy in the memory.

3.4. Dynamically Expansible Knowledge Mask

Most existing continual learning works focus mainly on
addressing forgetting while ignoring the knowledge trans-
fer in TFCL. In this section, we view all previously learnt
experts as a knowledge base which would provide a pos-
itive forward transfer for future learning. To implement
this goal, we propose the Dynamically Expansible Knowl-
edge Mask Method (DEKMM), a new approach that uti-
lizes the previously learnt representation information for
learning new samples. Suppose that we have k experts
Q = {Q1, · · · ,Qk} at Si. When training the current
expert Qk on Ci+1, at the next training step (Si+1), we
combine the previously learnt information with the cur-
rently learnt feature vectors into an augmented vector, z =∑k−1

j=1{fωj
(x)} ⊕ fωk

(x) which is used as input for the
classifier Cγk

(z), where ⊕ denotes the concentrated opera-
tor. However, this augmented feature vector ignores the cor-
relation between each previously learnt feature and the in-
coming sample, which does not fully explore the benefit of
knowledge transfer. To address this issue, DEKMM builds
a trainable mask vector for Gk, denoted as αk ∈ Rk−1 and
then normalizes it using the SoftMax function :

πk[i] =
exp{αk[i]}∑k−1

j=1{exp{αk[j]}}
, i = 1, · · · , k − 1 , (5)

where πk[i] denotes the i-th entry from πk and is used
to regulate the representation information from Qi, i =
1, . . . , k − 1 when optimizing Qk. Therefore, the aug-
mented feature vector with the soft masks is expressed as
z =

∑k−1
j=1{πk[j]fωj (x)} ⊕ fωk

(x). While learning the
incoming samples, we update the mask vector αk by min-
imizing the model’s objective function (classification loss)
to gradually explore the potential forward transfer. More-
over, once the proposed SEDEM dynamically adds a new
expert (Qk+1), we freeze all previously learnt mask vectors
{α1, · · · , αk} to preserve past information while building a
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new mask vector αk+1 ∈ Rk to regulate the optimization of
Qk+1 in subsequent learning.

3.5. The Expert Selector

The task information is unavailable in the TFCL frame-
work in both the training and testing phases. It is necessary
to develop a suitable mechanism for expert selection in the
testing phase. To achieve this goal, we propose to train a
simple VAE model G(ϕi,φi) as an expert selector for each
Qi, which consists of an encoding distribution qφi

(zs | z)
and a decoding distribution pϕi

(z | zs), where z ∈ Z and
zs ∈ Zs are the variables over the feature space Z and the
latent space Zs. Unlike in other VAE models [28] which
take images as inputs, we aim to model the feature infor-
mation extracted by the feature extractor fωi

of each expert
Qi. This approach reduces the number of parameters fur-
ther and provides an efficient inference mechanism at the
testing stage. The main objective for training the i-th expert
selector G(ϕi,φi) is defined as :

LV AE(z;G(ϕi,φi)) = Eqφi
(zs | z) [log pϕi

(z | zs)]
−KL [qφi

(zs | z) || p (zs)] ,
(6)

where KL(· || ·) represents the Kullback-Leibler (KL) di-
vergence and p(zs) = N (0, 1) is a prior distribution (Gaus-
sian). Suppose that we already have k experts after the train-
ing. At the testing phase, we perform the expert selection by
comparing the sample log-likelihood estimated by Eq. (6) :

s⋆ = arg max
s=1,··· ,k

{LV AE(fωs(x);G(ϕs,φs))} , (7)

where x is the input and s⋆ is the selected expert index.
Eq. (7) chooses the expert with the highest sample log-
likelihood. In the following section, we provide the imple-
mentation of the proposed SEDEM.

3.6. Optimization and Implementation

Each expert Qi in the proposed SEDEM consists of a
classifier module fωi ◦Cγi and a VAE model G(ϕi,φi) used
as the expert selector. We provide the pseudocode used for
training the SEDEM, in Algorithm 1, described as follows.
We continually add incoming data batches Br

i to Ci, and
perform the sample selection using Eq. (4) if the memory
buffer size is larger than λ. Then we only optimize the cur-
rent expert Qk by using the two loss functions at Si :

Lcl = − 1

λ

∑λ

j=1

{∑C

t=1

{
ymj (t) log(pkj (t))

}}
, (8)

LV l = − 1

λ

∑λ

j=1

{
LV AE(zj ;G(ϕk,φk))

}
, (9)

where pkj (t) is the SoftMax probability for the t-th class,
predicted by using fωk

◦ Cγk
(xm

j ),xm
j ∼ Ci. zj is the j-th

Algorithm 1 Training algorithm for SEDEM
1: for i < n do
2: Ci = Ci−1

⋃
Br
i ,Br

i ∼ S Add a new data batch.
3: Sample selection :
4: if |Ci| > λ then
5: Ci = {xm

j | Ls(xm
j ) < Ls(xm

j+1), j = 1, · · · , λ}
6: end if
7: Training the SEDEM :
8: if |Q| = 1 and i > λ then
9: Q = Q2

⋃
Q Add the second expert.

10: end if
11: k = |Q| The number of experts.
12: Train the classifier of Qk on Ci using Lcl

13: Train the expert selector of Qk on Ci using LV l

14: Dynamic expansion :
15: if |Ci| > λ then
16: if min

{
Lb(Q1,Qk), · · · ,Lb(Qk−1,Qk)

}
≥ β then

17: Q = Qk+1
⋃

Q Add the second expert.
18: end if
19: end if
20: end for

feature vector extracted by using the feature extractor fωk
of

Qk. Eq. (8) and Eq. (9) are employed to train the classifier
fωk

◦Cγk
with the mask parameters and the expert selector

G(ϕk,φk) on Ci at Si, as shown in Fig. 2. We also check the
model expansion using Eq. (1) if the memory is full (|Ci| =
λ), where |Ci| is the number of memorized samples. In the
testing phase, we employ Eq. (7) to select an expert for the
evaluation. The detailed implementation can be found in
Appendix-B from SM.

4. Theoretical Analysis
Inspired by the domain adaption theory [8], we develop a

new theoretical analysis for the forgetting behaviour of the
models under TFCL and provide theoretical guarantees for
the proposed SEDEM. We first give several key definitions
and notations as follows :

Definition 1 (The distribution of the data stream.) For a
given data stream V =

⋃n
j=1 Br

j , let Pxr representing the
probabilistic representation of DS

r . Let Pi represent the dis-
tribution of all previously learnt data batches {Br

1, · · · ,Br
i }

drawn from V at Si.

Definition 2 (The model risk and dH△H distance.) Let H
be a hypothesis space with d Vapnik–Chervonenkis (VC) di-
mensions. For a given distribution Pxr , the risk of a model
h ∈ H is defined as E

(
h,Pxr

) ∆
= E{x,y}∼Pxr

[
τ
(
y, h(x)

)]
where τ : Y ×Y → [0, 1] is the loss function. For two given
distributions Pxr and Pi, the dH△H distance between them
is defined as :

dH△H
(
Pxr (x),Pi(x)

) ∆
= sup

(h,h′)∈H2

∣∣∣E(h, h′,Pxr (x)
)

− E
(
h, h′,Pi(x)

)∣∣∣ , (10)
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Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
CURL* 92.59 ± 0.66 - -
CNDPM 95.36 ± 0.18 48.76 ± 0.28 22.52 ± 1.26
WGF-SVGD - 47.90 ± 2.50 19.90 ± 2.30
Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

SEDEM 98.35 ± 0.15 55.27 ± 1.32 24.85 ± 1.16

Table 1. Classification accuracy, representing the average of five
independent runs, for the continuous learning of three datasets. *
and † denote the results cited from [13] and [24], respectively.

where {h, h′} ∈ H2, Pxr (x) is the marginal of Pxr , and

E
(
h, h′,Pxr

) ∆
= E{x,y}∼Pxr

[
τ
(
h′(x), h(x)

)]
. (11)

Assumption 1 We assume that Q = {Q1, · · · ,Qc} has
trained c experts at Si. Let Caj denote a memory buffer
used for training the j-th expert Qj . The evaluation of SE-
DEM can be implemented by a single model h trained on
all memory buffers {Ca1

, · · · , Cac−1
, Ci}.

Based on the above definitions, we provide the theoreti-
cal guarantee for SEDEM.

Theorem 1 (Theoretical guarantee.) Based on Assump-
tion 1 we derive a Generalization Bound (GB) with prob-
ability (at least 1− δ) at Si :

E
(
h,Pi

)
≤ E

(
h, hCa1,··· ,ac−1

⊗Ci
,PCa1,··· ,ac−1

⊗Ci

)
+

1

2
dH△H(RPi ,RCa1,··· ,ac−1

⊗Ci)

+ 4

√
2d log(2m′) + log( 2δ )

m′

+ LError(Pi,PCa1,··· ,ac−1
⊗Ci

) , (12)

where RPi and RCa1,··· ,ac−1
⊗Ci are the set of m′ unla-

belled samples drawn from Pi and PCa1,··· ,ac−1
⊗Ci , respec-

tively. PCa1,··· ,ac−1
⊗Ci

represents the distribution of all
memory buffers and hCa1,··· ,ac−1

⊗Ci
is the true labelling

function that always returns the true labels for samples
from PCk1,··· ,kc−1

⊗Ci . LError(Pi,PCa1,··· ,kc−1
⊗Ci) is the

optimal error for Pi and PCa1,··· ,ac−1
⊗Ci . d is the Vap-

nik–Chervonenkis dimension. The detailed proof is pro-
vided in Appendix-A2 from SM.

Methods Split MiniImageNet

MIR+GMED 26.50 ± 1.3
MIR 25.21 ± 2.2
ERa 25.92 ± 1.2
ER + GMED 27.27 ± 1.8
CNDPM 27.97 ± 2.3
Dynamic-OCM 26.55 ± 2.1

SEDEM 29.57 ± 1.9

Table 2. Classification accuracy for 20 runs when testing various
models on Split MiniImageNet.

Methods Split MNIST Split CIFAR10 Split MImageNet

finetune 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6
ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3
MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5
ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6
MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7
CNDPM 88.23 ± 1.6 42.62±1.3 26.89 ± 1.2

SEDEM 91.24 ± 1.2 44.68 ± 1.5 29.16 ± 1.1

Table 3. The classification accuracy of five runs for various models
over data streams with fuzzy task boundaries.

Remark. We have several observations from Theorem 1 :
(1) The dH△H distance in Eq. (10) is crucial for the per-
formance of SEDEM. Based on Assumption 1, the knowl-
edge diversity among experts can allow PCa1,··· ,ac−1

⊗Ci to
represent more underlying data distributions of V , which
would decrease dH△H and thus improve the performance;
(2) Existing models fail to achieve a low GB in Eq. (12)
with a minimum number of experts since they would train
statistically overlapping experts. In contrast, the proposed
expansion criterion (Eq. (1)) in SEDEM can promote the
necessary statistical diversity among the probabilistic rep-
resentations of the experts, which leads to a better trade-off
between the model’s complexity and performance.

5. Experiments

5.1. Setting and Dataset

Datasets : Split MNIST divides MNIST [31] containing 60k
training samples, into five tasks according to images of pairs
of digits in their increasing order [13]. Split CIFAR10 splits
CIFAR10 [30] into five tasks where each task consists of
images from two different classes [13]. Split CIFAR100 di-
vides CIFAR100 into 20 tasks where each task has 2500
samples from 5 different classes [35]. We adapt the net-
work architecture according to [13]. We set the maximum
memory size λ as 2000, 1000, and 5000 for Split MNIST,
Split CIFAR10, and Split CIFAR100, respectively. We
set the batch size as 10, and β in Eq. (1) as 0.90, 0.15
and 0.16 for Split MNIST, Split CIFAR10, and Split CI-
FAR100, respectively. We employ classification accuracy
as the performance criterion. We provide the detailed set-
ting in Appendix-C1 from SM.
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Figure 3. (a) The performance and number of experts of SEDEM trained under Split MNIST when changing β. (b) The expansion signals
of the proposed SEDEM under Split CIFAR10. (c) Comparison to other dynamic expansion models under the same number of experts.

Methods Split M-S Parameters Split M-C Parameters

ER 10.89 208M 15.28 161M
ER + GMED 16.23 208M 21.26 161M
CoPE 22.45 208M 26.85 161M
CNDPM 47.64 237M 66.25 185M

SEDEM 56.62 189M 78.56 157M

Table 4. Classification accuracy of various models in the cross-
domain setting.

Baselines. We consider the following baselines for TFCL :
GSS [5], MIR [3], Incremental Classifier and Represen-
tation Learning (iCARL) [44], Reservoir [51], Dynamic-
Online Cooperative Memorization (OCM) [65], CURL
[43], Gradient Episodic Memory (GEM) [35], CNDPM
[33], CoPE [13], ER + GMED and ERa + GMED [24]
where ER is the Experience Replay (ER) [45] and ERa is
the model using ER and data augmentation. More informa-
tion about baselines is provided in Appendix-C2 from SM.

5.2. Single Data Domain Classification

We investigate the effectiveness of the proposed Self-
Evolved Dynamic Expansion Model (SEDEM) on the clas-
sification of a single data domain. We employ the Adam
optimization algorithm [27] with a learning rate of 0.00001
and the average accuracy and standard deviation from five
independent runs for Split MNIST, Split CIFAR10 and Split
CIFAR100 are reported in Tab. 1. We observe that the dy-
namic expansion models such as CURL and CNDPM usu-
ally outperform most static models due to their scalabil-
ity and generalization performance. The proposed SEDEM
achieves the best performance in each dataset when com-
pared to the baselines, demonstrating its effectiveness under
the TFCL.

We also investigate the performance of various models
on a dataset with more complex images, such as Split Mini-
ImageNet [50]. Split MiniImageNet divides MiniImageNet
into 20 tasks where each task contains the images of five
classes [3]. We report the classification accuracy on Split
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Figure 4. The performance on Split MinImageNet, achieved by
various models when changing the memory buffer size.

MiniImageNet in Tab. 2. The number of experts of SEDEM
for Split MNIST, Split CIFAR10, Split CIFAR100 and Split
MImageNet is of 10, 6, 7 and 6, respectively. These results
show that SEDEM outperforms all baselines on the chal-
lenging Split MiniImageNet dataset. We also provide the
results of the model’s complexity in Appendix-E from SM,
which demonstrates that SEDEM employs fewer parame-
ters compared with CNDPM.

5.3. Fuzzy Task Boundaries

In the real-world environment, a model would receive a
data stream with fuzzy task boundaries [33]. In this sec-
tion, we investigate the effectiveness of various models for
this challenging setting. Following from [33], we swap ran-
domly samples between two tasks for each data stream. We
report the results on Split MNIST, Split CIFAR10 and Split
MImageNet in Tab. 3. The results show that the proposed
SEDEM outperforms other baselines by a large margin un-
der the fuzzy task boundaries setting.

5.4. Classification for Multiple Data Domains

We evaluate the performance in a more challenging CL
setting, when learning multiple data domains. We create a
data stream Split M-S which combines Split MNIST and
Split SVHN. Similarly, Split M-C combines Split MNIST
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Methods Split MNIST Split CIFAR10 Split CIFAR100

SEDEM-CoPE 97.63 50.82 23.75
SEDEM-MIR 97.65 50.38 23.62
SEDEM-reservoir 97.98 50.35 22.97
SEDEM-NoRS 97.29 50.14 22.85
SEDEM-B1 97.42 52.98 22.74
SEDEM 98.35 55.27 24.85

Table 5. Assessing the proposed data selection in SEDEM.

and Split CIFAR10. The memory buffer filled according to
Eq. (4), is of size λ=1000 for these databases. The results
from Tab. 4 where ‘Parameters’ represents the number of
parameters for each model. We consider a large network
architecture for the static model for a fair comparison. We
can observe that the proposed SEDEM significantly outper-
forms both the static and DEM model on the multi-domain
setting while using fewer parameters.

5.5. Ablation Study

In this section, we evaluate the effectiveness of each
module in SEDEM by performing a wide range of ablation
studies (See more results in Appendix-D from SM).
Dynamic expansion : In Fig. 3-a we plot the performance
and the number of experts for SEDEM trained on Split
MNIST when changing the threshold β from Eq. (1). The
results show that a large β encourages adding more experts,
improving the performance. Meanwhile, a small β creates
fewer experts, resulting in lower performance.
Sample selection results : We adapt other sample selec-
tion methods including CoPE, MIR and reservoir for SE-
DEM, resulting in several baselines such as SEDEM-CoPE,
SEDEM-MIR and SEDEM-reservoir. We also consider
SEDEM-NoRS which does not employ the sample selec-
tion mechanism. The classification accuracy for all these
methods is provided in Tab. 5 where we observe that the
proposed sample selection approach for SEDEM leads to a
better performance than other methods.
Effects of the proposed DEKMM : We consider DEKMM
with SEDEM-B1 which does not employ DEKMM and the
results are provided in Tab. 5. These results show that the
proposed DEKMM can further improve the performance of
SEDEM on all datasets, demonstrating the positive forward
transfer achieved by using DEKMM.
Dynamic expansion process: In Fig. 3-b, we plot the ex-
pansion signals (Left-Hand-Side (LHS) of Eq. (1)) in each
training step, estimated by the proposed SEDEM trained on
Split CIFAR10, where the expansion signal is zero when
SEDEM has only a single expert. We can observe that
the proposed SEDEM gives a low score (LHS of Eq. (1))
when facing the data distribution shift. Such a low score
indicates that the current expert had learnt sufficient novel
knowledge, and thus SEDEM performs the expansion to
preserve the learnt knowledge while employing the addi-
tional capacity to handle the data distribution shift. We pro-

(a) Real samples (b) Memorized samples

Figure 5. Real and memorized samples randomly drawn from all
previously seen data batches and the memory buffer.

vide additional results for the dynamic expansion process
of the SEDEM in Appendix-D.1 from SM. These results
show that each expert in the proposed SEDEM learns al-
most a unique underlying data distribution, which demon-
strates that the proposed dynamic expansion mechanism al-
lows the SEDEM to adapt to the data distribution shift well
during the training. The performance, achieved by various
dynamic expansion models with different number of experts
on Split CIFAR10 is provided in Fig. 3-c. The proposed ap-
proach significantly outperforms other baselines when con-
sidering the same number of experts.
Memory buffer size : We evaluate the performance of var-
ious models under different memory buffer sizes (λ) on
the Split MinImageNet and plot the results in Fig. 4. The
dynamic expansion models achieve better results than the
static models in almost any memory buffer setting. The
proposed SEDEM outperforms all baselines in each dataset,
even when using an extremely small-scale memory buffer.
Samples in the memory buffer : We randomly draw train-
ing samples from all previously seen data batches at a cer-
tain training step (S4500). Those samples can represent the
knowledge of all previously learnt experts. We also ran-
domly draw samples from the memory buffer, which can
represent the knowledge of the current expert. We plot those
samples in Fig. 5, where we can observe that most mem-
orized samples have different visual concepts, even when
compared to the real samples. These results show that the
proposed sample selection approach encourages the mem-
ory buffer to store novel samples.

6. Conclusion
This paper proposes a novel model for TFCL, namely the

Self-Evolved Dynamic Expansion Model (SEDEM) which
evaluates the diversity among experts as expansion sig-
nals, ensuring an appropriate model size. In addition,
we propose a novelty-aware sample selection approach to
further improve the performance. Moreover, we propose
reusing the previously learnt representations for enhanc-
ing the forward knowledge transfer when learning new
data.
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