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Abstract

Video moment retrieval aims to localize moments in
video corresponding to a given language query. To avoid
the expensive cost of annotating the temporal moments,
weakly-supervised VMR (wsVMR) systems have been stud-
ied. For such systems, generating a number of proposals as
moment candidates and then selecting the most appropriate
proposal has been a popular approach. These proposals are
assumed to contain many distinguishable scenes in a video
as candidates. However, existing proposals of wsVMR sys-
tems do not respect the varying numbers of scenes in each
video, where the proposals are heuristically determined ir-
respective of the video. We argue that the retrieval system
should be able to counter the complexities caused by vary-
ing numbers of scenes in each video. To this end, we present
a novel concept of a retrieval system referred to as Scene
Complexity Aware Network (SCANet), which measures the
‘scene complexity’ of multiple scenes in each video and gen-
erates adaptive proposals responding to variable complex-
ities of scenes in each video. Experimental results on three
retrieval benchmarks (i.e. Charades-STA, ActivityNet, TVR)
achieve state-of-the-art performances and demonstrate the
effectiveness of incorporating the scene complexity.

1. Introduction

Video search has the core building block of recently

growing video streaming services (e.g. YouTube, Netflix).

To enhance the capability of video search, video moment

retrieval (VMR) aims to localize the start and end time

of the moment pertinent to a given language query in an

untrimmed video. The success of the VMR provides us with

accurate video contextual information in less time and ef-

fort. Until recently, these remarkable search performances

have been dependent on the size and quality of labeled

training datasets. However, these datasets cost a labor-

intensive annotating process (i.e. Annotators should find the

start-end time of moments corresponding to query descrip-

tions), and sometimes the annotated moments are ambigu-

ous. To cope with this problem, many weakly-supervised

VMR (wsVMR) methods [21, 5, 42, 44] have been pro-

posed by only utilizing the video-query pairs, which are less

laborious to annotate.

To perform the weak supervision using video-query

pairs, if one query is paired (i.e. annotated) with multiple

videos, we can identify the common scene among these

videos and determine the alignment between the query and

the scene. To implement this, all videos are divided into

multiple segments, and the retrieval system maximizes the

similarity scores between each query and paired segments

while suppressing the scores between the query and un-

paired segments in other videos. During the inference, the

system selects a segment with the highest score as a mo-

ment prediction for a given query. For the wsVMR systems

to accurately classify the best segment in a video, numer-

ous video-language joint representation learning methods

[16, 24, 44, 32] have been proposed.

Recently, researchers also have another focus on a study

of how to generate video segments to capture many scenes

in a video [20, 44]. These segments are referred to as ‘can-

didate moment proposals’, which is crucial, as they directly

affect the retrieval performances by regulating the proposal

quantities. Unfortunately, as supervision is not available in

generating proposals, wsVMR systems [43, 44] use a fixed

number of proposals for all input videos under heuristic op-

timization of a specific dataset, which is not reasonable to

deal with varying numbers of scenes in a video. While some

methods [20, 10] consider varying numbers of proposals for

each video, they still rely on spurious correlations, such as

generating proposals proportionally to the video length or

using sliding window. Therefore, the current proposal gen-

eration method could not accurately respond to the diverse

number of scenes in each video. We refer to this situation

as a ‘scene-proposal mismatch’. For instance, in Figure

1(a), the systems produce an unnecessarily large number

of proposals by referring to the long length of the video,

but the video only contains a single scene (i.e. scene of sit-

ting still in a chair throughout the video), which should be
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Figure 1: Scene-proposal mismatch in current wsVMR systems: (a) shows an unnecessary many proposals on a video

containing few scenes and few proposals on a video containing many scenes, (b) shows mIoU scores of the current model’s

predictions according to the number of scenes and the number of generated proposals and (c) shows a method for estimating

the number of scenes, where redundant scenes are removed from the counts.

handled by small amounts of proposals. They also show

scene-proposal mismatch by producing a small number of

proposals for the video containing many scenes, such that

those scarce proposals seem not to work correctly.

Our experimental evidence in Figure 1(b) validates the

current wsVMR systems’ incorrectness due to the scene-

proposal mismatch. We plot performances (i.e. mean Inter-

section over Union (mIoU) scores) over predictions along

the number of scenes in videos and the number of propos-

als generated, which shows irregularities in the scores. The

scores are low for videos with many scenes but few pro-

posals and also low for videos with few scenes but many

proposals. To estimate the number of scenes in a video,

as shown in Figure 1(c), we counted the number of paired

queries for each video as a discrete approximation of the

scene. Here, we found that some queries describing the

same scene led to redundancy in the counting. Thus, we re-

move the redundancy of those queries via calculating their

IoUs1 between temporal boundary annotations2. Our study

further showed that the scene-proposal mismatch affects

about 41% of videos in VMR benchmarks (i.e. Charades-

STA [7], ActivityNet-Caption [13]).

Intrigued by the scene-proposal mismatch, this paper

proposes a wsVMR system referred to as Scene Complex-

ity Aware Network (SCANet), which allows the system to

mitigate the scene-proposal mismatch problem and gen-

erate proposals adaptive to the complexity of the scenes

contained in the video. For a given input video, SCANet

first defines the scene complexity with a scalar, meaning

how difficult for the system to find (i.e. retrieve) a specific

scene among multiple distinguishable scenes in the video,

which can be effective prior knowledge of video by com-

1We remove redundancy by scenes with IoU > 0.5.
2Temporal annotations are used only for identifying the proposal-scene

mismatch problem and they are not involved in the wsVMR task

plementing weak supervision of VMR. On top of the scene

complexity, SCANet adaptively generates proposals and en-

hances their representations. Therefore, SCANet incorpo-

rates (1) Complexity-Adaptive Proposal Generation (CPG)

that generates adaptive proposals by leveraging the quan-

tities of proposals under consideration of the complexity

and (2) Complexity-Adaptive Proposal Enhancement (CPE)

that enhances the proposals’ representations corresponding

to the scene complexity. Furthermore, motivated by recent

success [42, 44] of contrastive learning for wsVMR system,

we introduce technical contributions to mine hard negatives

in the input video and further video corpus together under

our designed framework. Our extensive experiments show

the effectiveness of the proposed SCANet, and qualitative

results validate enhanced interpretability.

2. Related Works

2.1. Advancements in Video Moment Retrieval

Video Moment Retrieval (VMR) [7], as one of the high-

level vision-language tasks, aims to localize video segments

corresponding to scene descriptions automatically. Previ-

ous successes of multi-modal interaction [28, 19] have con-

tributed to many respectful works [38, 39, 29, 40, 17] to

boost retrieval performances by improving the joint rep-

resentation of video and language to understand their se-

mantic similarities. SMIN [30] and MPGP [25] show

the recent state-of-the-art performances of video search-

ing technologies. Researchers are also challenged to make

these VMR systems to be more generalized and practical.

For general usage of VMR, corpus-level retrieval systems

[14, 15, 36, 35] have been proposed, and for practical us-

age, fast retrieval system [8] has been proposed. Moreover,

the laborious annotating problem has been another histori-

cal issue of VMR systems. Annotating video segments cor-
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Figure 2: Illustration of proposed SCANet. (a) shows a scene complexity estimation which takes an input video and esti-

mates a scene complexity using video-query pairs, (b) shows input representations, (c) shows a complexity-adaptive proposal

generation which generates adaptive proposals according to the complexity, and (d) shows a complexity-adaptive proposal

enhancement, which introduces multiple representation enhancements and calibrates them corresponding to the complexity.

responding to given scene descriptions is quite difficult and

sometimes inaccurate due to temporal ambiguity. To over-

come this, weakly-supervised learning methods have been

considered, where it is assumed that systems are not given

temporal annotations (start-end time). There has been much

literature on weakly-supervised methods. We elaborate on

this below in another section with detailed explanations.

2.2. Weakly-supervised Video Moment Retrieval

Weakly-supervised Video Moment Retrieval (wsVMR)

shares the same goal as VMR and also aims to reduce

the cost of annotation. Therefore, researchers have made

an effort to train video-language alignment without tem-

poral boundary annotations, where they considered in-

troducing more affordable supervision. TGA [21] and

WS-DEC [5] were the first weakly-supervised VMR sys-

tems that utilized the pairing information in video-language

pairs3 as a weak-supervision for the alignment. Annotat-

ing video-language pairs is less laborious than moment-

language pairs for fully-supervised learning. Thus many

works have been performed in this weakly-supervised set-

ting. To improve multi-modal interactions, attention-based

models [20, 26] have been proposed. In addition, to

achieve fine-grained retrieval, methods for refining predic-

tions [31, 37, 4, 34, 10, 41, 33] have also been developed.

These methods have made significant contributions to gen-

erating candidate moment proposals to predict. With the

success of self-supervised learning, recent wsVMR systems

[3, 16, 24] introduce the word reconstruction framework

from the masked word in the query sentence. Henceforth,

contrastive learning achieves large performance gains via

3Fully-supervised setting uses moment-language pairs for training.

mining hard negative retrievals [6, 42, 43, 44] and positive

retrievals [32, 9]. However, current systems have never con-

sidered the scene-proposal mismatch problem and still suf-

fer from this. Thus we first propose a method to mitigate

the mismatch via scene complexity measurements.

3. Method
Figure 2 presents an overall pipeline of the proposed

Scene Complexity Aware Network (SCANet) for retrieval

systems. SCANet first takes a video and measures scene

complexity by estimating how many different scenes are in

the video. The scene complexity determines the difficulty

of selecting (i.e. retrieving) a specific scene among multiple

scenes in a given video, which is effective prior knowledge

that can be incorporated into weak supervision. Founded

on the scene complexity, SCANet builds (1) Complexity-

Adaptive Proposal Generation (CPG) and (2) Complexity-

Adaptive Proposal Enhancement (CPE). The CPG adap-

tively leverages proposal generation, which mitigates the

scene-proposal mismatch, and the CPE enhances the pro-

posals’ representations and dynamically calibrates enhance-

ments according to the scene complexity.

3.1. Scene Complexity

Videos contain a varying number of scenes, and if we can

know about the quantities of scenes existing in each video,

it should be an effective prior knowledge by giving specified

search space to perform retrieval in the video (i.e. especially

effective in the method of generating retrieval candidates

like moment proposals). In that sense, our proposed scene

complexity aims to make the retrieval system identify how

many scenes exist in the search space of a given video. To
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this end, we propose a scene complexity estimation algo-

rithm, which takes inputs from a video V and the dataset D
composed of video-query pairs and produces the number of

scenes contained in the video as given below:

α = fsc(V,D) ∈ R
1, (1)

where α is the number of different scenes in the video and

we define it as the scene complexity. Following, we present

a detailed process of the fsc, which includes two proce-

dures: (1) scene finding and (2) scene redundancy removal.

Scene finding. Scene finding is to specify all the candi-

date scenes in a given video. To this, we utilized the anno-

tated queries sharing the same video as a discrete approxi-

mation of the scenes. For obtaining the annotated queries,

we investigate video ID4 and collect the queries that share

the same video ID among the video-query pairs dataset D:

QV = Find(Vid, D), (2)

where Vid is video ID, QV is annotated query set and

Find(·, ·) is a function to collect queries sharing the same

video ID. Figure 2(a) also gives examples of annotated

queries, but we also find a semantic redundancy5 among

the queries (e.g. queries meaning “eating food”). It is re-

quired to remove the redundancy for the accurate counting

of the number of different scenes. Therefore we devise a

redundancy removal for our scene complexity estimation.

Scene Redundancy Removal. We utilize the word over-

laps6 to sense the semantic redundancy among the queries

in the annotated query set QV . In detail, we identify a part

of speech of all words in the queries and sample nouns

using the natural language toolkit [18] and then remove

the redundancy from the queries that have overlaps by a

noun. An example of this process is shown in Figure 2(a),

where the annotated query set is provided as QV ={‘Person

watches a laptop on a stair’, ‘Person eats food on a stair’,

‘Person eats food with hand’, ‘Person sees some food’},

we should exclude the redundant queries that share similar

meaning. To estimate which queries are semantically redun-

dant, we identify nouns in each query as NV ={{laptop,

stair}, {food, stair}, {food, hand}, {food}}, where NV is

defined as annotated noun set. Here, nouns meaning hu-

man (e.g. person) are excluded from the findings. If there

is word overlap between elements of NV , the element with

the most overlapping is removed first. This process is con-

tinued until there is no overlap. Thus, the redundancy re-

moval process prunes out the elements in NV and updates

4Previously, video ID (e.g. ‘ID: 0BH84’) is just used for accessing the

feature data, but we further utilize the ID to build QV .
5video-query pair datasets usually contain many redundant queries
6Unlike Figure 1(c), labels (start-end times) are unavailable in wsVMR.

upto NV ={{laptop, stair}, {food, hand}} or {{laptop,

stair}, {food}} after that, we count the number of elements

in NV as the final number of scenes in the given video V .

To summarize the scene complexity estimation process, we

formally define an algorithm about fsc below:

Algorithm 1 Scene complexity estimation algorithm fsc
1: Input: Video V , video-query pairs dataset D
2: Output: Scene complexity α
3: Find annotated query set: QV = Find(Vid, D)
4: Find nouns: NV = Noun(QV )
5: while ∃word overlap among elements in NV do
6: Remove the most overlapping: NV ← Remove(NV )
7: end
8: return The number of elements of NV

Noun(·) is a function to filter out noun7 and Remove(·) is

a function to find the element with the most overlap and

remove it. The final number of elements in NV is defined

as scene complexity α of an integer scalar. Following, our

proposed SCANet utilizes α to adapt the retrieval in terms

of proposal generation and proposal enhancement.

3.2. Scene Complexity Aware Network

Input Representations. We first give formal definitions

of the input video V and query Q used in SCANet. Frame-

level video features are obtained from a pre-trained video

encoder [2, 27] and word-level query features are obtained

from text encoder [23]. Both features are embedded into

d-dimensional joint space. After adding positional encod-

ing [28] and applying layer normalization [1], we get the

final video features v ∈ R
Nv×d and the query features

q ∈ R
Nq×d, where Nv is the number of video frames and

Nq is the number of words in the query.

Multi-Modal Interaction. To give multi-modal interac-

tions between the query and video, we use Transformer At-

tention [28]. The video features v and query features q are

concatenated and prepared for the Attention inputs below:

[v||q] = Attention([v||q]) ∈ R
(Nv+Nq)×d, (3)

where [·||·] denotes the concatenation and we get attended

video features v ∈ R
Nv×d and query features q ∈ R

Nq×d.

3.3. Complexity-Adaptive Proposal Generation

Complexity-Adaptive Proposal Generation (CPG) in

Figure 2(c) is designed to generate candidate moment pro-

posals adapting the scene complexity α of a given video,

where α accounts for three aspects of proposals: amount,

location, and length. To implement this, we devise a ‘com-

plexity vector’ corresponding to the complexity level, such

7Table 4 gives ablation studies (e.g. verb) to identify the redundancy.
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that we build a codebook Z = {zk}Kk=1 ∈ R
K×d com-

posed of d-dimensional learnable K vectors and select a

single vector by indexing α as zα ∈ R
d, where the K (e.g.

K = 8) is the maximum number of α. Thus the zα is

our defined complexity vector that has sensibility accord-

ing to the α. After providing semantics of input modalities

as [zα||v||q] = Attention([zα||v||q]), in the following, the

zα generates adaptive proposals deciding proposal proper-

ties in terms of amount, location and length.

To decide the amount of proposals, we first build an in-

teger set I = {pmin, pmin + 1 · · · , pmax} ∈ R
n regarding the

number of proposals, where pmin and pmax are the minimum

(e.g. 5) and the maximum number (e.g. 10) of proposals,

and the n = pmax−pmin+1 is the number of elements in the I .

The complexity vector zα decides a single number pα ∈ I
from the integer set I and generates pα proposals. For the

detailed implementation of this, we utilize a Multi-Layer

Perceptron (MLP) that takes the input of zα and produces

an n-dimensional selection vector as a = MLP(zα) ∈ R
n,

where the n denotes the same dimension of the integer set I .

The selection is performed by using an output of argmax(a)

as index to select a single integer in I and the selected in-

teger defines the number of proposals pα. To make selec-

tion trainable, we introduce a Gumbel-Softmax [12], which

provides functional n-dimensional one-hot vector g for the

deciding the number of proposals over integer set I below:

g = Gumbel Softmax(a) ∈ R
n,

pα =
n∑

i=1

gi · Ii ∈ R
1,

(4)

where the number of proposals (i.e. amount of proposals) is

finally determined by the number pmin ≤ pα ≤ pmax.

To decide the locations and lengths of proposals, we first

build a proposal mask, which remains the video features in

the region of the mask as the proposal features. A center

point and width of the operating region of the mask corre-

spond to the location and length of the proposal, thus com-

plexity features zα ∈ R
1×d regresse the center and width as

[cα,wα] = σ(zαWp) ∈ R
2, where Wp ∈ R

d×2 is learn-

able weights for regression σ(·) is the sigmoid function, and

cα ∈ R
1, wα ∈ R

1 are the center and width of the proposal.

Founded on the cα and wα, we design the proposal

mask, and here, Figure 3(a) shows a popular example of

the proposal mask using Gaussian curve [43, 44]. We con-

sider that the Gaussian curve may not be reasonable because

video features are unevenly attended inside the proposal.

Therefore, as shown in Figure 3(b), we design Flatten Gaus-

sian mask, which is simple, yet more reasonable by evenly

remaining features inside the proposal8. To give a formal

definition of our mask, we first construct the base mask us-

ing the Gaussian curve using the cα and wα as given below:

8Table 5 validate also the effectiveness of Flatten Gaussian curve.

(a)  Proposal mask: Gaussian curve (b) Prposal mask: Flatten Gaussian curve
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Figure 3: Illustration of (a) gaussian mask [43, 44] and (b)

our proposed flatten gaussian mask.

mp
α[i] =

1√
2π(wp

α/σ)
exp(− (i/Nv − cpα)

2

2(wp
α/σ)2

), (5)

where the mp
α ∈ R

Nv is the base mask and cpα, wp
α de-

note the center point and width, where a superscript p ∈
[1, · · · , pα] denotes p-th proposal. The σ is a hyperparame-

ter. The i ∈ [1, · · · , Nv] denotes the i-th index in the length

of video. We flatten the base mask in the region of pro-

posals by substituting the attention values of it as mean

values of them: mp
α[st: ed] = Mean(mp

α[st: ed]), where

st = cpα − (
wp

α

2 ), ed = cpα + (
wp

α

2 ), and Mean(·) is a mean-

pooling while keeping the input dimension. Thus, mp
α[i] is

updated as i-th value of the Flatten Gaussian function cor-

responding to p-th proposal. Using mp
α, the video features

v ∈ R
Nv×d are attended to produce p-th proposal features:

vp
α = v ◦mp

α ∈ R
Nv×d, (6)

where ◦ is column-wise multiplication. Therefore vp
α is our

final complexity adaptive proposal features. In the follow-

ing, we use the vp
α to learn proposal-language alignment by

our designed proposal enhancement framework.

3.4. Complexity-Adaptive Proposal Enhancement

Due to the unavailability of supervision, wsVMR sys-

tems rely on several training objectives. As shown in

Figure 2(d), to enhance the adaptive proposal features

vp
α, SCANet contains the multiple representation enhance-

ments: (1) Cross-modal Reconstruction and (2) Hierarchi-

cal Contrastive Learning, where they are dynamically cali-

brated according to the scene complexity α.

Cross-modal Reconstruction. Cross-modal reconstruc-

tion aims to learn connections of common semantics among

the modalities (i.e. video, query), such that we mask a part

of the features in one modality and restore that part by re-

ferring to the other modality. Depending on which modality

is masked, it is referred to as follows: (1) masked query re-

construction (MQR), and (2) masked video reconstruction

(MVR). For the MQR, we randomly sample verb or noun

tokens to mask in query Q = {w1 · · ·wNq} (i.e. w is a

word token). Before masking, we define these tokens as tar-

get tokens wtgt to predict, and they are replaced by [mask]
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tokens in the query, which makes masked query features

qmsk ∈ R
Nq×d throughout text encoder. Thus a masked

query reconstruction loss Lmqr is defined by cross-entropy

loss to predict the target words wtgt in the mask from the

qmsk and proposal features vp
α as given below:

Lmqr(θ) = − 1

pα

pα∑

p=1

logfθ(w
tgt|qmsk,vp

α), (7)

where θ is learnable weight and fθ is a decoder to recon-

struct the target words. For the MVR, we sample video

frame features with a probability of 10%9, where they are

defined as vtgt, and then replaced by zeros to make masked

proposal features (vp
α)

msk. As the vtgt is the d-dimensional

video features, we introduce a regressor gθ to regress the

features. Thus, video reconstruction loss Lmvr is defined

by L2 loss between target and regressed features as below:

Lmvr(θ) =
1

pα

pα∑

p=1

||vtgt − gθ(q, (v
p
α)

msk)||22. (8)

Hierarchical Contrastive Learning. Contrastive learn-

ing aims to enhance the representations of positive features

(i.e. proposal region) via comparing negative features (i.e.

non-proposal region). It is crucial to find a hard negative

case (i.e. a scene similar to a positive but not a positive).

Therefore, we build hierarchical contrastive learning to ex-

plore the hard negatives at the video-level and corpus-level.

For the video-level, we use the input video V and mine

the negative in the region of V excluding the adaptive pro-

posal vp
α. We first make the negative mask from the posi-

tive mask as 1−mp
α, and get the negative proposal features

v̄p
α = v ◦ (1 − mp

α) ∈ R
Nv×d. We then, compare the

masked query reconstruction losses between positive pro-

posals (Lmqr) and negative proposals (L∗
mqr), which de-

fines video-level contrastive loss Lvid with margin of δ1as:

Lvid(θ) = max(Lmqr(θ)− L∗
mqr(θ) + δ1, 0),

L∗
mqr(θ) = − 1

pα

pα∑

p=1

logfθ(w
tgt|qmsk, v̄p

α).
(9)

For the corpus-level, we use a video corpus DV com-

posed of all videos in the dataset and mine the hard negative

videos for contrastive learning. To find the hard negatives,

we perform video retrieval on the corpus, which takes the

query Q and video corpus DV as inputs and predicts the

top-k videos as outputs Vk = SCANetk(Q,DV )
10, where

Vk is the top-k videos with the lowest Lmqr for the input

query. As the Vk is utilized for negative videos, the ground-

truth video is removed from it. Similar to video-level, we

9Masking is performed in a range of [cpα− (wp
α/2), c

p
α+(wp

α/2)] in

video frames assuming effective region of the proposal features vp
α.

10See details about video retrieval of SCANetk(·, ·) in Section 5.

compare the masked query loss between positive propos-

als (Lmqr) and negative videos (L†
mqr), which defines the

corpus-level contrastive loss Lcps with a margin δ2 below:

Lcps(θ) = max(Lmqr(θ)− L†
mqr(θ) + δ2, 0),

L†
mqr(θ) = −1

k

k∑

i=1

logfθ(w
tgt|qmsk, v̄i),

(10)

where v̄i ∈ R
Nv×d is i-th negative video features from Vk.

Dynamic calibration. The videos with high complexity

are usually more difficult to train than videos with lower

complexity, as the moment predictions in the videos with

high complexity are performed under many proposals. Thus

we dynamically calibrate the loss to place different weights

according to the complexity α as below:

L =
γ

1 + e−α
(Lmqr + Lmvr + Lvid + Lcps), (11)

where γ is a hyperparameter. For the inference, SCANet

predicts the proposal that generates the lowest Lmqr+Lmvr

among the proposals. For the best proposal, the start-end

times ([st,ed]) are inferred from the corresponding proposal

mask’s width wp
α and center cpα and scaled by the video

duration as [st, ed] = [cpα − wp
α

2 , cpα +
wp

α

2 ] ∗ duration

4. Experiments
4.1. Dataset

Our proposed SCANet is validated on three moment re-

trieval benchmark datasets, where the wsVMR system uses

temporal annotations only for evaluation.

Charades-STA. Charades-STA includes about 30 sec-

onds of videos for human behaviors and their language

queries. Average length is about 29.8 seconds, and dataset

contains 12,408 video-query pairs and 3,720 for testing.

ActivityNet Captions. ActivityNet Captions is a large-

scale dataset including about 117 seconds videos of hu-

man actions and their language query. The dataset con-

tains 19,290 videos with 37,417/17,505/17,031 smaples for

train/val 1/val 2 splits. SCANet is validated on the val 2.

TV show Retrieval. TV show Retrieval (TVR) [14] com-

prises 6 TV shows about diverse genres, including 109K

queries from 21.8K multi-character videos with subtitles.

Each video is about 60-90 seconds. The TVR is split into

80% train, 10% val, 10% test-public. The test-public is pre-

pared for the challenge. As test-public is currently unavail-

able, SCANet is validated on the val.
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Table 1: Performances of weakly-supervised video moment

retrieval on the Charades-STA dataset.

Method
R@1,IoU=m R@5,IoU=m

m=0.3 m=0.5 m=0.7 m=0.3 m=0.5 m=0.7

TGA [21] 32.14 19.94 8.84 86.58 65.52 33.51

CTF [4] 39.80 27.30 12.90 - - -

SCN [16] 42.96 23.58 9.97 95.56 71.80 38.87

WSTAN [31] 43.39 29.35 12.28 93.04 76.13 41.53

BAR [33] 44.97 27.04 12.23 - - -

LoGAN [26] 48.04 31.74 13.71 89.01 72.17 37.58

MARN [24] 48.55 31.94 14.81 90.70 70.00 37.40

WSRA [6] 50.13 31.20 11.01 86.75 70.50 39.02

CCL [42] - 33.21 15.68 - 73.50 41.87

CRM [10] 53.66 34.76 16.37 - - -

VCA [32] 58.58 38.13 19.57 98.08 78.75 37.75

LCNet [34] 59.60 39.19 18.87 94.78 80.56 45.24

RTBPN [41] 60.04 32.36 13.24 97.48 71.85 41.18

CNM [43] 60.39 35.43 15.45 - - -

CPL [44] 65.99 49.05 22.61 96.99 84.71 52.37

SCANet (ours) 68.04 50.85 24.07 98.24 86.32 53.28

Table 2: Performances of weakly-supervised video moment

retrieval on the ActivityNet Captions dataset.

Method
R@1,IoU=m R@5,IoU=m

m=0.1 m=0.3 m=0.5 m=0.1 m=0.3 m=0.5

WS-DEC [5] 62.71 41.98 23.34 - - -

EC-SL [3] 68.48 44.29 24.16 - - -

MARN [24] - 47.01 29.95 - 72.02 57.49

SCN [16] 71.48 47.23 29.22 90.88 71.56 55.69

BAR [33] - 49.03 30.73 - - -

RTBPN [41] 73.73 49.77 29.63 93.89 79.89 60.56

CTF [4] 74.20 44.30 23.60 - - -

WSLLN [9] 75.40 42.80 22.70 - - -

LCNet [34] 78.58 48.49 26.33 93.95 82.51 62.66

CCL [42] - 50.12 31.07 - 77.36 61.29

WSTAN [31] 79.78 52.45 30.01 93.15 79.38 63.42

CRM [10] 81.61 55.26 32.19 - - -

CNM [43] 78.13 55.68 33.33 - - -

CPL [44] 82.55 55.73 31.37 87.24 63.05 43.13

SCANet (ours) 83.62 56.07 31.52 94.36 82.34 64.09

4.2. Evaluation Metric

To evaluate the moment retrieval, we compute the av-

erage recall (R@n) over all queries, where temporal Inter-

section over Union (IoU=m) measures the overlap between

prediction and ground-truth. The n denotes the recall rate

of top-n predictions, and m is the predefined IoU threshold,

thus quantifying the percentage of predicted moments with

the IoU value larger than m among top-n predictions.

4.3. Experimental Results

Table 1 and Table 2 summarize the results on Charades-

STA (C-STA) and ActivityNet Captions (ANC) datasets.

SCANet is compared to previous works (Please, refer to Re-

lated Works for their detailed descriptions). SCANet shows

Table 3: Performances of weakly-supervised video moment

retrieval on the TVR dataset (validation) (� reproduced).

Method
R@1,IoU=m R@5,IoU=m

m=0.1 m=0.3 m=0.5 m=0.1 m=0.3 m=0.5

TGA� [21] 17.61 2.38 0.97 48.63 11.54 5.32

CPL� [44] 33.16 7.28 2.11 64.41 17.93 8.56

SCANet (ours) 37.51 10.76 4.24 67.47 20.32 10.21

Table 4: Ablation study of redundancy removal for scene

complexity estimation (fsc) along the types to find the re-

dundancy among queries in the annotated query set QV .

Types
R@1,IoU=m R@5,IoU=m

m=0.1 m=0.3 m=0.5 m=0.1

none 77.43 49.78 27.32 88.32

noun 83.54 55.97 31.82 94.50

verb 81.26 52.32 30.91 93.11

noun & verb 80.52 51.31 30.42 92.52

the best performances of all metrics on C-STA, which is

especially effective in metrics (R@1) and also the effective-

ness in four metrics on ANC. Table 3 firstly summarizes the

results of wsVMR systems on TVR. We reproduce the base-

line and most recent model from their public codes. The

videos in TVR are quite challenging because they include

relatively more similar actions and backgrounds, which are

difficult for the models to distinguish. Overall, SCANet

shows improvements in retrieval quality, but it is also no-

table that those improvements are mainly from rectifying

the video samples suffering scene-proposal mismatch prob-

lems, which can be confirmed in Figure 4(c).

4.4. Ablation Study

Ablation studies are performed on the ActivityNet Cap-

tions (validation)11. To show performance variances in var-

ious metrics, we validate SCANet on the most challenging

metric (R@1,IoU=0.5) and the easiest one (R@5,IoU=0.1).

Table 4 summarizes the studies about redundancy removal

in the annotated query set QV for scene complexity estima-

tion (fsc). The first section is the results of complexity esti-

mation without redundancy removal, where the complexity

equals the number of queries in QV . The below sections

are the results with redundancy removal, where the noun

or verb is used to find the redundant queries. Redundancy

removal with the noun or verb shows effectiveness. How-

ever, using both together decreases the performance. We

consider that finding redundant queries using noun and verb

together can make sure to find almost the same descriptions

(e.g. ‘person drinks a cup of coffee’ and ‘person drinks cof-
fee in table’), but the redundancy shows variance for the

11The validation set of Charades-STA is not available.
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Figure 4: Qualitative results of SCANet: (a) shows the video retrieval performance of SCANet according to the R@k, (b)

shows the moment retrieval performances according to involving top-K retrieved videos for hierarchical contrastive learning,

(c) shows the IoU scores distributions according to the number of scenes and proposals (upper: length dependant proposals,

below: complexity adaptive proposals), and (d) illustrates the proposals in SCANet according to videos with diverse scenes.

Table 5: Ablation study of generating proposals. (n: num-

ber of proposals), (w, s: frame width and stride of window),

(G: Gaussian mask, FG: Flatten Gaussian mask)

Method
R@1,IoU=m R@5,IoU=m

m=0.1 m=0.5 m=0.1

fixed proposal (n:6) 77.43 27.32 88.32

fixed proposal (n:8) 78.23 27.98 90.12

sliding window (w:{20,40},s:5) 68.54 26.51 84.32

sliding window (w:{20,40,60},s:10) 69.14 24.33 86.72

complexity adaptive proposal (G) 81.32 29.43 92.41

complexity adaptive proposal (FG) 83.54 31.82 94.50

same scene by changing noun or verb (e.g. ‘one holds a

cup of coffee’). Table 5 shows the ablation studies of pro-

posal generations in SCANet. Our baseline was to generate

proposals with fixed numbers, and here, to determine the

locations and lengths of the proposals, we use a learnable

d-dimensional single vector instead of complexity features

Zα ∈ R
d. We modify the baseline with the sliding win-

dow and complexity adaptive proposals, where the adaptive

method was the most effective with our designed Flatten

Gaussian mask. Table 6 shows the ablation studies with two

proposal enhancements and their calibrating method. Incre-

mental improvements are shown by adding two enhance-

ments and calibrating the enhancements with complexity.

Figure 4(a) shows video retrieval performances of

SCANet that predicts recall rate with top-k videos (R@K),

and (b) shows the moment retrieval performances according

to using top-k videos for Lcps. As K increases, the recall in-

creases in (a), and the moment retrieval performance in (b)

is also improved using the predicted videos as negative (i.e.

ground-truth videos are removed). Meanwhile, over K=15,

the performance degrades, where we presume that the top-k

videos start to contain not hard negative videos.

Table 6: Ablation study in Complexity-Adaptive Proposal

Enhancement. (CMR: cross-modal reconstruction, HCL:

hierarchical contrastive learning, Calibration: calibrating

training loss according to scene complexity α).

Proposal Enhancement R@1,IoU=m R@5,IoU=m

CMR HCL Calibration m=0.5 m=0.1

� 28.45 91.52

� � 30.32 92.71

� � � 31.82 94.50

4.5. Qualitative Results

Figure 4(c) shows the retrieval performances according

to the number of proposals and the number of scenes for

each video. Compared to the length-dependant proposals

(e.g. sliding window), complexity adaptive proposals miti-

gates the scene-proposal mismatch by regularizing the re-

trieval quality along the number of proposals and scenes.

Figure 4(d) illustrates the proposals of SCANet on (a) short-

length video with many scenes and (b) long-length video

with few scene. The adaptive proposals accurately capture

the scenes in both cases. In the bottom left, we also add the

number of generated proposals for each video, which shows

that proposals do not depend on the length of the video.

5. Implementation Details

Data Settings. For the video encoder, I3D [2] model is

used to get the Charades-STA video features, and C3D [27]

model is used for the ActivityNet-Caption video features.

Both video features are extracted by every 8 frames. For the

word token embedding, we use word2vec from GloVe [23].

The size of the vocabulary is fixed as 8000 with maximum

20 word-length of sentence.

13583



Query: Person tries to fix a loose doorknob.

PredictionGround Truth
13.2 sec 27.3 sec 31.4 sec 33.2 sec

Figure 5: Illustration of failure case of moment prediction.

Model Settings. Hyperparameters in SCANet are as fol-

lows: K = 12 for the maximum number of scene complex-

ity, the minimum number of proposal pmin = 5, the maxi-

mum number of proposals pmax = 14, the hyperparameter

of calibration is γ = 0.5. The σ for Gaussian function is

8, the margins δ1 for contrastive loss Lvid and Lcps are

δ1 = 0.1, δ2 = 0.5, where the higher margin of δ2 is de-

signed for promoting to distinguish the positive video from

negative videos with similar scenes.

Video Retrieval with SCANet. To prepare the ranked

top-k videos used in Vk = SCANetk(Q,DV ), they are re-

trieved by SCANet trained from reconstruction losses (i.e.

Lmqr,Lmvr) and video-level contrastive loss (i.e. Lvid).

SCANet retrieves top-k (e.g. k=15) videos from the video

dataset for each query that have the lowest reconstruction

losses. To train wsVMR, the top-k video IDs are utilized to

provide hard negative videos, which makes Lcps. The re-

trieval performances (i.e. R@K, prediction recall according

to top-K videos) are presented in Figure 4.

6. Failure cases
Figure 5 presents the failure case of our proposed

SCANet. For the query ‘Person tries to fix a doorknob’,

SCANet predicts the moment of person openning the door.

We consider the action of fixing something is not frequently

paired with queries, and it may be unavailable for wsVMR

systems to directly learn about the uncommon video-query

pairs as a long-tailed action recognition problem. There-

fore, wsVMR systems are more vulnerable to these actions

with categories in the long tail and we believe that overcom-

ing the long-tail problem should be a contribution to many

tasks including moment retrieval. Our future works also in-

clude mitigating this long-tail problem.

7. Limitations
Our proposed method is based on the scene complexity

of video by referring to the number of annotated queries to

the video, which can also have more flexibility by apply-

ing other systems [22, 11] under weak supervision. How-

ever, in the real environment, it may not be available to get

scene complexity of video from referring to other annotated

queries (i.e. In real environment, we may not access to other

annotated query sets for one video). We feel this is our cur-

rent SCANet’s limitation, and to overcome this, we further

made another effort to learn scene complexity via the neu-

ral network from the input of video, where we refer to this

method as ‘Scene Complexity Neural Estimator’. In our

supplementary materials, we elaborate on this with our cur-

rent studies as another our experimental contributions.

8. Conclusion
SCANet is presented to consider a scene-proposal mis-

match problem in the wsVMR. SCANet measures a scene

complexity of multiple scenes in each video. Founded on

the complexity, SCANet builds complexity-adaptive pro-

posal generation to mitigate the scene-proposal mismatch

and complexity-adaptive proposal enhancement to enhance

the representation by calibrating with the complexity.
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