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Figure 1: Comparision of different rain image generation model. (a) The proposed method can generate diverse and realistic
images by manipulating attributes of rain streak. In contrast, the additive model [49] generates diverse but less realistic images
(shown in (b)), while video-process model [43] produces realistic but homogeneous images (shown in (c)). Furthermore, (d)
shows the real rain removal of classical deraining methods, trained on datasets generated by different rain generation models.

Abstract

Although considerable progress has been made in image
deraining under synthetic data, real rain removal is still a
tough problem due to the huge domain gap between syn-
thetic and real data. Besides, difficulties in collecting and
labeling diverse real rain images hinder the progress of this
field. Consequently, we attempt to promote real rain re-
moval from rain image generation (RIG) perspective. Ex-
isting RIG methods mainly focus on diversity but miss real-
istic, or the realistic but neglect diversity of the generation.
To solve this dilemma, we propose a physical alignment and
controllable generation network (PCGNet) for diverse and
realistic rain generation. Our key idea is to simultaneously
utilize the controllability of attributes from synthetic and the
realism of appearance from real data. Specifically, we de-
vise a unified framework to disentangle background, rain
attributes, and appearance style from synthetic and real
data. Then we collaboratively align the factors with a novel
semi-supervised weight moving strategy for attribute, an ex-
plicit distribution modeling method for real rain style. Fur-
thermore, we pack these aligned factors into the generation
model, achieving physical controllable mapping from the

attributes to real rain with image-level and attribute-level
consistency loss. Extensive experiments show that PCGNet
can effectively generate appealing rainy results, which sig-
nificantly improve the performance under synthetic and real
scenes for all existing deraining methods.

1. Introduction
The objective of single image deraining (SID) is to re-

claim a clean image from the rainy image, a task often
deemed an indispensable preliminary stage within outdoor
computer vision tasks such as flow estimation [15, 47], de-
tection [33], and segmentation [9]. Top performing SID
methods [13, 49, 39, 43, 44, 19, 28, 48, 40, 29, 41, 50, 10]
are suffering from a common issue: the scarcity of paired
real rainy-clean images, thereby resulting in an obvious
performance drop in the real rain removal. To overcome
this issue, tremendous efforts have been made to advance
the real image deraining era. However, most of them
[44, 52, 7, 23, 45, 54, 55, 58] focus on the network archi-
tecture for real rain removal, while fewer works [43, 53, 42]
have paid attention to datasets via paired clean-rain image
generation. In this work, we attempt to promote the real rain
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removal of existing SID methods from a data perspective.
Currently, most of the existing rain datasets are sim-

ulated by a physical synthetic model. These simulators
[49, 32, 19, 28, 16] utilize hand-crafted prior such as mo-
tion blur to simulate the rain streaks and then add them to
the clean images. The diverse rainy images are generated
by empirically modulated synthetic parameters. However,
empirically setting through human subjective assumptions
would restrict the generated rain types [42]. To get rid
of empirical restrictions, some supervised-learning-based
methods are proposed [42, 37] to further promote diver-
sity of generation results. The intrinsic of these methods is
utilizing the powerful representation of deep CNN to over-
fit the physical synthetic rain generation model. Although
these diverse synthetic datasets can be used to train deep
derainers to some extent, the physical and learning-based
rain simulators simplified the degradation of the real rain,
resulting in an obvious domain gap between these synthetic
datasets and complicated real rain and inevitably bringing
performance drop in the real rain removal [55].

To reduce the gap between the synthetic simulator and
real degradation, some works [53] treat the rain image gen-
eration as a style transfer task through adversarial learning
with real rain. However, the GAN-based methods suffer
from model collapse [1] and uncontrollable inference, re-
sulting in undesired artifacts and unitary appearance in the
generation results. Meanwhile, some works [43, 2] utilize
the temporal information in the video of real rain to obtain
the real paired rainy/clean image. Though the rain images
are realistic, there are many limitations to generating the
corresponding ‘clean’ image. On the one hand, the clean
image generation is very rough, which may be left residual
streaks in the generated clean one [42]. On the other hand,
the procedure of clean image generation requires that the
video scene is strictly static, imposing restrictions on the
diversity of the background [43].

In general, existing rain generation methods either learn
from the synthetic rainy dataset with controllable diversity
but neglect the photorealism, or learn from the real rainy
dataset with realism but miss the diversity. However, the
degradation process of real rain is complex and morphol-
ogy varies. As shown in Fig. 1, we argue that diversity
and photorealism are equally important for rain generation
methods. For this goal, we propose physical alignment and
controllable generation network (PCGNet) to generate di-
verse and realistic rainy-clean image pairs. Specifically, we
first learn to physically disentangle the rain images into the
background, attributes of rain steaks, and style space. Since
the attribute of real rain is unlabeled, we propose a novel
semi-supervised weight-moving strategy to enable mutual
interaction between real and synthetic data. For style space,
we explicitly model the appearance style of real rain in the
latent space and align the style of real and synthetic images

through distribution resampling. Furthermore, we pack
these aligned factors into the generation model, achieving
physical controllable mapping from the attributes to real
rain with image-level and attribute-level consistency loss.
In summary, our contributions are mainly three folds:

• Different from existing real rain removal methods
which focus on refining network architectures, we at-
tempt to promote real rain removal from a data per-
spective. We establish a connection between synthetic
and authentic rain images within a semi-supervised
framework, facilitating the concurrent generation of
diverse and realistic outputs, which offers a new in-
sight into the rain image generation community.

• We find the physical relationship of the rain attribute
and style between synthetic and real data. Thus, we
propose a novel physical disentangle module to decou-
ple the synthetic and real rain into attributes and style,
and align them in a semi-supervised strategy. Fur-
thermore, we propose a controllable generation model,
achieving physical mapping from attributes to real rain
and enabling realism and diverse generations.

• Extensive experiments show that our method achieves
more appealing generation, and significantly improves
all the deraining methods both in the synthetic and real
scenes. Moreover, PCGNet enables the attribute fine-
grained manipulation of the real rain.

2. Related Works
2.1. Rain Removal

Rain removal is a highly ill-posed inverse problem. Pi-
oneer works design hand-crafted prior to decomposing a
rainy image into the background and rain layer [24, 34, 8,
6, 31]. Recently, benefiting from the powerful representa-
tion of CNN, deep learning-based methods have achieved
remarkable progress. The CNN-based single image rain re-
moval methods can be mainly classified into the following
categories: full-supervised [13, 30, 48, 41, 56, 46], semi-
supervised [44, 52, 53], and unsupervised [7, 23, 45, 54,
55]. Most existing methods are full-supervised where syn-
thetic paired rainy/clean images are required. Fu et al. [13]
first introduced the end-to-end residual CNN to solve the
rain streaks removal problem. The multi-stage and multi-
scale architecture networks [38, 51, 22] have been exten-
sively studied for better feature representation. To better
generalize the real rain, the researchers employed the semi-
supervised learning paradigm. For example, apart from the
supervised loss, Wei et al. [44] additionally enforced a pa-
rameterized GMM distribution on real rain streaks. To get
rid of the limitation of the paired synthetic-clean training
data, the unsupervised methods have raised attention. Wei
et al. [45] extended the classical CycleGAN into the De-
rainCycleGAN using unpaired data for real image derain-
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ing. Yu et al. [55] took the prior knowledge into considera-
tion and connected the model-driven and data-driven meth-
ods via an unsupervised learning framework. Although un-
supervised methods can eliminate the dependence on simu-
lated data to some extent, they still rely on a large amount
of diverse and realistic rainy images for training, which re-
quires significant cost. In this work, we attempt to promote
real rain removal from data generation perspective.

2.2. Rain Generation
The datasets play an important role in the deep learning

era. The researchers have made great progress in the rain
synthetic model to provide numerous rain datasets, mainly
including hand-crafted synthetic model [14, 49, 32, 19, 28,
16], CNN generation model [53], and video-based gener-
ation model. The pioneering work was proposed by Na-
yar et al. [14], with geometric and photometric analysis
for real rain appearance. Similarly, researchers synthesize
different rain streaks with a physical additive degradation
model, then add the streaks layer on the clean image to con-
struct paired samples such as Rain100L [49]. To further im-
prove the diversity of synthetic data, Wang et al. [42] utilize
CNN to fit the synthetic rain process in a supervised way.
Though these synthetic generation methods could modulate
synthetic parameters to achieve diverse generation results,
there is still a huge domain gap between the synthetic and
real data. Along with the research, some CNN generation-
based methods [53, 45] were proposed to get more photo-
realism rain. Ye et al. [53] treat rain image generation as
a style transfer task through adversarial learning with real
rain. However, due to the uncontrollable generation proce-
dure, the results are relatively homogeneous. Another real-
ism generation methods are video-based [43, 2]. Wang et al.
[43] first proposed a real rain dataset with the corresponding
‘clean’ image, which was a semi-automatic method from
real rain videos. But there still exists the diversity challenge
since the harsh shooting conditions. In this work, we pro-
pose a physical alignment and controllable generation net-
work with realistic and diverse rainy/clean image results.

2.3. Controllable Generative Model
There has been significant progress in the development

of controllable generative models. Several approaches have
been proposed to achieve controllable generation, including
VAE-based disentangled representations [18, 27, 25], and
GAN-based conditional generative models [35, 3, 4]. These
models have been widely applied in face editing, person im-
age synthesis, style transfer, and so on. However, there still
exists a very practical challenge that the trade-off between
controllability and quality of results [11]. Compared to ex-
isting generative methods, we are the first to simultaneously
consider the diversity and realism of rainy image genera-
tion in a semi-supervised way. This is a more complex task
due to the coupling of degradation and background. Fur-

thermore, our goal for rainy image generation is to improve
the performance of existing deraining methods in real rain
scenes, rather than focusing solely on visual effects.

3. Physical Alignment and Controllable Gener-
ation Network

3.1. Framework Overview
Given a clean image and the desired attribute of rain

streaks such as angle, length, density, and brightness, our
rainy image generation aims to achieve a controllable map-
ping between the physical attribute space and realistic rainy
image as expected properties. The key problems are that
the attributes of real rain are unlabeled, which will lead the
procedure of generation hard to control, and the coupling of
the degradation and background, which will lead to realistic
generation results is hard to guarantee.

To tackle these problems, we propose to jointly consider
the controllable and realistic within a physical alignment
and controllable generation framework. The core idea is to
connect the diversity of synthetic and realism of real data
in a semi-supervised way. Specifically, as shown in Fig. 2,
the proposed PCGNet consists of two components: physical
disentangle and alignment (PDA), controllable generation
module (CGM). The PDA module takes the synthetic rainy
image ISyn and real rainy image IReal as inputs and dis-
entangles them into physical variable spaces such as back-
ground, attributes, and appearance style of the rain. Further
knowledge transfer is then conducted between synthetic and
real data in both attribute and style spaces to achieve the
distribution alignment. Moreover, the aligned parameters
(including the background, attributes, and rain style) of syn-
thetic and real are fed into a weight-shared controllable gen-
eration model to respectively generate IGen and IRec. We
construct image consistency between the IRec and IReal,
and attribute consistency between the IGen and ISyn. Such
progressive multi-stage strategy would significantly ease
difficulties of controllable and realistic generation.

3.2. Physical Disentangle and Alignment Module

Rainy weather degradation is a complex and varied pro-
cess influenced by environmental parameters (such as light-
ing and wind direction) and camera settings. These factors
result in a wide range of visual appearances in the image.
We analyze its various attributes from its specific physical
imaging process. On rainy days, raindrops appear as ellipti-
cal shapes [14], randomly distributed in space, with varying
density depending on the rainfall intensity. Influenced by
gravity and wind direction, raindrops exhibit rapid motion
in a specific direction. During the imaging process, since
the long exposure time of the camera and fast motion of
raindrops, the visual appearance of the raindrops in image
space is presented as severely motion-blurred rain streaks,
with the length and width varying based on the speed and
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Figure 2: Overview of physical alignment and controllable generation network. The proposed method consists of two parts:
physical disentangle and alignment module (PDA), controllable generation module(CGM). The PDA decouples synthetic
and real rainy images into background, rain attributes, and appearance styles, and makes them aligned in the physical space.
The CGM achieves physically controllable mapping from attributes to real rain, resulting in realistic and diverse generation.

Image
Feature

Figure 3: The architecture of MFT module. MFT could si-
multaneously modulates attribute features along with trans-
forming feature style to real rain style.

size of the raindrop. Additionally, the brightness of the rain
streaks is affected by environmental illumination. Our work
focuses on manipulating these attributes (including density,
location, length, angle, and brightness) to achieve diverse
results in generating realistic rain images.

Atrribute alignment: Due to the high costs of manual an-
notation, we lack labeled attributes for real rain. In contrast,
synthetic data generated by a simplified physical degrada-
tion model can record the physical properties of rain in real-
time. Therefore, we attempt to guide the regression of real
rain attributes using the labels of synthetic data. As shown
in Fig. 2, we first use a decomposition module trained on
simulated data to decompose rain images into two parts:
rain layer and background. After obtaining the rain layer
components for both synthetic RSyn and real RReal, we

regress the corresponding attributes using an attribute en-
coder and pre-train the encoder with the attribute labels of
the synthetic data. However, due to the distribution gap be-
tween synthetic and real data, training the attribute encoder
solely on synthetic cannot accurately regress the attributes
of real rain, which will affect the quality of generations.

To alleviate this, we propose a semi-supervised weight-
step moving training strategy (SMT) inspired by MOSS
[20]. Precise regression of the attributes of real-world data
is crucial for improving the quality of subsequent rain im-
age reconstruction. Therefore, we not only use the at-
tribute labels of synthetic data as a supervised loss Latt

but also employ image reconstruction loss Lconsis
img of the

subsequent image generation results to simultaneously con-
strain the gradient of the attribute regressor in a momentum-
iteration manner. Specifically, we denote the fθ and fξ as
attribute regressors for synthetic and real data respectively.
To achieve more accurate real attribute regression, we up-
date the weight of θ and ξ in a step moving as follows:

ξt = (1− v1)θt−1 + v1∇Lconsis
img

θt = (1− v2)ξt−1 + v2∇Lattri

(1)

where the ξ and θ are the parameters of synthetic and real at-
tribute encoder separately, v1 and v2 are initial update speed,
t and t-1 represent the current and previous update stages.

Style alignment: Despite having similar physical proper-
ties in rain streaks, synthetic and real rainy images still ex-
hibit significant discrepancies in their visual style, which
are difficult to depict in statistics. To generate more realis-
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tic results, it is important to focus on the style of real rain
data rather than synthetic. Therefore, to explicitly model the
style of real rain images, we regress a new latent variable
SReal using a style encoder. We assume that SReal follows
an isotropic Gaussian prior distribution as suggested in [12]
and then use the Kullback-Leibler divergence to constrain
it. Thus, the style of real rain images can be considered as
different sampling points on the distribution as follows

SReal = µ+ σ · ϵ
ϵ ∼ N (s | 0, It)

(2)

By resampling in this way, we can sample multiple sets of
real rain styles with the same distribution, as shown in Fig.
2. To achieve style alignment between real rain and syn-
thetic data, we assign the resampled Syn.Sty and Real.Sty
as the style of synthetic and real streams respectively.

3.3. Controllable Generation Module
After decomposing in the PDA module, we packaged

the backgrounds, attributes, and styles of the synthetic and
real data as Syn.param and Real.param for the input of sub-
sequent controllable generation module. Since the align-
ment between synthetic and real data has been achieved in
terms of both attributes and styles. And both backgrounds
belong to the real world, we can recognize they have the
same distribution. Thus Syn.param and Real.param share
the same distribution. Besides, the weights of the genera-
tor are also shared between the synthetic and real. Conse-
quently, the output should naturally have the same distribu-
tion. Furthermore, we used both the real rain image con-
sistency loss Lconsis

img and adversarial loss Ladv to constrain
outputs of the generator to have the style of the real rain. At
the same time, we used the synthetic attribute consistency
loss Lconsis

attr to ensure the results of the generator have the
desired attributes, thus achieving controllable generation.
Modulative feature translation: For the controllable gen-
eration model, we propose a modulative feature transla-
tion module (MFT), which simultaneously utilizes the at-
tributes and style of the rain to modulate the properties of
the result. Specifically, as shown in Fig. 3, we first ex-
tract high-level features Fb from the background through
residual blocks. Then the MFT learns a mapping func-
tion M : (attri, style) → (α, γ, β) where the modu-
lative parameter α is obtained by attribute conditions as
α = M1(attri), and the affine transformation parameter
γ, β is obtained by real rain style as (γ, β) = M2(Rstyle),
where M1 and M2 are the embedding block. After obtain-
ing the modulative and transform parameters α, γ, and β,
the MFT first performs the feature modulation on the back-
ground feature map Fb as: Fmod = Fb⊗α. Then to transfer
the feature to a real rain style, we utilize AdaIN [21] on the
modulated feature as follows:

AdaIN(Fmod, γ, β) = γ(
Fmod − µ(Fmod)

σ(Fmod)
) + β (3)

Table 1: Photorealism comparison on FCRealRain.

Index Rain100L Rendering VRGNet JRGR SPA PCGNet
FID 141.84 128.61 128.92 122.5 117.32 108.28

With the MFT module, we can collaborate the attribute con-
ditions and style to both modulate generation properties and
transform the generation similar to real.

3.4. Loss Function

In this section, we give descriptions of loss functions in
PCGNet, which can be roughly divided into three classes:
disentangle loss, consistency loss, and adversarial loss.
Physical disentangle loss. Firstly, for the decomposition
module, we need to separate the rain image into background
and rain layer. Since there are no corresponding back-
ground labels available for real rain, we rely on synthetic
rainy/clean image pairs for supervised training of the de-
composition module, primarily utilizing the L2 loss:

Limg =
∥∥BSyn − BGT

∥∥
2

(4)

where BSyn is background of synthetic rain image, BGT

is the corresponding clean image. Subsequently, we share
weights trained on synthetic and real data. It should be
noted that our concern mainly lies on modeling the inter-
action and knowledge transfer between simulated and real
rain, so the residual rain streaks in background have little
effects on the estimation of rain attributes A and modeling
of their distribution in real rain.

For the attribute regression of rain streaks, since syn-
thetic data possess attribute labels whereas the real data
does not, we utilize the semi-supervised Step-moving train-
ing strategy to constrain the network training by supervised
loss from synthetic data and the subsequent reconstruction
loss of real rain. We define the attribute disentangle loss as:

Lsyn
attr =

∥∥F(RSyn;Wattr)− AGT
∥∥
2

(5)

Lattr = Lsyn
attr +

∥∥F(RReal;Wattr,WMFT )− RReal
∥∥
2

(6)

where the F(•) is the network transformation, Wattr and
WMFT are attribute encoder parameter and MFT module
parameter, RSyn and RReal are the rain layer of synthetic
and real, AGT is the corresponding synthetic attribute labels.

For the style regression of real rain, we impose the Gaus-
sian prior distribution on style and the KL divergence to
constrain the real rain style close to the prior p(z) as:

p(z) ∼ N (s | 0, It) (7)

LKL(SReal;µ, σ) = DKL[q(S|RReal) || p(z)]

=
1

2

N∑
i=1

Mz∑
j=1

(1 + log σij − µ2
ij − σ2

ij)
(8)

where It ∈ Rt×t is the unit matrix, and Mz is the dimension
of the style latent vector SReal.
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Figure 4: The qualitative comparison on generation results.

Clean Image Diverse Generation

Real Rain Manipulation

Figure 5: The qualitative generation results. The first column are two forms of input in the proposed methods. When taking
clean images as input, our methods can generate diverse results by randomly sampling attribute parameters. When taking
rainy images as input, PCGNet can manipulate real rain by modulating attribute parameters based on original attributes.

Consistency loss. To ensure the generation results follow
the same style as the real rain, we employ image-level re-
construction consistency loss Lconsis

img for reconstruction re-
sults IRec and real rain. For controllability of the generated
results, we utilize attribute-level reconstruction consistency
loss Lconsis

attr for the synthetic generation IGen and synthetic
rain. We define the Lconsis

img and Lconsis
attr as follows:

Lconsis
img =

∥∥F(RReal,BReal;Wattri,Wsty,WMFT )− IReal
∥∥
2

(9)

Lconsis
attr =

∥∥F(IGen;Wattri)−F(ISyn;Wattri)
∥∥
2

(10)

Adversarial loss. In addition to consistency losses, we in-
troduce the adversarial loss between the synthetic genera-
tion IGen and the real reconstruction rain IRec, the loss func-
tion is defined as below:

Ladv = E[log(1− D(Igen))] + E[logD(IRec)] (11)
Overall objective function. The full objective function
contains three losses as follows:

LTotal = λDis(Limg + Lattr + LKL)+

λConsis(Lconsis
img + Lconsis

attr ) + λAdvLadv

(12)
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Figure 6: Impact of improper decomposed results on at-
tribute estimation and rain generation quality.

where λDis, λConsis and λAdv are the balance weight. With
the full loss function, our framework collaborates physical
disentangle and controllable generation modules with each
other to achieve controllable and realistic generation.

3.5. Implementation Details.

The training images are randomly cropped into 128 as
input of PCGNet. We first pre-train the decomposition
block and attribute regression on the synthetic dataset for 50
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Table 2: Quantitative comparison on promoting deraining performance with different paired datasets. ‘O’, ‘C’,‘V’,‘J’, and
‘P’ represent the original data, augmented data by classical augmentations, VRGNet, JRGR, and PCGNet respectively.

Dataset Index
DDN JORDER-E MPRNet

O C V J P O C V J P O C V J P

Rain1400
PSNR 28.98 28.72 30.71 27.31 31.25 32.33 32.35 32.88 31.26 33.11 34.43 34.27 34.59 33.29 34.81
SSIM -0.8897 0.8885 0.9172 0.8802 0.9233 0.9256 0.9258 0.9215 0.9105 0.9355 0.9443 0.9435 0.9460 0.9232 0.9483

∆PSNR↑ 0 -0.17 1.12 -1.58 2.36 0 0.02 0.55 -1.07 0.78 0 -0.16 0.16 -1.14 0.38

SPA
PSNR 36.16 36.23 37.01 35.46 38.89 40.24 39.81 40.64 39.76 40.85 47.21 47.15 47.49 46.53 48.02
SSIM 0.9463 0.9471 0.9488 0.9329 0.9555 0.9824 0.9800 0.9825 0.9799 0.9832 0.9908 0.9902 0.9911 0.9871 0.9921

∆PSNR↑ - 0.07 0.85 -0.7 2.73 - -0.43 0.4 -0.48 0.61 - -0.06 0.28 -0.67 0.81

Table 3: Quantitative comparison on promoting the performance of unpaired real rain removal.

Methods Rain
DDN JORDER-E MPRNet

O C V J P O C V J P O C V J P
NIQE↓ 4.159 4.612 4.587 4.132 3.987 3.541 4.816 4.626 5.043 4.035 3.926 4.780 4.722 4.598 4.209 4.012

User study↑ 1.000 4.021 4.233 3.739 5.024 5.891 4.295 4.165 4.362 5.132 6.519 3.552 3.427 4.930 5.616 6.312

Table 4: Promotion on transformed-based method [46].

Dataset Index O C V J P

Rain1400
PSNR↑ 33.39 33.36 33.48 32.75 33.74
SSIM ↑ 0.9384 0.9378 0.9392 0.9217 0.9418

FCRealRain User study↑ 4.21 4.07 4.89 5.61 6.33

epochs. Then we joint train PCGNet using paired synthetic
data and unpaired real data for 100 epochs, in which the
balance weight λDis, λConsis, λAdv are empirically set as
2, 4, 1. The Adam optimizer [26] is adopted with batch size
12. In testing, we could generate the desired rainy image
with clean image and parameters as inputs, and manipulate
its attributes with the real rainy image as input.

4. Experiments
4.1. Diverse and Realistic Image Generation

Dataset and experimental setting. We simulate rainy im-
ages following the screen blend model [34] with different
properties based on the place2 dataset [57] and randomly
select 10035 pairs as the synthetic training data and select
the FCRealRain [5] as our real data, which has no corre-
sponding clean image and attribute labels. Then we col-
lect 600 clear images of the traffic scene for a generation.
For generation methods, we conduct the hand-crafted model
Rain100L [49], physical model Rendering [16], generation
model JRGR [53], and collected real rain SPA [43] to gen-
erate the rain layer on the collected clear image. Impor-
tantly, since the Rendering datasets have not released syn-
thetic code and SPA datasets are the real rain, for a fair com-
parison, we randomly select the rain layer and add it to the
collected clear images by the screen blend model.
Qualitative results. Figure 4 presents samples generated
by different existing generation models. On one hand,
PCGNet has an obvious improvement in photorealism com-
pared with hand-crafted synthetic models such as Rain100L
and Rendering. On the other hand, PCGNet could gener-

ate more diverse rainy images including different angles,
lengths, and brightness by modulating the attribute parame-
ters while the results of JRGR and SPA almost are the same
properties. Moreover, compared to existing rainy image
generation methods such as JRGR and VRGNet, which can
only feed a rainy image to the model, our methods could not
only generate the desired rain image with a clean image and
parameters as inputs, but also manipulate its attributes with
the real rainy image as input such as shown in Fig. 5.
Quantitative results. For a quantitative comparison, we
utilize the Frechet Inception Distance (FID) [17] to demon-
strate the photorealism and diversity of the generation re-
sults. Table 1 shows the FID score on FCRealRain, which
is better with a smaller value. As seen, PCGNet generation
results achieve the best performance. This is also an ex-
pected result since our model has seen the FCRealRain in
the training stage and studied the distribution of real rain.
Impact of improper decomposed result on later stage.
Note that, subsequent attribute estimation is a coarse pre-
diction problem with four attribute scalars, which inher-
ently are robust to input disturbance. We artificially add
image contents onto rain layer to assess the robustness of
proposed method in Fig. 6. Then evaluate the impact of
improper decomposed results via subsequent attribute re-
gression accuracy and final image generation quality. With
decomposed error greatly increasing even to 0.78, where the
corresponding restored image PSNR is 28 (most deraining
methods could achieve higher), different attributes regres-
sion accuracy keep almost unchanged. We further examine
final image generation quality, where FID and visual results
are also robust based on the improper decomposed result.

4.2. The Promotion for Image Deraining

Dataset and experiment setting. The goal of rain im-
age generation (RIG) is to facilitate the existing datasets
for boosting the performance of deraining methods. For
paired data, similar to the augmented strategy in [16], we
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Figure 7: Performance comparison on the unpaired real rain FCRealRain, including rainy image, deraining result from DSC,
and deep SOTAs trained on the original datasets SPA (1st row) and generated dataset by PCGNet (2nd row).

(a) w/o Style Alignment (b) w/ Style Alignment

Figure 8: Effectiveness of style alignment for generation.

conduct classical augmentations (including rotation, con-
trast, scale), VRGNet [42], JRGR [53] as compared meth-
ods to augment the existing datasets with a ratio of 0.5. Note
that, since the VRGNet is trained in a supervised way, for
a fair comparison, JRGR and PCGNet also utilizes the cor-
responding synthetic data as our unlabeled training data in
the physical decomposition. We evaluate the effectiveness
of the augmentation strategy through the latest single im-
age deraining methods, DDN [13], JORDER-E [48], and
MPRNet [56] based on commonly paired datasets includ-
ing Rain1400 [13] and SPA [43]. For unpaired real data, we
conduct the real deraining experiment on FCRealRain with
the corresponding released and augmented models. In the
following, we use the notation ‘O’, ‘C’,‘V’,‘J’, and ‘P’ to
denote the original data, augmented data by classical aug-
mentations, VRGNet, JRGR, and PCGNet.

Effectiveness of diverse augmented datasets. For paired

data, the diverse training datasets could alleviate the bias of
original data and achieve better performance on the testing
dataset. Table 2 quantitatively compares the promoting per-
formance of competing methods. On the one hand, the clas-
sical augmentation and JRGR could not significantly im-
prove the deraining methods since the linear transform and
monomorphic generation. On the other hand, compared to
VRGNet, PCGNet can bring more significant improvement
since the more diversity of generation data.

Effectiveness of realistic augmented datasets. For un-
paired data, the key to improving rain removal methods is to
enable the generator results with a similar appearance style
to the real rain. In Table 3, we employ the non-reference
NIQE [36] and user studies to quantitatively evaluate the vi-
sual quality of deraining results on FCRealRain [5]. As for
the user study, we randomly select 100 samples and shuffle
them, subsequently inviting 30 students to give a score from
1 to 10. The higher user studies and lower NIQE, the better
deraining result is. As seen, the training datasets are vital
for CNN methods and PCGNet can facilitate a significant
improvement for all deraining methods in the real scene.
Trained with generation pairs of PCGNet, even the early
method DDN can achieve very comparable performance on
real rain removal, which can further demonstrate the impor-
tance of diverse and photorealism training datasets. Figure
7 shows the qualitative comparison of deraining results be-
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Figure 9: Linear manipulation generation. (a) Sampling the
value along with the specific dimensions linearly in attribute
space. (b) PCGNet can generate rain images in image space
that are linearly correlated with attribute parameters.

fore and after augmented by PCGNet. Here we also list
optimization-based method DSC [34] for comprehensive
comparisons. We can see that results of augmented model
possess less rain residual retain more image details.
Promoting on latest deraining method. In order to fully
prove the promotion of PCGNet to existing methods, we
supplement the experimental results of transformer derain-
ing method IDT [46] on the Rain1400 dataset with different
augmentation methods in Table 4. Even with the powerful
transformer-based method, incorporating the data generated
by our approach (P) can further improve the performance
compared to the baseline. This strongly validates the gen-
eral and practical ability of the proposed method.

4.3. Ablation Study and Discussing
Effectiveness of style alignment and SMT for genera-
tion. As for style alignment, Fig. 8 shows samples gen-
erated by PCGNet with or without style alignment. We
observe a large improvement in photorealism when style
alignment is added. As for SMT, The accuracy of attribute
estimation on real data will directly affect the quality of
real rain reconstruction. To verify the impact of SMT on
attribute estimation, in Tabel 5, we show the accuracy of
attribute estimation. We manually annotated attributes of
500 images from test set of Rain1400 for attribute estima-
tion validation, which is different from our synthetic data.
We can observe that SMT can significantly help attribute
encoder to regress better rain properties.
Impact of style alignment and SMT for rain removal.
The key goal of rain generation is to facilitate rain removal.
Here, we further validate the impact of style alignment and
SMT on rain removal performance of JORDER-E [48]. As
shown in Table 6, style alignment facilitates learning dis-
tribution of Rain1400 with strong improvement, and SMT
enhances sufficient promotion by better attribute regression.
Effectiveness of consistency and adversarial losses. Al-
though final loss functions may appear complex in Eq. (12),
it can be divided into three main categories: physical disen-
tangle loss, consistency loss, and adversarial loss. In Ta-

Table 5: Effects of SMT on attribute estimation accuracy.

Index Angle Length Brightness Density
w/o SMT 92.3% 82.3% 84.5% 70.2%
w/ SMT 93.5% 88.2 % 85.1% 84.7%

Table 6: Effects of style alignment and SMT for deraining.

Index SA(×) SMT(×) SA(
√

) SMT(×) SA(
√

) SMT(
√

)
PSNR/SSIM 30.15/0.9092 32.56/0.9298 33.11/0.9355

Table 7: Effects of consistency and adversarial losses.

Index Lconsis
attr (×)
Ladv(×)

Lconsis
attr (×)
Ladv(

√
)

Lconsis
attr (

√
)

Ladv(×)
Lconsis

attr (
√

)
Ladv(

√
)

Accuracy↑ 0.711 0.739 0.862 0.895
FID↓ 138.5 115.4 125.7 108.28

ble 7, we analyze the effect of Lconsis
attr and Ladv from two

aspects: rain attributes accuracy (measurement of control-
lable ability) and image quality (FID, measurement of re-
alism degree) of generation results. We can conclude that
Lconsis
attr significantly improves controllable generation ac-

curacy, while Ladv enhances the realism of the results.
Attribute interpolation. Different from existing RIG
methods implicitly control such as VRGNet [42], proposed
methods can explicitly and linearly control rain attributes.
As shown in Fig. 9, when operating attribute (such as angle,
length, and brightness) varies linearly, physical attributes
of rain streak in results are also changed linearly, which
demonstrates superior controllable generation of PCGNet.
Limitations. Currently, we mainly focus on enhancing re-
alism of rain through explicit modeling of its semantic at-
tributes. However, authenticity of rain should encompass
not only rain semantic but also scene semantic. We will take
3D scene semantic into consideration in the future works.

5. Conclusion
In this paper, we attempt to facilitate real rain removal

from data generation perspective. To achieve this goal, we
propose a physical alignment and controllable generation
network (PCGNet) with diverse and realistic generation re-
sults. The proposed PDA decouples synthetic and real rainy
images into background, rain attributes, and appearance
styles, and makes them aligned in physical space by weight
Step-moving and distribution resampling strategy. The pro-
posed CGM achieves physically controllable mapping from
attributes to real rain for realistic and diverse rain genera-
tion. Extensive comparison results have shown appealing
generation results, which significantly improve the perfor-
mance of other derain methods on real data.
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