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Abstract

Task-Free Continual Learning (TFCL) represents a chal-
lenging learning paradigm where a model is trained on the
non-stationary data distributions without any knowledge of
the task information, thus representing a more practical
approach. Despite promising achievements by the Varia-
tional Autoencoder (VAE) mixtures in continual learning,
such methods ignore the redundancy among the probabilis-
tic representations of their components when performing
model expansion, leading to mixture components learning
similar tasks. This paper proposes the Wasserstein Ex-
pansible Variational Autoencoder (WEVAE), which evalu-
ates the statistical similarity between the probabilistic rep-
resentation of new data and that represented by each mix-
ture component and then uses it for deciding when to ex-
pand the model. Such a mechanism can avoid unneces-
sary model expansion while ensuring the knowledge diver-
sity among the trained components. In addition, we pro-
pose an energy-based sample selection approach that as-
signs high energies to novel samples and low energies to
the samples which are similar to the model’s knowledge.
Extensive empirical studies on both supervised and unsu-
pervised benchmark tasks demonstrate that our model out-
performs all competing methods. The code is available at
https://github.com/dtuzi123/WEVAE/.

1. Introduction

The variational Autoencoder (VAE) [33] is one of the
most popular deep generative models, underlined by a sym-
metric network structure in which an input x is transferred
into a pseudo-similar data x′ through an encoding-decoding
process. Due to its powerful inference mechanisms, the
VAE has been successfully used in many applications, in-
cluding few-shot learning [54], semi-supervised learning
[1], image synthesis [41], image-to-image translation [40],
and density estimation [59]. However, using the VAE model
in continual learning has not been sufficiently investigated
so far. Similar to other deep neural networks in contin-

ual learning, VAEs suffer from a significant performance
loss when continually learning new data domains, which is
known as catastrophic forgetting [45].

Constructing a fixed-length memory buffer that stores
some past samples and then replays them during the sub-
sequent learning stages [14, 9] was shown to relieve catas-
trophic forgetting in continual learning. Meanwhile, other
approaches focus on regulating the optimization procedure
of the model by imposing a penalty term in the objective
function for freezing certain parameters, [34, 39]. These
approaches usually train a static model with a fixed capac-
ity and cannot achieve good performance when learning
a growing number of tasks [71]. The dynamic expansion
model [52, 71] builds new hidden layers to handle incoming
tasks, showing promising results in continual learning due
to its scalability and generalization performance. However,
despite their impressive performance in continual learning,
most dynamic expansion methods still require the knowl-
edge of the task boundaries, which limits their applicability
in a more realistic scenario such as the Task-Free Continual
Learning (TFCL) [6].

The dynamic expansible VAE framework was recently
shown to provide good performance in TFCL, [48, 73]. The
Continual Unsupervised Representation Learning (CURL)
[48] dynamically builds new VAE inference models to cap-
ture the distribution shift over time. CURL relieves forget-
ting by retraining a generator (decoder) to reproduce past
samples, inevitably leading to forgetting, [71]. A similar
idea was proposed in [38], which uses the Dirichlet pro-
cess for the component expansion in a mixture of VAEs in a
method called the Continual Neural Dirichlet Process Mix-
ture (CN-DPM). Unlike CURL, CN-DPM does not rely on
the generative replay mechanism (GRM) [84] and therefore
can preserve the best information for all previously learned
samples. More recently, the dynamic VAE mixture model
was upgraded by using the Online Cooperative Memoriza-
tion (OCM) [73], which manages two cooperative memory
buffers to preserve both the short- and long-term informa-
tion. However, none of these models have theoretical guar-
antees for their expansion mechanisms. Moreover, they do
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not explicitly design a mechanism for ensuring the informa-
tion diversity among the VAE mixture components.

In this paper, we propose a new approach called
the Wasserstein Expansible Variational Autoencoder (WE-
VAE), aiming to learn a compact dynamic expansible VAE
model for TFCL, which evaluates the knowledge corre-
lation between the given information and the previously
learned components, as an expansion criterion. The primary
motivation for this expansion mechanism is to promote the
knowledge diversity among mixture’s components.

For ensuring a stable expansion process, we evaluate the
Wasserstein distance for representing the dynamic change
of the correlations between the currently trained and all pre-
viously learnt components over time. The proposed mech-
anism avoids the frequent expansion caused by outliers in
the data, while ensuring the information diversity among
components. In addition, autoencoders have naturally been
employed in the Energy-Based Model (EBM) [85] aiming
to learn an energy map in which the low energy is attributed
to the data manifold [85]. Inspired by the EBM, we propose
an energy-based sample selection approach, which aims to
assign low energies to the samples that share similar infor-
mation to that already learnt by the model.

Empirical validations show that the proposed Wasser-
stein Expansible Variational Autoencoder (WEVAE) can
train statistically diverse components while outperforming
the state-of-the-art using a compact structure. Our contri-
butions consists of : (1) We propose a new model, WEVAE,
for TFCL, which dynamically expands its capacity through
the proposed Wasserstein expansion mechanism, ensuring
the information diversity among components; (2) We for-
mulate the dynamic expansion as the evaluation of time se-
ries data to avoid frequent expansion. This is the first work
that employs the time series analysis for model expansion
under TFCL; (3) We propose an energy-based sampling ap-
proach to manage the memory buffer, which can further
promote knowledge diversity among model’ s components.
This is the first work employing the energy function for
sample selection in TFCL; (4) We provide theoretical guar-
antees for the proposed expansion mechanism and analyze
the forgetting behaviour of the proposed WEVAE.

2. Related Work
Continual learning. One popular and straightforward ap-
proach to relieve forgetting in continual learning (CL) is
by managing a small-scale memory buffer that stores some
past examples and replays them during subsequent learning
[10, 12, 21, 22, 26, 30, 34, 35, 39, 44, 46, 49, 50, 51, 60, 69].
The memory buffer can be used in the regularization-based
approaches for further improving the performance [32, 43,
7, 14, 13, 42, 18, 55, 66, 44, 3, 22, 83, 24, 28, 19, 17, 65].
Another approach in CL is by training a generator such as
a VAE or a Generative Adversarial Network (GAN) [20] to

produce past samples that are used for preventing forgetting
[2, 47, 56, 84]. However, when learning a long sequence
of tasks, a GAN can suffer from mode collapse [58] due to
the frequent generative replay process [84]. To address this
issue, recent works have developed dynamic expansion net-
works, which preserve the entire previously learnt informa-
tion into frozen components while expanding the network to
learn new tasks [15, 27, 39, 46, 48, 52, 67, 68, 86, 31, 62].
However, all these approaches still require knowing the task
boundaries to evaluate the model expansion, which is not a
realistic CL scenario, where the task information is missing.

Task-free continual learning. Several recent works have
focused on the TFCL scenario, where the task information
is unavailable. The memory-based approach was first ex-
plored in the context of TFCL [6] for training a classifier.
Then, this approach was extended to the Maximal Inter-
fered Retrieval (MIR), by using a new information retrieval
mechanism that selectively stores the most representative
samples to train both a classifier and VAEs [4]. More re-
cently, the sample selection was implemented by comparing
the gradient information between past and new samples, as
in the Gradient Sample Selection (GSS) [7]. Furthermore,
the sample selection approach can be implemented by a
learner-evaluator evaluation framework, called the Contin-
ual Prototype Evolution (CoPE) [16], which ensures the bal-
ance replay and thus performs well in the context of the on-
line unbalanced continual learning. Another approach was
proposed to dynamically edit the stored samples, called the
Gradient-based Memory EDiting (GMED) [29], where data
samples are modified to increase the loss in the upcoming
model updates. Although these approaches perform well
on simple datasets, they are not scalable for learning an in-
coming long-term data stream due to their fixed model ca-
pacity. This inspired several attempts to apply the dynamic
expansion model to TFCL [38, 48, 73, 76]. However, these
approaches do not consider the repetitive learning of simi-
lar information when performing the expansion, leading to
oversized model structures.

Continual generative modelling. Continual Generative
modelling has been studied in several recent studies [47,
2, 73, 75, 72, 82, 74, 70, 81, 79, 77, 78, 71, 80]. The pio-
neering work in this direction consists in proposing a VAE-
based continual learning framework [2], which learns both
the task-specific and shared latent representations over time.
Another approach is employing a teacher-student frame-
work [47] where both the teacher and student are imple-
mented by VAEs, teaching each other in order to accumu-
late knowledge over time. The teacher module can also be
implemented by a more robust generative model, such as a
GAN [20] [84]. These approaches still rely on the task in-
formation, which is not available in TFCL. Recently, some
studies used dynamic expansion models under the TFCL
scenarios [48, 73]. However, none of these works provides
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theoretical guarantees for its expansion mechanisms.

3. Methodology
Problem definition. Let DT and DS be the testing and
training datasets, where x ∈ X ∼ DT is a data sample over
the input space X ∈ Rdx and dx is the dimension of the
sample. In TFCL, a data stream S is usually defined by a
series of data batches collected by DS in a class-incremental
manner [6], expressed as S =

⋃n
i=1 Xi where Xi ∼ DT is

the i-th data batch consisting of b samples {xi
1, · · · ,xi

b} and
n is the total number of data batches. The training goal in
TFCL is to learn each data batch Xi at the i-th training time
Ti while all previously seen data batches {X1, · · · ,Xi−1}
are not available. The performance of the model is evalu-
ated on the testing dataset DS .
Network architecture. We consider the expansible varia-
tional autoencoder for continual generative modelling [73].
Following from [73], we define an expansible mixture of
VAEs, namely G = {G1, · · · ,Gk} where each Gi represents
the i-th VAE component in the mixture G. Let fωi

: X →
Z and fθi : Z → X be an inference and decoder, respec-
tively, where Z represents the latent space. We can define
an encoding distribution qωi

(z |x) = N (µωi
(x), σ2

ωi
(x)I),

where µωi(x) and σωi(x) are Gaussian hyperparameters
given by fωi(x) and I is the identity matrix. Then we de-
fine a decoding distribution pθi(x | z) implemented by the
decoder fθi . In TFCL, we propose only to train the current
component Gi, avoiding the negative knowledge transfer to
previously learnt components, using the following VAE’s
objective function [33] :

LELBO(x;Gi) = Eqωi
(z |x) [log pθi (x | z)]

−KL [qωi (z |x) || p (z)] ,
(1)

where KL is the Kullback-Leibler (KL) divergence and the
right-hand-side (RHS) expression represents a lower bound
to the sample log-likelihood, called the Evidence Lower
Bound (ELBO) [33].

3.1. Wasserstein Expansion Mechanism

Existing mixture VAE models do not consider the over-
lapping among the probabilistic data representations of their
components when performing the model expansion [73].
Inspired by the theoretical analysis from Section 4.2, which
shows that by encouraging the knowledge diversity between
components can lead to a good performance in learning a
diverse information while using a compact model structure,
we propose a new expansion mechanism that evaluates the
correlation between each previously trained and the cur-
rently learnt component, as expansion signals. Specifically,
we expand the Wasserstein Expansible Variational Autoen-
coder (WEVAE) architecture after the current component
learnt sufficiently novel knowledge with respect to what is

know by the other components. Since each VAE compo-
nent has its own generation process, we can evaluate the
relevance of a pair of components using their generations
Ld(Pθi ,Pθj ), where Ld is an arbitrary distance measure and
Pθi is the distribution of samples produced by the gener-
ation process of Gi. When training each new component
Gk for WEVAE, we aim to minimize its knowledge overlap
with all other components, G = {G1, · · · ,Gk−1} :

t⋆ = arg max
t=Ttk−1

+1,··· ,Tn

{
min

{
(Ld(Pθ

t1
1
,Pθt

k
), · · · ,

Ld(Pθk−1
k−1

,Pθt
k
)
}}

, (2)

where t⋆ is the index of the optimal training time Tt⋆ re-
quired for maximizing the distance between Gk and other
components. Ttk−1

is the required training time for the
component Gk−1 and P

θ
tk−1
k−1

is the generator distribution

formed by Gk−1 at Ttk−1
. Searching for the optimal solu-

tion in Eq. (2) is intractable since it requires accessing all
training steps/times and data batches which are not avail-
able under the TFCL learning paradigm. To solve this is-
sue, we formulate the optimization, defined by Eq. (2), as
a dynamic expansion process of the WEVAE, where we
continually add new components after the current one Gk

has learnt sufficient novel information. To implement this
goal, we first evaluate the minimum probabilistic distance
between the current component and each previously learnt
component as a time series data :

wt = min
{
Ld(Pθ

t1
1
,Pθt

k
), · · · ,Ld(Pθ

tk−1
k−1

,Pθt
k
)
}
, (3)

where Ld(·, ·) is implemented using the Wasserstein dis-
tance (Earth-mover distance), which provides theoretical
guarantees, according to our analysis from Section 4.2. Let
At = {w1, · · · , wt} be a set of historical time series sam-
ples generated using Eq. (3), forming a stochastic process
updated at Tt and we consider At[j] to represent wj . By
employing the time series data, this paper proposes a sim-
ple but effective way to check the model’s expansion at Tt :

1

t

∑t

j=1
{At[j]} > λ , (4)

where λ ∈ [40, 100] is an expansion threshold balancing the
model’s performance and its size during the training. When
Eq. (4) is satisfied, we add a new component to WEVAE
while clearing up all historical time series data from At.

3.2. Energy-based Sample Selection

The majority of sample selection approaches aim to store
the information associated with older and newer tasks into
memory buffers over time [9, 14]. However, the proposed
WEVAE model has already accumulated prior knowledge
in its parameters and using an approach as in other continual
learning methods would lead to redundancy in the learnt in-
formation. In consequence, we propose a novel sample se-
lection approach, aiming to enrich the information available
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Figure 1. The learning procedure of the proposed WEVAE where we omit the training and testing procedures for simplification. In the
sample selection process, we estimate the energy value for each memorized sample using all previously learnt components (‘Component
1’,· · · , ‘Component k-1’), and results in updating the memory buffer Mt, accordingly. During the training process, we only update the
parameters of the current component (‘Component k’). If the memory buffer is full, we then check the model’s expansion using Eq. (4).

for training the next mixture component in order to capture
different category information from what was already cap-
tured by the existing WEVAE’ components. To implement
this goal, we propose to evaluate the selection score for each
memorized sample by defining an evolved energy function
for the i-th sample at Tt as :

ETt
(x′

i) =
1

k − 1

∑k−1

j=1

{
Rec(x′

i, fθj (fωj
(x′

i))
}
, (5)

where k is the number of components, and Rec(·, ·) is the
reconstruction error. x′

i is a sample drawn from the memory
buffer Mt at time Tt and fθj (fωj

(x′
i)) is the reconstruction

of a data sample x′
i using the j-th component Gj . A higher

energy value indicates that the data sample x′
i is novel to the

already learnt knowledge and should remain in the memory
buffer. Based on the energy function from Eq. (5), we up-
date the memory buffer Mt at time Tt :

Mt =
⋃|Mt|max

i=1
M′

t[i] , (6)

where |Mt|max is the maximum number of samples to be
stored in Mt and M′

t is the sorted memory buffer satisfying
ETt

(M′
t[a]) > ETt

(M′
t[b]), a < b. M′

t[a] denotes the a-th
sample drawn from the sorted memory buffer.

3.3. Extension for the Prediction Task

Conditional VAE (CVAE) [57] is a popular probabilis-
tic model which can be applied in classification tasks and
guarantees a lower bound to the conditional log-likelihood.
However, CVAE involves multiple neural networks, includ-
ing the prior, recognition, and prediction networks, which
require many parameters. In addition, CVAE can only de-
cide the class y, as in the prediction tasks, and does not re-
construct the data x as the proposed WEVAE model, which
implements the generation process for each VAE compo-
nent. Due to these limitations, in this study, we imple-
ment each VAE component by using a new probabilistic

model p(x,y, z) which treats the predictive label as the la-
tent variable y. We then derive an objective function for
pθ(x,y, z) (See details in Appendix-A from Supplemental
Material (SM)), as :

Lclass = Eqω,ς(z,y|x) [log pθ(x | z,y)]
−KL(qω(z |x) || p(z))−KL(qς(y |x) || p(y)) ,

(7)

where pθ(x | z,y) is the decoder and qω(z |x) is the infer-
ence model that receives the input x and returns z. qς(y |x)
is implemented by a classifier used for the prediction (clas-
sification) task. Each component in the WEVAE is imple-
mented by using the model p(x, z,y) which is trained to
maximize Eq. (7). In addition, we also train qς(y |x) on
the memory buffer by using the cross-entropy loss to en-
hance its prediction performance. The learning procedure
of WEVAE for both unsupervised and supervised settings
is similar, as described in the following section.

3.4. Implementation

One popular approach to estimate the Wasserstein dis-
tance Ld(·, ·) is by employing the Wasserstein GAN learn-
ing [8], which can guarantee a lower bound on the 1-
Wasserstein distance [61]. However, such an approach re-
quires additional discriminator and training processes, lead-
ing to additional computational costs. In this paper, we es-
timate the Wasserstein distance by using the results of The-
orem 1 from [61], which is an efficient implementation not
requiring extra computational costs :

Ld(Pθ
t1
1
,P

θ
tk
k
) ≤ inf

P∈P
θ
t1
1

⊗P
θ
tk
k

E(x,x′)∼P [Lc(x,x
′)] , (8)

where P
θ
t1
1
⊗P

θ
tk
k

represents the set of all probabilistic cou-
plings for P

θ
t1
1

and P
θ
tk
k

, and P is one of them. (x,x′)

is a pair of samples drawn from P . Lc(·, ·) is a cost
function implemented using the squared Euclidean distance
Lc(x,x

′) =
∑dx

i (x[i] − x′[i])2, where x[i] is the i-th di-
mension of x.
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We provide the pseudocode for WEVAE in Algorithm 1,
while the learning process has three main steps and is also
illustrated in Fig. 1 :
• Step 1 (Sample selection). At a certain training time Tt,

we add a new data batch to the memory buffer, expressed
as Mt = Mt

⋃
Xt, Xt ∼ S. We then perform the sam-

ple selection using Eq. (5) if the memory buffer Mt is
overloaded, |Mt| > |M|max.

• Step 2 (Training process). At the time Tt, we assume that
G already has k components and we only train the current
component Gk on Mt using Eq. (1).

• Step 3 (Check the model’s expansion). If the memory
buffer is full |Mt| = |M|max, we check the model’s ex-
pansion using Eq. (4) to reduce the computational costs.
If Eq. (4) is satisfied, we add a new component Gk+1 (will
be the current component) to G. We also clear up the
memory buffer in order to allow the newly added compo-
nent to learn new, statistically non-overlapping informa-
tion with that accumulated by other components. We then
return to Step 1 for the next training step Tt+1.

4. Theoretical Analysis
In this section, we extend the results from [73] to de-

scribe how the proposed Wasserstein Expansion Mecha-
nism can ensure a compact WEVAE model, containing VAE
components representing diverse information.

4.1. Forgetting Analysis

Definition 1 (The distribution of the memory buffer.) For a
given memory buffer Mi, updated at the time Ti, we define
the probabilistic representation of Mi as PMi

.

Definition 2 (Mixture model and component.) For a mix-
ture model G = {G1, · · · ,Gk} with k components, we de-
fine the generative replay process of the i-th VAE compo-
nent as the sampling procedure x ∼ pθi(x | z), z ∼ Pz. Let
Px̃i

represent the distribution of a finite number of gener-
ative replay samples drawn from Gi. Let Mbi be a previ-
ous memory buffer for the previously trained Gi component
where bi is the index of the training time Tbi .

The theoretical analysis in [73] assumes that the target
distribution (training samples) is static, which is unrealis-
tic in a practical TFCL training environment. In this sec-
tion, we derive a new bound for the proposed WEVAE in
which the source and target distributions are changing con-
tinuously over time.
Theorem 1 Let Px̂i

denote a probabilistic measure of all
previously seen data batches {X1, · · · ,Xi−1} at time Ti.
We assume that Px̂i

involves ai underlying data distribu-
tions {Px̂1

i
, · · · ,Px̂

ai
i
} at Ti and each Px̂j

i
is usually a dis-

tribution of data batches of a unique category. Let cj rep-
resent the number of data batches of Px̂j

i
. We note that ai

Algorithm 1 The learning process for WEVAE
1: (Input:The data stream);
2: for Tt < Tn do
3: Sample selection in the memory buffer
4: Xt ∼ S
5: Mt = Mt ∪Xt

6: if |Mt| > |M|max then
7: for t < |Mt| do
8: E(x′

t) =
1

k−1

∑k−1
j=1

{
Rec(x′

t, fθj (fωj
(x′

t))
}

9: end for
10: Mt =

⋃|Mt|max

i=1 M′
t[i]

11: end if
12: Training process
13: if k = 1 and Tt = |M|max then
14: Add the second component G2

15: end if
16: Train the current VAE component Gk on Mt using

LELBO

17: Check the expansion
18: if |Mi| ≥ |M|max then
19: if 1

t

∑t
j=1{At[j]} > λ then

20: Add a new Component Gk+1

21: end if
22: end if
23: end for
24: Testing phase
25: for i < n′ do
26: x ∼ DT

27: s⋆ = argmaxs=1,··· ,k{LELBO(x;Gs)}
28: Choose Gs⋆ for the evaluation.
29: end for

would be increased as the training time (Ti) increases. Let
Xj

i (t) be the t-th data batch of Px̂j
i

and Pxj
i (t)

be the distri-

bution of Xj
i (t). We derive a bound for G at Ti :∑ai

j=1

{∑cj

t=1

{
F̃s(G,Pxj

i (t)
)
}}

≤∑ai

j=1

{∑cj

t=1

{
Fs(G,Pxj

i (t)
)
}}

,
(9)

where Fs(G,Pxj
i (t)

) is a function that returns the maximum
bound, using the mixture model G, defined as :

Fs(G,Pxj
i (t)

) = max
Gc∈G

{
EPMbs

[LELBO(x;Gbc
c )))]

+ 2W⋆
L(PMbc

,Px̃bc
c
)−W⋆

L(Pxj
i (t)

,PMbc
)

+ F̃(Px̃bc
c
,PMbc

)
}
,

(10)

and F̃s(G,Pxj
i (t)

) is defined as :

F̃s(G,Pxj
i (t)

) = max
Gbc
c ∈G

{
EP

x
j
i
(t)
[LELBO(x;Gbc

c )]
}
, (11)
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Split MNIST Split Fashion Split MNIST-Fashion Cross-domain

Methods Log ↑ Memory N Log ↑ Memory N Log ↑ Memory N Log ↑ Memory N

VAE-reservoir [64] -144.17 3.0K 1 -276.60 3.0K 1 -240.02 3.0K 1 -239.42 3.0K 1
VAE-ELBO-MIR [5] -143.27 3.0K 1 -274.72 3.0K 1 -238.68 3.0K 1 -237.93 3.0K 1
VAE-ELBO-Random -150.79 3.0K 1 -280.54 3.0K 1 -247.46 3.0K 1 -239.71 3.0K 1
LIMix [71] -146.23 2.0K 30 -262.52 2.0K 30 -238.63 2.0K 30 -226.63 2.0K 30
CNDPM [38] -120.71 2.0K 30 -257.56 2.0K 30 -236.79 2.0K 30 -218.15 2.0K 30
VAE-ELBO-OCM [73] -132.07 1.6K 1 -250.74 1.6K 1 -215.62 2.0K 1 -201.31 2.0K 1
VAE-IWVAE50-OCM [73] -127.11 1.6K 1 -247.90 1.6K 1 -224.34 2.0K 1 -204.35 2.0K 1
Dynamic-ELBO-OCM [73] -115.89 1.6K 5 -237.69 1.8K 10 -187.49 1.9K 10 -177.29 2.0K 11

WEVAE -89.66 1.6K 3 -225.98 1.5K 10 -172.47 1.9K 8 -161.26 2.0K 9
WEVAE-NoS -99.29 1.6K 5 -230.52 1.5K 10 -179.23 1.9K 10 -168.67 2.0K 11

Table 1. The log-likelihood estimation on testing data by using the Importance Weighted Variational Autoencoder (IWVAE) bound with
1000 importance samples. The results for the comparison baselines are taken from [73]. N represents the number of components.

where Gbc
c is the c-th component updated at Tbc and Px̃bc

c

is the distribution of generative replay samples drawn from
Gbc
c . W⋆

L(·) is defined as :

W⋆
L(Pxj

i (t)
,PMbc

) :=

inf
P′∈P

x
j
i
(t)

⊗PMbc

E(x,x′)∼P′ [Lc(x,x
′)] (12)

where Pxj
i (t)

⊗PMbc
is the set of all probabilistic couplings

for Pxj
i (t)

and PMbc
and F̃(Px̃bc

c
,PMbc

) is defined as :

F̃(Px̃bc
c
,PMi) = EPMi

[DKL(qωbc
c
(z |x) || p(z))]

+
∣∣∣EPMi

Eq
ωi
j
(z |x)[−Lc(x, fθbc

c
(fωbc

c
(x))]

−W⋆
L(PMi

,Px̃bc
c
)
∣∣∣ . (13)

where {θbcc , ωbc
c } are the parameters of Gbc

c . The proof is
provided in Appendix-B from SM.
Remark. We have several observations from Theorem 1 :
(1) As the training time Ti increases, Px̂i

involves more
underlying data distributions (ai is increased), which rep-
resents a challenge for the model; (2) The proposed WE-
VAE can achieve better performance by designing a spe-
cific procedure of adding new components, where each
component models a unique underlying data distribution;
(3) Compared to the static/single model, the proposed WE-
VAE achieves better generalization performance (See de-
tails in Appendix-C from SM);

4.2. Analysis of the Trade-off for A New Component

In this section, we theoretically study the trade-off be-
tween the model size and its generalization performance,
and provide theoretical guarantees for the proposed model,
which are not available in [73].

Theorem 2 For a given mixture model G with k compo-
nents, we can view G as a single model trained on all

memories {Mb1 , · · · ,Mbk} by using the component selec-
tion (Eq. (10)). Let Px̃i be the distribution of samples uni-
formly drawn from each component {Gj , j = 1, · · · , k} at
Ti. Let PMb1:bk

be the distribution of all memory buffers
{Mb1 , · · · ,Mbk}. We can derive a bound for G at Ti as :

EPx̂i
[LELBO(x;G)] ≤ EPMb1:bk

[LELBO(x;G)]

+ 2W⋆
L(PMb1:bk

,Px̃i)−W⋆
L(Px̂i

,PMb1:bk
)

+ F̃(Px̃iPMb1:bk
) .

(14)

Remark. Theorem 2 has several observations : (1) PMb1:bk

can not be estimated since we can no longer access
any of the previous memory buffers. We approximate
PMb1:bk

by using Px̂i which is a distribution of sam-
ples uniformly drawn from each component and we have
W⋆

L(Px̂i
,PMb1:bk

) ≈ W⋆
L(Px̂i

,Px̃i). Training more com-
ponents would allow Px̂i to capture a richer knowledge
and thus decrease the term W⋆

L(Px̂i
,Px̃i), leading to a

better performance; (2) Ensuring the knowledge diversity
among components has two advantages : a) it can cap-
ture more underlying data distributions and improve the
performance; b) it can reduce the number of necessary
components without sacrificing much performance; (3) The
theoretical foundations of the expansion mechanism from
Eq. (4) are grounded in Theorem 2 and Eq. (14), which en-
sures the knowledge diversity among the WEVAE compo-
nents. Such theoretical guarantees have not been discussed
in other DEM-based methods [38, 48, 73]; (4) The thresh-
old λ in Eq. (4) defines the trade-off between the model size
its performance. A large λ can increase the information di-
versity of Px̃i but would lose some underlying data distri-
butions of Px̂i

. Meanwhile, an appropriate λ ensures the
knowledge diversity of Px̃i while capturing all distributions
of Px̂i

(See Appendix-D from SM).
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Methods IS ↑ FID ↓ Memory N

VAE-ELBO-Random 3.84 116.26 1.0K 1
CNDPM [38] 4.12 95.23 1.0K 30
LIMix [71] 3.02 156.46 1.0K 30
VAE-ELBO-OCM [73] 4.13 98.76 1.0K 1
Dynamic-ELBO-OCM [73] 4.16 92.99 1.0K 3

WEVAE 4.26 89.12 1.0K 3

Table 2. IS and FID scores under Split CIFAR10. Results of other
baselines are taken from [73].

Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
WGF-SVGD - 47.90 ± 2.50 19.90 ± 2.30
CURL* 92.59 ± 0.66 - -
CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12
Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

WEVAE 96.62 ± 0.27 55.23 ± 1.26 25.07 ± 0.59
WEVAE-NoS 95.12 ± 0.29 51.38 ± 1.16 23.18 ± 0.79

Table 3. Classification accuracy of five independent runs for vari-
ous models on three datasets. * and † denote the results cited from
[16] and [29], respectively.

5. Experiments
In the following, we evaluate the proposed Wasserstein

Expansible Variational Autoencoder (WEVAE) and we also
test WEVAE-NoS, where we have the WEVAE model but
without considering the sample selection mechanism, de-
scribed in Section 3.2, on a series of unsupervised and su-
pervised learning experiments. The hyperparameter setting
is provided in Appendix-E from SM.

Baselines. We use the experimental setting from [73] and
compare WEVAE with several continual learning mod-
els for the density estimation task, including : VAE-
ELBO-OCM [73], VAE-IWVAE50-OCM [73], Dynamic-
ELBO-OCM [73], CNDPM [38], VAE-ELBO-Random,
LIMix [71], VAE-ELBO-MIR [5]. and VAE-reservoir
[64]. For the classification task, we adopt the baselines
from the recent TFCL benchmark [16] (See details in the
Appendices-E2, E3 from SM).

Performance criterion : Since this paper focuses on TFCL

Methods M-S N M-C N Split MI N

CNDPM 49.23 21 53.97 19 26.35 8
Dynamic-OCM 50.18 20 54.49 21 26.78 8
WEVAE 53.01 14 59.07 13 29.28 6
WEVAE-NoS 51.72 17 56.98 16 28.69 7

Table 4. Classification accuracy on challenging settings.

where the task boundaries are not available, we adopt the
accuracy as performance criterion for supervised learning
[16]. For the results in unsupervised learning, we estimate
the sample log-likelihood (Log) by using the IWVAE bound
[11], considering 1000 importance samples, [73].
Datasets : For the density estimation task, we consider the
Split MNIST/Fashion [73] which divides MNIST/Fashion
[37] into ten parts according to the category information.
We also consider the Split MNIST-Fashion, which com-
bines Split MNIST and Split Fashion into a single data
stream. In addition, we consider a more challenging
data stream, “Cross-Domain”, which combines the Split
MNIST-Fashion and OMNIGLOT [36]. For supervised
learning, we consider Split MNIST, Split CIFAR10 and
Split CIFAR100 (See details in Appendix-E2 from SM).

5.1. Density Estimation and Image Reconstruction

The results for density estimation task are provided in
Table 1. We can observe that the dynamic expansion mod-
els outperform the static model in all datasets while re-
quiring fewer memorized samples. In addition, the pro-
posed WEVAE-NoS achieves a Log-likelihood of -99.29,
-230.52, 179.23 and -168.67 on Split MNIST, Split Fash-
ion, Split MNIST-Fashion and Cross-domain, respectively,
which show that the proposed WEVAE-NoS outperforms
other dynamic expansion models on all datasets. The model
complexity is discussed in Appendix-F10 from SM. The
proposed WEVAE achieves better performance using fewer
components than WEVAE-NoS. These results demonstrate
that the proposed WEVAE can achieve the best performance
using a compact model structure, which is consistent with
the theoretical analysis from Theorem 2.

Based on the setting from [73], we evaluate the perfor-
mance of WEVAE on the image reconstruction task on Split
CIFAR10, and the results are provided in Table 2. The
proposed WEVAE outperforms other baselines in terms of
Inception Score (IS) [53] and Fréchet Inception Distance
(FID) [25] criteria.

5.2. Classification Task

We follow the TFCL classification setting from [16],
where a model only sees a batch of ten samples at a cer-
tain training time. The maximum memory size is set as
|M|max = {1000, 2000, 5000} for Split MNIST, Split CI-
FAR10, and Split CIFAR100, respectively. We implement
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Figure 2. Ablation study results. (a) The performance of various models on Cross-Domain data when changing the memory buffer size,
|M|max. (b) The performance (negative log) and the number of components when changing the threshold λ in Eq. (4). (c) The performance
and the number of components of WEVAE for learning Split MNIST when changing the batch size. (d) The number of components of
WEVAE and the distribution change, measured as the change of data category (information not used for training), over time.

the classifier of each expert by using a simple, fully con-
nected network and a ResNet18 [23] for Split MNIST and
Split CIFAR10/100, respectively. According to the classi-
fication results from Table 3, the proposed WEVAE-NoS
outperforms other static and dynamic expansion models on
all datasets. In addition, WEVAE improves its performance
by using the proposed sample selection approach described
in Section 3.2. Further results can be found in Appendix-E2
from SM.

We also investigate the effectiveness of WEVAE using
more challenging continual learning settings. We build a
data stream consisting of Split MNIST and Split SVHN,
namely M-S. Similarly, we also create the data stream M-
C, representing Split MNIST and Split CIFAR10. Mean-
while, Split MiniImageNet (Split IM) [63] divides MiniIm-
ageNet into 20 tasks, where each task collects the images
of five classes [5]. The maximum memory is |M|max =
{1, 000, 1, 000, 10, 000} for M-S, M-C and Split IM. The
classification results from Table 4, show that the proposed
WEVAE still outperforms other dynamic expansion models
while using fewer components, indicated by N .

5.3. Ablation Study

In the ablation study we investigate the effectiveness of
each module of the proposed WEVAE. Additional results
are provided in Appendix-F from SM.

Size of the memory buffer : We evaluate the performance
when changing the memory buffer size |M|Max on Cross-
Domain data, and the results are provided in Fig. 2-a. As
the memory buffer increases its capacity, all models im-
prove their performance. The proposed WEVAE outper-
forms other models on all memory configurations, even
when the memory buffer stores only 500 samples.

Changing the threshold λ : We investigate the performance
and the number of components of WEVAE on Split MNIST
when changing the threshold λ from Eq. (4) and the results
are shown in Fig. 2-b. Decreasing λ would increase the
number of components but does not lead to a significant im-
provement in the negative log performance. Those results

show that the proposed WEVAE can achieve good perfor-
mance with only three components, proving the ability of
each component (expert) to capture diverse knowledge.

Changing the batch size : We also investigate the perfor-
mance and the number of components of WEVAE when
changing the batch size, and the results are shown in Fig. 2-
c. The proposed WEVAE does not suffer from a degener-
ated performance and requires a similar number of compo-
nents when changing the batch size.

Model expansion process : In Fig. 2-d we provide the num-
ber of components for WEVAE and the change of the data
distribution, measured as the change in the data class, on
Split MNIST, considering the classification task. The pro-
posed WEVAE frequently adds new components during the
initial learning stages and less later on, during its further
learning stages. The reason is that when WEVAE has ac-
cumulated the necessary knowledge, it does not need more
components to learn the information from the later learning
processes which are related to what it had already learnt pre-
viously. Each component learns a single or a few underlying
data distributions. In the latter case the data distributions are
similar in their statistical data representations.

6. Conclusion

In this paper, we propose the Wasserstein Expansible
Variational Autoencoder (WEVAE), a new approach for
Task Free Continual Learning (TFCL), which adaptively
expands a VAE mixture model, by adding new components
when the given new tasks are characterized by different un-
derlying probabilistic representations than those learnt in
the past. A memory buffer is considered for temporarily
storing data samples from new databases. Data from the
memory buffer are selected and used for training, accord-
ing to a novelty detection mechanism in order to further
promote the knowledge diversity among components. We
theoretically and empirically demonstrate that the proposed
WEVAE performs well while requiring a compact model
structure.
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