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Abstract

We propose a method for adapting neural networks to
distribution shifts at test-time. In contrast to training-
time robustness mechanisms that attempt to anticipate and
counter the shift, we create a closed-loop system and make
use of test-time feedback signal to adapt a network on the
fly. We show that this loop can be effectively implemented
using a learning-based function, which realizes an amor-
tized optimizer for the network. This leads to an adapta-
tion method, named Rapid Network Adaptation (RNA), that
is notably more flexible and orders of magnitude faster
than the baselines. Through a broad set of experiments us-
ing various adaptation signals and target tasks, we study
the generality, efficiency, and flexibility of this method. We
perform the evaluations using various datasets (Taskon-
omy, Replica, ScanNet, Hypersim, COCO, ImageNet), tasks
(depth, optical flow, semantic segmentation, classification),
and distribution shifts (Cross-datasets, 2D and 3D Common
Corruptions) with promising results.

1. Introduction

Neural networks are found to be unreliable against distri-
bution shifts [23, 35,43, 42, 29]. Examples of such shifts in-
clude blur due to camera motion, object occlusions, changes
in weather conditions and lighting, etc. The training-time
strategies to deal with this issue attempt to anticipate the
shifts that may occur and counter them at the training stage
— for instance, by augmenting the training data or updating
the architecture with corresponding robustness inductive bi-
ases. As the possible shifts are numerous and unpredictable,
this approach has inherent limitations. This is the main mo-
tivation behind test-time adaptation methods, which instead
aim to adapt to such shifts as they occur and recover from
failure. In other words, these methods choose adaptation
over anticipation (see Fig. 1). In this work, we propose a
test-time adaptation framework that aims to perform an ef-
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Figure 1: Adaptive vs non-adaptive neural network pipelines. Top:
In order to be robust, non-adaptive methods include training-time inter-
ventions that anticipate and counter the distribution shifts that will occur
at test-time (e.g., via data augmentation). The learned model, fy, is frozen
at test-time, thus upon encountering an out-of-distribution input, its pre-
dictions may collapse. Bottom: Adaptive methods create a closed-loop
and use an adaptation signal at test-time. The adaptation signal is a quan-
tity that can be computed at test-time from the environment. hg acts as a
“controller” by taking in an error feedback, computed from the adaptation
signal and model predictions, to adapt fy accordingly. It can be imple-
mented as a (i) standard optimizer (e.g., using SGD) or (ii) neural network.
The former is equivalent to test-time optimization (TTO), while the latter
aims to amortize the optimization process, by training a controller network
to adapt fy — thus, it can be more efficient and flexible. In this work, we
study the latter approach and show its efficiency and flexibility.

ficient adaptation of a given main network using a feedback
signal.

One can consider performing “test-time optimiza-
tion” (TTO) for this purpose, similar to previous works [91,
108, 27] e.g. simply using SGD to finetune the network
to reduce a proxy loss [91]. While this can successfully
adapt a network, it is unnecessarily inefficient as it does not
make use of the learnable regularities in the adaptation pro-
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cess, and consequently, unconducive for real-world appli-
cations. It also results in a rigid framework as the update
mechanism is fixed to be the same as the training process
of neural networks (SGD). We show this process can be
effectively amortized using a learning-based feed-forward
controller network, which yields orders of magnitude faster
results (See Fig. 1, Sec. 4.3). In addition, it provides flex-
ibility advantages as the controller is implemented using a
neural network and can be engineered to include arbitrary
inductive biases and desired features that could counter the
suboptimalities of the adaptation signal.

2. Related Work

Our work focuses on how to adapt a neural network ef-
ficiently at test-time on a range of tasks and adaptation sig-
nals. We give an overview of relevant topics. See the sup-
plementary Sec. 7 for more related works.

Robustness methods anticipate the distribution shift
that can occur and incorporate inductive biases into the
model to help it generalize. Popular methods include data
augmentation [61, , 57, 37, s , 34, 43], self-
/pre-training [36, 95, 25, 72, 96, 75, 32], architectural
changes [19, 8, 82, 62, 55] or ensembling [48, 67, 99, 73,

, 68]. We focus on adaptation mechanisms and identify-
ing practical adaptation signals that can be used at fest-time.

Amortized optimization methods make use of learn-
ing to improve (e.g., speed-up) the solution of optimiza-
tion problems, particularly for settings that require repeat-
edly solving similar instances of the same underlying prob-
lem [49, 11,4, 106, 26, 94, 60, 14, 3]. Fully amortized opti-
mization methods model the shared structure between past
instances of solved problems to regress the solution to a new
problem [31, 21, 52]. As adapting to distribution shifts can
be cast as solving an optimization problem at test-time, our
method can be seen as an amortized solution.

Test-time adaptation methods for geometric tasks.
Many existing frameworks, especially in geometric tasks
such as aligning a 3D object model with an image of it,
in effect instantiate a task-specific case of closed-loop op-
timization for each image [60), , 63]. Common sources
of their adaptation quantity include sensor data [92, 98, 15,

, , 18], structure from motion (SFM) [93, 47], mo-
tion [12], and photometric and multi-view consistency con-
straints (MVC) [58, 45]. Many of the latter methods of-
ten focus on depth prediction and they introduce losses that
are task-specific, e.g., [93] optimize a photometric consis-
tency loss. We differ by aiming to investigate a more gen-
eral framework for test-time adaptation that can be applied
to several tasks. For MVC, while we adopt the same losses
as [58], we show under collapsed predictions, optimizing
only MVC constraints is not sufficient for recovering pre-
dictions; depth predictions need to be adapted and this can
be done efficiently using our framework (see Sec. 4.3).

Test-time adaptation methods for semantic tasks.
Most of these works involve optimizing a self-supervised
objective at test-time [85, 91, 54, 27, 28, , 9,51, ].
They differ in the choice of self-supervised objectives, e.g.,
prediction entropy [91], mutual information [51], and pa-
rameters optimized [9]. However, as we will discuss in
Sec. 3.2, and as shown by [9, 27, 65], existing methods can
Jail silently, i.e. successful optimization of the adaptation
signal loss does not necessarily result in better performance
on the target task. We aim to have a more efficient and
flexible method and also show that using proper adaptation
signals results in improved performance.

Multi-modal frameworks are models that can use the
information from multiple sources, e.g., RGB image, text,
audio, etc., [13, 5, 86, 50, 2, 16, 72, 1, 6, 30]. Schemat-
ically, our method has similarities to multi-modal learning
(as many amortized optimization methods do) since it si-
multaneously uses an input RGB image and an adaptation
signal. The main distinction is that our method implements
a particular process toward adapting a network to a shift us-
ing an adaptation signal from the environment — as opposed
to a generic multi-modal learning.

3. Method

In Fig. 1, we schematically compared methods that in-
corporate robustness mechanisms at training-time (thus an-
ticipating the distribution shift) with those that adapt to
shifts at test-time. Our focus is on the latter. In this sec-
tion, we first discuss the benefits and downsides of com-
mon adaptation methods (Sec. 3.1). We then propose an
adaptation method that is fast and can be applied to several
tasks (Sec. 3.1.1). To adapt, one also needs to be able to
compute an adaptation signal, or proxy, at the test-time. In
the second part of the section (Sec. 3.2), we study a number
of practical adaptation signals for a number of tasks.

3.1. How to adapt at test-time?

An adaptive system is one that can respond to changes
in its environment. More concretely, it is a system that can
acquire information to characterize such changes, e.g., via
an adaptation signal that provides an error feedback, and
make modifications that would result in a reduction of this
error (see Fig. 1). The methods for performing the adapta-
tion of the network range from gradient-based updates, e.g.
using SGD to fine-tune the parameters [85, 91, 27], to the
more efficient semi-amortized [110, 88] and amortized ap-
proaches [90, 66, 77] (see Fig. 6 of [77] for an overview).
As amortization methods train a controller network to sub-
stitute the explicit optimization process, they only require
a forward pass at test-time. Thus, they are computation-
ally efficient. Gradient-based approaches, e.g., TTO, can
be powerful adaptation methods when the test-time signal
is robust and well-suited for the task (see Fig. 4). How-
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ever, they are inefficient and have the risk of failing silently
and the need for carefully tuned optimization hyperparam-
eters [9]. In this work, we focus on an amortization-based
approach.

Notation. We use &' to denote the input image domain,
and ) to denote the target domain for a given task. We use
fo : X — Y to denote the model to be adapted, where 6
denotes the model parameters. We denote the model before
and after adaptation as fy and fj respectively. £ and D are
the original training loss and training dataset of fy, e.g., for
classification, £ will be the cross-entropy loss and D the Im-
ageNet training data. As shown in Fig. 1, h is a controller
for fp. It can be an optimization algorithm, e.g., SGD, or
a neural network. ¢ denotes the optimization hyperparam-
eters or the network’s parameters. The former case corre-
sponds to TTO, and the latter is the proposed RNA, which
will be explained in the next subsection. Finally, the func-
tion g : XM — Z returns the adaptation signal by map-
ping a set of images B = {I1,..., I,;} € X™ to a vector
g(B) = z € Z. This function g is given, e.g., for depth, ¢
returns the sparse depth measurements from SFM.

3.1.1 Rapid Network Adaptation (RNA)

For adaptation, we use a neural network for hg. The adap-
tation signal and model predictions are passed as inputs
to hg and it is trained to regress the parameters 0(¢) =
hg(fo(B), z). This corresponds to an objective-based amor-
tization of the TTO process [3]. Using both the adaptation
signal z and model prediction fy(B3) informs the controller
network about the potential errors of the model. The train-
ing objective for hg is ming Ep [L(fg,) (B),y)]. where
(B,y) ~ D is a training batch sampled from D. Note that
the original weights of f are frozen and h is a small net-
work, having only 5-20% of the number of parameters of f,
depending on the task. We call this method as rapid network
adaptation (RNA) and experiment with different variants of
itin Sec. 4.

There exist various options for implementing the amor-
tization process, e.g., hg can be trained to update the input
image or the weights of fy. We choose to modulate the
features of fp as it has been shown to work well in dif-
ferent domains [24] and gave the best results. To do this,
we insert k& Feature-wise Linear Modulation (FiLM) lay-
ers [71] into fy (see Fig. 2). Each FiLM layer performs:
FILM(x;;7vi, i) = 7: © X; + 3, where x; is the activation
of layer i. hg is a network that takes as input the adaptation
signal z and model predictions and outputs the coefficients
{vi, B;} of all k FiLM layers. hy is trained on the same
dataset D as fy, therefore, unlike TTO, it is never exposed
to distribution shifts during training. Moreover, it is able
to generalize to unseen shifts (see Sec. 4.3). See the sup-
plementary for the full details, other RNA implementations
we investigated, and a comparison of RNA against other ap-
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Figure 2: Architecture of RNA. z is the input image, fy is the model
to be adapted and fy () the corresponding prediction. To perform adapta-
tion, we freeze the parameters of fy and insert several FiLM layers into fg.
We then train hg to take in z, the adaptation signal, and fg(z) to predict
the parameters of these FILM layers. This results in an adapted model f;
and improved predictions, fj(z).

proaches that aim to handle distribution shifts.

3.2. Which test-time adaptation signals to use?

While developing adaptation signals is not the main fo-
cus of this study and is independent of the RNA method,
we need to choose some for experimentation. Existing
test-time adaptation signals, or proxies, in the literature in-
clude prediction entropy [91], spatial autoencoding [27],
and self-supervised tasks like rotation prediction [85], con-
trastive [54] or clustering [9] objectives. The more aligned
the adaptation signal is to the target task, the better the per-
formance on the target task [85, 54]. More importantly, a
poor signal can cause the adaptation to fail silently [9, 27].
Figure 3 shows how the original loss on the target task
changes as different proxy losses from the literature, i.e. en-
tropy [91], consistency between different middle domains
[99, ] are minimized. In all cases, the proxy loss de-
creases, however, the improvement in the target loss varies.
Thus, successful optimization of existing proxy losses does
not necessarily lead to better performance on the target task.
In this paper, we adopt a few practical and real-world sig-
nals for our study. Furthermore, RNA turns out to be less
susceptible to a poor adaptation signal vs TTO (see sup-
plementary Tab. 1). This is because RNA is a neural net-
work trained to use these signals to improve the target task,
as opposed to being fixed at being SGD, like in TTO.

3.2.1 Employed test-time adaptation signals

We develop test-time adaptation signals for several geomet-
ric and semantic tasks as shown in Fig. 4. Our focus is
not on providing an extensive list of adaptation signals, but
rather on using practical ones for experimenting with RNA
as well as demonstrating the benefits of using signals that
are rooted in the known structure of the world and the task in
hand. For example, geometric computer vision tasks natu-
rally follow the multi-view geometry constraints, thus mak-
ing that a proper candidate for approximating the test-time
error, and consequently, an informative adaptation signal.
Geometric Tasks. The field of multi-view geometry and
its theorems, rooted in the 3D structure of the world, pro-
vide a rich source of adaptation signals. We demonstrate
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Figure 3: Adaptation using different signals. Not all improvements
in proxy loss translates into improving the target task’s performance.
We show the results of adapting a pre-trained depth estimation model to a
defocus blur corruption by optimizing different adaptation signals: predic-
tion entropy [91], a self-supervised task (sobel edge prediction error [99]),
and sparse depth obtained from SFM. The plots show how the ¢; target
error with respect to ground-truth depth (green, left axis) changes as the
proxy losses (blue, right axis) are optimized (shaded regions represent the
95% confidence intervals across multiple runs of stochastic gradient de-
scent (SGD) with different learning rates). Only adaptation with the sparse
depth (SFM) proxy leads to a reduction of the target error. This signifies
the importance of employing proper signals in an adaptation framework.
Furthermore, we show that RNA is less susceptible to poorer adaptation
signal, which results in comparable or improved performance while being
significantly faster (see supplementary Table 1).

our results on the following target tasks: monocular depth
estimation, optical-flow estimation, and 3D reconstruction.
For all, we first run a standard structure-from-motion (SFM)
pipeline [81] to get sparse 3D keypoints. For depth es-
timation, we employ the z-coordinates of the sparse 3D
keypoints i.e., noisy sparse depth, from each image as the
adaptation signal. For optical flow, we perform keypoint
matching across images (which returns sparse optical flow).
Lastly, for 3D reconstruction, in addition to the previous
two signals, we employ consistency between depth and op-
tical flow predictions as another signal.

Semantic Tasks. For semantic segmentation, we first
experiment with using a low number of click annotations
for each class, similar to the works on active annotation
tools [17, 83, 69]. This gives us sparse segmentation an-
notations. Likewise, for classification, we use the hierar-
chical structure of semantic classes, and use coarse labels
generated from the WordNet tree [64], similar to [38]. Al-
though these signals (click annotations and coarse labels)
are significantly weaker versions of the actual ground truth,
thus being cheaper to obtain, it may not be realistic to as-
sume access to them at test-time for certain applications,
e.g., real-time ones. Thus, we also show how these can be
obtained via k-NN retrieval from the training dataset and
patch matching using spatial features obtained from a pre-
trained self-supervised vision backbone [10] (see Fig. 4).

4. Experiments

We demonstrate that our approach consistently outper-
forms the baselines for adaptation to different distribu-
tion shifts (2D and 3D Common Corruptions [35, 43, 44],
cross-datasets), over different tasks (monocular depth, im-
age classification, semantic segmentation, optical flow) and
datasets (Taskonomy [105], Replica [84], ImageNet [22],
COCO [53], ScanNet [20], Hypersim [78]). The source

Depth and Optical Flow Image Classification

i > i 1
-‘g !‘] Test Image _ ‘ :
= E—q'la
: Coarse Labels | .

H kNN Images  }
* Coarse Labelling via k-NN Retrieval *

Semantic Segmentation

Training data

Sparse Depth & Flow via SFM Sparse Annotations via Patch Matching

Figure 4: Examples of employed test-time adaptation signals. We use
a range of adaptation signals in our experiments. These are practical to
obtain and yield better performance compared to other proxies. In the left
plot, for depth and optical flow estimation, we use sparse depth and optical
flow via SFM. In the middle, for classification, for each test image, we
perform k-NN retrieval to get k training images. Each of these retrieved
image has a one hot label associated with it, thus, combining them gives
us a coarse label that we use as our adaptation signal. Finally, for semantic
segmentation, after performing k£-NN as we did for classification, we get a
pseudo-labelled segmentation mask for each of these images. The features
for each patch in the test image and the retrieved images are matched. The
top matches are used as sparse supervision. See Sec. 4.1 for more details.

code can be found on our project page.
4.1. Experimental Setup

We describe our experimental setup, i.e. different adap-
tation signals, adaptation mechanisms, datasets and base-
lines, for different tasks. See Tab. 1 for a summary.

Baselines. We evaluate the following baselines:
Pre-Adaptation Baseline: The network fy that maps from

RGB to the target task, e.g., depth estimation, with no test-
time adaptation. We denote this as Baseline for brevity.

Densification: A network that maps from the given adapta-
tion signal for the target task to the target task, e.g., sparse
depth from SFM to dense depth. This is a control baseline
and shows what can be learned from the test-time super-
vision alone, without employing input image information
or a designed adaptation architecture. See Sec. 4.3 for a
variant which includes the image as an additional input.

TTO (episodic): We adapt the Baseline model to each
episode by optimizing the proxy loss (see Tab. 1 for the
adaptation signal used for each task.) at test-time. Its
weights are reset to the Baseline model’s after optimizing
each batch, similar to [91, ].

TTO (online): We continually adapt to a distribution shift
defined by a corruption and severity. Test data is assumed
to arrive in a stream, and each data point has the same
distribution shift, e.g., noise with a fixed standard devia-
tion [91, 85]. The difference with TTO (episodic) is that
the model weights are not reset after each iteration. We
denote this as TTO for brevity.

TTO with Entropy supervision (TENT [9]]): We adapt the
Baseline model trained with log-likelihood loss by opti-
mizing the entropy of the predictions. This is to reveal the
effectiveness of entropy as a signal as proposed in [91].
TTO with Sobel Edges supervision (TTO-Edges): We adapt
the Baseline model trained with an additional decoder that
predicts a self-supervised task, similar to [85]. We choose
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Task ‘ Adaptation signal Adapted model Training data OOD evaluation data Baselines

For SFM: Replica, Replica-CC, ScanNet, Pre-adaptation, densification,
Depth ‘ SEM, masked GT UNet [80}, DPT [74] Taskonomy For masked GT: Taskonomy-CC,-3DCC, Hypersim TENT, TTO-edges, TTO
Optical flow ‘ Keypoint matching RAFT [87] FlyingChairs, FlyingThings [87] ~ Replica-CC Pre-adaptation
3D reconstruction ‘ SFM, keypoint matching,consistency ~ Depth, optical flow models Depth, optical flow data Replica-CC Pre-adaptation, TTO

Semantic

Coco

For click annotations: COCO-CC,

. ‘ Click annotations, patch matching FCN [56]
segmentation

(20 classes from Pascal VOC)

Pre-adaptation,

For patch matching: ImageNet-C densification, TENT, TTO

Coarse labels

Classification (WordNet, DINO £-NN)

ResNet50 [33], ConvNext [55]

ImageNet

Pre-adaptation, DINO %k-NN,

ImageNet-C, ImageNet-3DCC, ImageNet-V2 densification, TENT, TTO

Table 1: Overview of the experiments for different target tasks, adaptation methods, and adaptation signals. For each task, we list the adaptation
signal (Sec. 3.2) that we use for adaptation. We also list the models that we adapt, and the out-of-distribution (OOD) data used for evaluations and the relevant
baselines. When there are different options for adaptation signal, e.g., in the case of depth, the signal is denoted in italics followed by the corresponding
OOD dataset. The weights for the semantic segmentation, classification and optical flow models were taken from PyTorch [70].
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Figure 5: RNA can achieve similar performance as TTO in a much
shorter time. We compare how the ¢; errors of the adaptation mecha-
nisms decrease over wall-clock time (s). The errors are averaged over all
episodes (and all corruptions for Replica-CC). RNA only requires a for-
ward pass at test-time, while TTO requires multiple forward and backward
passes. On ScanNet and Replica-CC, RNA takes 0.01s, while TTO takes 3s
to achieve similar performance. Furthermore, RNA is not trained with test-
time shifts unlike TTO, thus, it learned to use the additional supervision to
adapt to unseen shifts.

to predict Sobel edges as it has been shown to be robust
to certain shifts [99]. We optimize the error of the edges
predicted by the model and edges extracted from the RGB
image to reveal the value of edge error as a supervision.

RNA configurations. At test-time, we first get the pre-
dictions of the Baseline model and compute the adapta-
tion signal. The predictions and adaptation signal are then
passed to hg which adapts fg to f;. The test images are
then passed to f; to get the final predictions. We evaluate
following variants of RNA.

RNA (frozen f): Baseline model weights, fy, are frozen
when training h,. We call this variant RNA for brevity.

RNA (jointly trained f): In contrast to the frozen f variant,
here we train hy jointly with the Baseline network. This
variant requires longer training.

Adaptation signal. As described in Sec. 3.2, we com-
pute a broad range of test-time signals from the following
processes. Each case describes a process applied on query
image(s) in order to extract a test-time quantity.

Structure-from-motion (SFM): Given a batch of query im-
ages, we use COLMAP [81] to run SFM, which returns
sparse depth. The percentage of valid pixels, i.e. depth
measurements, is about 0.16% on Replica-CC and 0.18%
on Replica. For ScanNet we use the pre-computed sparse
depth from [79], which has about 0.04% valid pixels. As
running SFM on corrupted images results in noisy sparse
depth, we train h to be invariant to noise [102, 79].

Masked ground truth (GT): We apply a random mask to
the GT depth of the test image. We fixed the valid pixels
to 0.05% of all pixels, i.e. similar sparsity as SFM (see
the supplementary for other values). This a control proxy
as it enables a better evaluation of the adaptation meth-
ods without conflating with the shortcomings of adapta-
tion signals. It is also a scalable way of simulating sparse
depth from real-world sensors, e.g., LIDAR, as also done
in [92, 59, 41].

Click annotations: We generate click annotations over ran-
dom pixels for each class in a given image using GT — sim-
ulating an active annotation pipeline. The number of pixels
ranges from 3 to 25, i.e. roughly 0.01% of the total pixels,
similar to [7, 69, 83, , 17].

Patch matching: To not use GT click annotations, for each
test image, we first retrieve its k-NN images from the orig-
inal clean training dataset using DINO features [10]. We
then get segmentation masks on these k£ images. If the
training dataset has labels for segmentation we use them
directly, otherwise we obtain them from a pretrained net-
work. For each of the k training images and test image,
we extract non-overlapping patches. The features for each
patch that lie inside the segmentation masks of the k train-
ing images are matched to the features of every patch in
the test image. These matches are then filtered and used as
sparse segmentation annotations. See Fig. 4 for illustration.

Coarse labels (WordNet): We generate 45 coarse labels
from the 1000-way ImageNet labels, i.e. making the labels
22x coarser, using the WordNet tree [64], similar to [39].
See supplementary for more details on the construction and
results for other coarse label sets.

Coarse labels (DINO k-NN): For each test image, we re-
trieve the k-NN images from the training dataset using
DINO features [10]. Each of these % training images is
associated with an ImageNet class, thus, combining k one-
hot labels gives us a coarse label.

Keypoint matching: We perform keypoint matching across
images to get sparse optical flow.
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Figure 6: Qualitative results of RNA vs the baselines for semantic segmentation on random query images on COCO-CC (left) and depth on images
from ScanNet, Taskonomy-3DCC and Replica-CC (right). For semantic segmentation, we use 15 pixel annotations per class. For Taskonomy-3DCC, we
use sparse depth with 0.05% valid pixels (30 pixels per image). See Fig. 7 for results on different adaptation signal levels. For ScanNet and Replica-CC, the
adaptation signal is sparse depth measurements from SFM [81] with similar sparsity ratios to Taskonomy-3DCC. The predictions with proposed adaptation
signals are shown in the last two rows. They are noticeably more accurate compared to the baselines. Comparing TTO and RNA, RNA’s predictions are
more accurate for segmentation, and sharper than TTO for depth (see the ellipses) while being significantly faster. See 4.2 and supplementary for more

results.

4.2. Adaptation with RNA vs TTO

Here we summarize our observations from adapting

with RNA vs TTO. As described, TTO represents the ap-
proach of closed-loop adaptation using the adaptation sig-
nal but without benefiting from amortization and learning
(the adaptation process is fixed to be standard SGD). These
observations hold across different tasks. See Sec. 4.3 for
results.
RNA is efficient. As RNA only requires a forward pass at
test-time, it is orders of magnitude faster than TTO and is
able to attain comparable performance to TTO. In Fig. 5,
we compare the runtime of adaption with RNA and TTO
for depth prediction. On average, for a given episode, RNA
obtains similar performance as TTO in 0.01s, compared to
TTO’s 3-5s. Similarly, for dense 3D reconstruction, RNA is
able to adapt in 0.008s compared to TTO’s 66s (see Fig. 9).
This suggests a successful amortization of the adaptation
optimization by RNA.

Furthermore, RNA’s training is also efficient as it only
requires training a small model, i.e. 5-20% of the Baseline
model’s parameters, depending on the task. Thus, RNA has
a fixed overhead, and small added cost at test-time.

RNA'’s predictions are sharper than TTO for dense pre-
diction tasks. From the last two rows of Fig. 6, it can be
seen that RNA retains fine-grained details. This is a note-
worthy point and can be attributed to the fact that RNA ben-
efits from a neural network, thus its inductive biases can

be beneficial (and further engineered) for such advantages.
This is a general feature that RNA, and more broadly using
a learning-based function to amortize adaptation optimiza-
tion, brings — in contrast to limiting the adaptation process
to be SGD, as represented by TTO.
RNA generalizes to unseen shifts. RNA performs better
than TTO for low severities (see supplementary for more
details). However, as it was not exposed to any corruptions,
the performance gap against TTO narrows at high severities
as expected, which is exposed to corruptions at test-time.
We hypothesize that the generalization property of RNA
is due to the following reasons. 1. Even though fy was
trained to convergence, it does not achieve exactly O error.
Thus, when hy is trained with a frozen fy with the training
data, it can still learn to correct the errors of fy, thus, adapt-
ing fy. 2. Adaptation signals, by definition, are expected to
be relatively robust to distribution shifts. Even though the
RGB image has been corrupted or from a new domain, the
adaptation signal is more aligned with the target task. Thus,
the input to hg does not undergo a significant shift and is
able to adapt fy.

4.3. Experiments using Various Target Tasks

In this section, we provide a more comprehensive set of
evaluations covering various target tasks and adaptation sig-
nals. In all cases, RNA is a fixed general framework without
being engineered for each task and shows supportive results.
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Adaptation Signal | SFM | Sparse GT | Relai
Dataset | Replica  ScanNet | Taskonomy Hypersim | Runtime
Shift |CDS C€C CDS |None CC 3DCC  CDS
Pre-adaptation Baseline | 1.75 608 330 | 2.68 574 475 33.64 1.00
Densification 250 419 235 | 172 172 172 17.25 1.00
TENT [91] 203 609 403 | 551 551 448 3545 15.85
TTO-Edges [$5] 173 614 328 | 270 569 474 33.69 20.98
RNA (frozen f) 172 426 177 | 112 168 149 16.17 1.56
RNA (jointly trained f) | 1.66 341 174 | 111 150 137 17.13 1.56
TTO (Episodic) 172 331 185 | 1.62 299 231 17.77 14.85
TTO (Online) 182 316 176 | 113 148 134 14.17 14.85

Table 2: Quantitative adaptation results on depth estimation. ¢; er-
rors on the depth prediction task. (Lower is better. Multiplied by 100 for
readability. The best models within 0.0003 error are shown in bold.) We
generate distribution shifts by applying Common Corruptions (CC), 3D
Common Corruptions (3DCC) and from performing cross-dataset evalu-
ations (CDS). The results from CC and 3DCC are averaged over all dis-
tortions and severity levels on Taskonomy and 3 severity levels on Replica
data. The adaptation signal from Taskonomy is masked GT (fixed at 0.05%
valid pixels) while that from Replica and ScanNet is sparse depth from
SFM. RNA and TTO notably outperform the baselines. RNA successfully
matches the performance of TTO while being around 10 times faster.
See supplementary for the losses for different corruption types, sparsity
levels, and the results of applying RNA to other adaptation signals.

Figure 7: Qualitative adaptation results on semantic segmentation on
random query images on COCO-CC. RNA notably improves the prediction
quality using error feedback from as few as 3 random pixels.

60
50
o
040 _ ——- Baseline Clean (60.4) |
% 30 —— Baseline (34.78)
g —— Densification (29.40)
20 —— TENT (35.75)
— TTO (41.80)
10 —— RNA (51.46)
3 6 9 12 15 18 21 24

Number of pixels

Figure 8: Quantitative adaptation results on semantic segmentation.
Each point shows the mean IOU over 15 corruptions and 5 severities. RNA
significantly improves over baselines. Black dashed line shows the mean
IOU of the baseline model for clean validation images, and is provided as
an upper bound on performance. Numbers in the legend denote averages
over all supervision pixel counts. See supplementary for a breakdown.

Depth. We demonstrate the results quantitatively in
Tab. 2 and Fig. 5 and qualitatively in Fig. 6. In Tab. 2, we
compare RNA against all baselines, and over several dis-
tribution shifts and different adaptation signals. Our RNA
variants outperform the baselines overall. TTO (online) has
a better performance than TTO (episodic) as it assumes a
smoothly changing distribution shift, and it continuously
updates the model weights. RNA (jointly trained f) has a

better performance among RNA variants. This is reasonable
as the target model is not frozen, thus, is less restrictive.

As another baseline, we trained a single model that takes
as input a concatenation of the RGB image and sparse su-
pervision, i.e. multi-modal input. However, its average per-
formance on Taskonomy-CC was 42.5% worse than RNA’s
(see sup. mat. Sec. 3.2). Among the baselines that do not
adapt, densification is the strongest under distribution shift
due to corruptions. This is expected as it does not take the
RGB image as input, thus, it is not affected by the underly-
ing distribution shift. However, as seen from the qualitative
results in Figs. 6, 7, unlike RNA, densification is unable to
predict fine-grained details (which quantitative metrics of-
ten do not well capture). We also show that the gap between
RNA and densification widens with sparser supervision (see
sup. mat. Fig. 1), which confirms that RNA is making use
of the error feedback signal, to adapt f.

Ground Truth Baseline Baseline + MVC
Compute Time: 0.007s Compute Time: 12.407s
¢, error. 1.332 ¢, error. 1.488

4
¥
A

TTO + MVC RNA
Compute time: 68.997 sec
4, error: 0.299

Compute time: 65.902s
¢, error: 0.340

Compute time: 0.008s
4, error: 0.436

= ;

O ;.L,g,’

Figure 9: Adaptation results for 3D reconstruction. Using appropri-
ate adaptation signals from multi-view geometry can recover accurate 3D
reconstructions. We report the average ¢; error between ground truth 3D
coordinates and the estimated ones. The titles above each column refers to
the depth model used to get the reconstruction. TTO+MVC corresponds
to the predictions after multi-view consistency optimization. It can be seen
that RNA and TTO improve the reconstructions over the baselines with
RNA being significantly faster. See supplementary Fig. 4 for more results
and the corresponding error maps.

Dense 3D Reconstruction. Here, we combine multi-
ple adaptation signals from multi-view geometry. First,
we adapt the weights of the depth and optical flow mod-
els independently. The results from this adaptation can be
found in the previous paragraph (for depth) and supplemen-
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Adaptation Signal Dataset ‘Clean IN-C IN-3DCC IN-V2 Rel. Runtime

- Pre-adaptation Baseline | 23.85 61.66 54.97 37.15 1.00
Entropy TENT 2467 4619  47.13  37.07 551
Coarse labels Densification 9550 9550 9550  95.50 -
P o ;‘) o TTO (Online) 2472 4062 4290 3677 572
wordnef RNA (frozen f) 1672 4121 4037 2553 139
Coarse labels DINO (k-NN) 2556 52.64 4824  37.39 -
DINOy TTO (Online) 2459 5159 49.18 3696 572
RNA (frozen f) 2436 5486 5229 3688 1.39

Table 3: Quantitative adaptation results on on ImageNet (IN) clas-
sification task. We evaluate on the clean validation set, ImageNet-
{C,3DCC,V2}. We report average error (%) for 1000-way classification
task over all corruptions and severities. For the coarse labels with WordNet
supervision, we use 45-coarse labels. For DINO k-NN, we set & = 20.

tary (for optical flow). Next, the two models are adapted
to make their predictions consistent with each other. This
is achieved using the same process as [58], i.e. multi-view-
consistency (MVC). See supplementary for details.

Figure 9 shows the point cloud visualizations on Replica
where the input was corrupted with Gaussian Noise. This
results in collapsed depth predictions, thus, reconstructions
are unusable (Baseline column) and performing MVC is
not helpful (Baseline+MVC). Adapting the depth predic-
tions using TTO and MVC improves the reconstruction no-
tably while RNA achieves a similar performance signifi-
cantly faster.

Semantic Segmentation. We experiment with click an-

notations and DINO patch matching as adaptation signals.
Click annotations: In Fig. 8, we show how the IoU changes
with the adaptation signal level on COCO-CC. As the Base-
line and TENT do not make use of this signal, their IoU is a
straight line. RNA clearly outperforms the baselines for all
levels of adaptation signal. Figure 7 shows the qualitative
results with increasing supervision, and Fig. 6 (left) a com-
parison against all baselines, demonstrating higher quality
predictions with RNA.
DINO patch matching: We perform patch matching on
DINO features (described in Sec. 4.1) to get the adaptation
signal. As the patch matching process can be computation-
ally expensive, we demonstrate our results on all cat classes
in ImageNet and over one noise, blur and digital corruption
for 3 levels of severity. We used the predictions of a pre-
trained FCN on the clean images as pseudolabels to com-
pute IoU. The mean IoU averaged over these corruptions
and severities is 48.98 for the baseline model, 53.45 for
TTO. RNA obtains a better IOU of 58.04, thus it can make
use of the sparse annotations from DINO patch matching.

Image Classification. We experiment with coarse labels
from WordNet and DINO k-NN as adaptation signals.
Coarse labels (WordNet): Table 3 shows the results from
using 45-coarse labels on ImageNet-{C,3DCC,V2}. This
corresponds to 22x coarser supervision compared to the
1000 classes that we are evaluating on. TENT seems to
have notable improvements in performance under corrup-
tions for classification, unlike for semantic segmentation
and depth. We show that using coarse supervision results
in even better performance, about a further 5 pp reduction

in error. Furthermore, on uncorrupted data, i.e. clean, and
ImageNet-V2 [76], RNA gives roughly 10 pp improvement
in performance compared to TTO. Thus, coarse supervision
provides a useful signal for adaptation while requiring much
less effort than full annotation [97]. See supplementary for
results on other coarse sets.

Coarse labels (DINO k-NN): We also show results from us-
ing coarse sets generated from DINO k-NN retrieval. This
is shown in the last 3 rows of Tab. 3. Both RNA and TTO
use this coarse information to outperform the non-adaptive
baselines. However, they do not always outperform TENT,
which could be due to the noise in retrieval.

4.4. Ablations and additional results

Task (Arch.) ‘ Depth (DPT [74]) ‘ Classification (ConvNext [55])
Shift ‘ Clean CC Rel. Runtime ‘ Clean IN-C Rel. Runtime
Pre-adaptation Baseline | 223  3.76 1.00 18.13 4295 1.00
TTO (Online) 1.82 261 13.85 17.83 4144 11.04
RNA (frozen f) 113 1.56 1.01 14.32  38.04 1.07

Table 4: RNA works across different architectures of the main net-
work fy such as DPT [74] and ConvNext [55]. Quantitative adaptation
results on depth estimation and image classification on Taskonomy and
ImageNet datasets, respectively. (Lower is better. ¢1 errors for depth esti-
mation are multiplied by 100 for readability.)

Aaptations of main network fy with different back-
bones. Previous results in the paper were from adapting
fo with a UNet architecture. Here, we study the perfor-
mance of RNA on other architectures of fy, namely, the
dense prediction transformer (DPT) [74] for depth and Con-
vNext [55] for image classification. Table 4 shows the re-
sults of incorporating RNA to these architectures. In both
cases, RNA is able to improve on the error and runtime of
TTO. Thus, RNA can be applied to a range of architectures.

Method\ Shift ‘ None Taskonomy-CC Taskonomy-3DCC Hypersim BlendedMVG
Pre-adaptation 0.027 0.057 0.048 0.336 3.450
RNA (HyperNetwork-z) | 0.019 0.041 0.033 0.257 2.587
RNA (FiLM-z) 0.019 0.039 0.033 0.279 2.636
RNA (FiLM-f) 0.013 0.024 0.020 0.198 2.310

Table 5: Implementations of different architectures for the controller
network h¢. {1 errors on the depth estimation task under distribution
shifts are reported. The adaptation signal here is masked GT, fixed at
0.05% of valid pixels.

Implementations of different architectures for the
controller network . We experiment with different ar-
chitectures for hy e.g., HyperNetworks [31], other FILM
variants, or adapting the input instead of the model param-
eters. Instead of adding FiLLM layers to adapt fy (denoted
as FILM-f), as described in Sec. 3.1, we also experimented
with adding FiLM layers to a UNet model that is trained to
update the input image x (denoted as FiLM-z). For FiLM-
x, only x is updated and there is no adaptation on fy. Lastly,
as Hypernetworks [31] have been shown to be expressive
and suitable for adaptation, we trained a HyperNetwork, in
this case an MLP, to predict the weights of a 3-layer convo-
lutional network that updates x (denoted as HyperNetwork-

4681



x). The results of adaptation with these variants of RNA
are shown in Table 5. The FiLM- f variant performed best,
thus, we adopted it as our main architecture. See supple-
mentary Sec. 2.2 for more details and a discussion on the
trade-offs of the choices of implementing this closed-loop
“control” system, namely those that make stronger model-
based assumptions.

Controlling for number of parameters. We ran a con-
trol experiment where all methods have the same architec-
ture, thus, same number of parameters. The results are in
the supplementary Table 2. RNA still returns the best per-
formance. Thus, its improvement over the baselines is not
due to a different architecture or number of parameters but
due to its test-time adaptation mechanism.

5. Approaches for handling distribution shifts

In this section, we provide a unified discussion about the
approaches that aim to handle distribution shifts. Figure 10
gives an overview of how these approaches can be charac-
terized. Open-loop systems predict y by only using their
inputs without receiving feedback. Training-time robustness
methods, image modifications, and multi-modal methods
fall into this category. These methods assume the learned
model is frozen at the test-time. Thus, they aim to incor-
porate inductive biases at training time that could be useful
against distribution shifts at the test-time. The closed-loop
systems, on the other hand, are adaptive as they make use
of a live error feedback signal that can be computed at test-
time from the model predictions and an adaptation signal.

In the interest of space, we move the detailed discussion
about each of these variants to Sec. 1.2 of the supplemen-
tary. In particular, elaboration of the distinction between
a model-based vs model-free approach, denoising/image-
modification methods, multi-modal methods, and our ob-
servations over comparing the conclusions of [46] el al.
and our experiments are provided there.

6. Conclusion and Limitations

We presented RNA, a method for efficient adaptation of
neural networks at test-time using a closed-loop formula-
tion. It involves training a side network to use a test-time
adaptation signal to adapt a main network. This network
acts akin to a “controller” and adapts the main network
based on the adaptation signal. We showed that this general
and flexible framework can generalize to unseen shifts, and
as it only requires a forward pass at test-time, it is orders of
magnitude faster than TTO. We evaluated this approach us-
ing a diverse set of adaptation signals and target tasks. We
briefly discuss the limitations and potential future works:

Different instantiation of RNA and amortization. While
we experimented with several RNA variants (see supple-
mentary for details), further investigation toward a stronger

Open-Loop Closed-Loop

Robustness methods Model-based adaptation

r——Y i L ——————>y

Image modification l
(Denoising) :
r—T Yy C—QR 2

Multi-modal methods : Model-free adaptation (RNA)
T—->Q@— yix Yy

o1

Figure 10: An overview of methods that aim to handle distribution
shifts. Left: Open-loop systems predict y by only using their inputs with-
out receiving feedback. The first and popular example of open-loop sys-
tems is training-time robustness methods (data augmentation, architectural
changes, etc.). The next example is the methods that modify the input z,
e.g. denoising or style changes, to recover the original image before cor-
ruption, independent of y. Furthermore, there are multi-modal methods
that use an additional input z. As the learned model is frozen at test-time,
these methods need to anticipate the distribution shift by incorporating in-
ductive biases at training time (See also Fig. 1.). Right: In contrast, closed-
loop systems make use of its current output, y, and an adaptation signal, z,
to form an error feedback signal that can be used to update its predictions.
Thus, they adapt to the shifts as they occur. We can then group closed-loop
systems into model-based and model-free methods. The former performs
adaptation by estimating the parameters e of specific modeled distribution
shift families, while the latter performs adaptation in a data-driven way
without explicitly modeling certain distribution shifts. Adaptation can be
performed via running an optimization, i.e. TTO via SGD, or via amorti-
zation, i.e., training a side controller network to predict TTO updates that
minimize the error feedback. Our proposed method, RNA, belongs to the
model-free adaptation approach that makes use of amortization for effi-
ciency.

instantiation of RNA which can generalize to more shifts
and handle more drastic changes, e.g. via building in a more
explicit “model” of the shifts and environment (see the dis-
cussion about [46]), is important. In general, as the role
of the controller network is to amortize the training opti-
mization of the main network, the amortized optimization
literature [3] is one apt resource to consult for this purpose.

Hybrid mechanism for activating TTO in RNA. TTO con-
stantly adapts a model to a distribution shift, hence, in the-
ory, it can adapt to any shift despite being comparatively
inefficient. To have the best of both worlds, investigat-
ing mechanisms for selectively activating TTO within RNA
when needed can be useful.

Finding adaptation signals for a given task. While the
focus of this study was not on developing new adaption sig-
nals, we demonstrated useful ones for several core vision
tasks, but there are many more. Finding these signals re-
quires either knowledge of the target task so a meaning-
ful signal can be accordingly engineered or core theoretical
works on understanding how a proxy and target objectives
can be “aligned” for training.

Acknowledgement: The authors thank Onur Beker. This
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