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Figure 1: (a) A typical NLOS imaging setup includes a pulsed laser that illuminates a part of the relay wall, and a time-
resolved detector that captures the returning photons after multiple bounces between the wall and the hidden object. (b) Top:
Fourier spectrum of different kernels. Bottom: Recovered depth maps using different kernels. Our proposed attention-guided
kernel has similar low-frequency components (centered in the image) to the physics-based kernel, but contains more high-
frequency components (side parts in the image), resulting in a finer reconstruction.

Abstract

Recovering information from non-line-of-sight (NLOS)
imaging is a computationally-intensive inverse problem.
Most physics-based NLOS imaging methods address the
complexity of this problem by assuming three-bounce re-
flections and no self-occlusion. However, these assump-
tions may break down for objects with large depth varia-
tions, preventing physics-based algorithms from accurately
reconstructing the details and high-frequency information.
On the other hand, while learning-based methods can avoid
these assumptions, they may struggle to reconstruct de-
tails without specific designs due to the spectral bias of
neural networks. To overcome these issues, we propose a

novel approach that enhances physics-based NLOS imag-
ing methods by introducing a learnable inverse kernel in
the Fourier domain and using an attention mechanism to
improve the neural network to learn high-frequency infor-
mation. Our method is evaluated on publicly available
and new synthetic datasets, demonstrating its commend-
able performance compared to prior physics-based and
learning-based methods, especially for objects with large
depth variations. Moreover, our approach generalizes well
to real data and can be applied to tasks such as classifica-
tion and depth reconstruction. We will make our code and
dataset publicly available:https://sci2020.github.io.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Current non-line-of-sight (NLOS) imaging techniques

typically adopt pulse lasers and time-resolved detectors to
image hidden objects behind obstacles or around corners,
as illustrated in Fig.1(a). To reconstruct the hidden objects
from the detector’s measurements, known as NLOS tran-
sients, most physics-based NLOS imaging methods, such
as Light-cone transform (LCT) [25], assume that the NLOS
scene only involves three-bounce reflections and has no
self-occlusion, which simplifies the problem into a linear
one in the Fourier domain. However, these assumptions
may not hold for more complex objects with large depth
variations, which are common in practical NLOS tasks,
such as tilted vehicles in autonomous driving. In these sce-
narios, the invalid assumptions of most physics-based meth-
ods make it challenging to recover the high-frequency de-
tails of the hidden objects. Moreover, studies have found
that objects with large depth variations in NLOS problems
typically have complex geometries and normal distribu-
tions, which may result in a loss of high-frequency infor-
mation in the Fourier domain [17] due to the limited NLOS
aperture [18, 22], rendering the NLOS imaging problem
highly ill-posed.

Learning-based methods avoid the assumptions, such
as the three-bounce reflections and no self-occlusion, in
physics-based NLOS reconstruction methods and leverage
learned scene priors to compensate for the loss of high-
frequency information in NLOS imaging process [7, 6, 23].
These methods achieve better results in scenes with large
depth variations compared to physics-based methods. How-
ever, existing learning-based methods lack dedicated de-
signs to specifically address the problem of high-frequency
information loss in scenes with significant depth varia-
tions. Furthermore, due to the spectral bias of neural net-
works [28, 4], the networks tend to learn low-frequency
components, which makes them less sensitive to high-
frequency details during NLOS reconstruction. Therefore,
the current deep learning methods still face challenges in
reconstructing high-frequency details in NLOS imaging, re-
sulting in unsatisfactory reconstruction for complex objects
with large depth variations.

To address the challenge of reconstructing high-
frequency information and details in NLOS imaging, we
propose an end-to-end deep learning framework that pri-
marily operates in the Fourier domain, which is consis-
tent with physics-based methods. We utilize a 3D convo-
lutional neural network (CNN) and the fast Fourier trans-
form (FFT) to extract frequency features (F-features) from
raw NLOS transients. The inverse kernel of physics-based
methods does not accurately capture high-frequency infor-
mation from non-linear effects like self-occlusions, espe-
cially for objects with large depth variations. We thus
make the inverse kernel learnable in the Fourier domain

and use self-attention and cross-attention to guide the net-
work to embed learned scene priors into the low-frequency
and high-frequency components of the kernel, respectively.
As shown in Fig.1(b), the kernel guided by attention mech-
anisms contains richer high-frequency information than
the physics-based kernel, resulting in finer reconstruction.
With the extracted F-features and the learned inverse ker-
nel, we multiply them and use iFFT to obtain spatial fea-
tures (S-features), which resemble physics-based methods.
The network-obtained S-features are suitable for end-to-end
training for various tasks, such as 2D imaging, depth recon-
struction, and object classification [3].

We evaluate our proposed method on three syntheic
datasets, as well as additional experimental data. First, we
validate our method on our new synthetic datasets for differ-
ent tasks like 2D imaging, depth estimation and classifica-
tions. Additionally, we test our method on a public dataset
of motorbikes [6]. We demonstrate that our method can
recover high-frequency details and get higher accuracy. Fi-
nally, we show the effectiveness of our method on a public
dataset [23].

We summarize our contributions as follows:
• We propose an end-to-end deep learning framework

that learns an inverse kernel in the Fourier domain
to reconstruct high-frequency information and details
in NLOS imaging, particularly for objects with large
depth variations.

• We evaluate our method on three different synthetic
datasets and additional experimental data on various
tasks, such as 2D imaging, depth reconstruction, and
object classification.

2. Related Work
We briefly review most relevant prior works and refer

readers to recent surveys [8, 9] for an overview.

Physics-based reconstruction. Kirmani et al. [14] first
propose non-line-of-sight imaging for recovering hidden
scenes around corners, using time-resolved equipment to
capture the time-of-flight of rebounced light, which is
known as transients. However, the intractable multipath
light transport incurs prohibitive computation cost to re-
cover information of the hidden object, which is an ill-
posed inverse problem. In order to approximate a lin-
ear inverse operator, a variety of approaches makes efforts
to simplify the light transport by making certain assump-
tions [14, 25, 1, 29, 11, 26, 37, 20]. Backprojection (BP-)
based methods build a 3D probability map of the hidden
object geometry instead of solving the accurate light trans-
port and use a Laplacian filter to sharpen the volumetric re-
sult as post-processing [13, 14, 10, 2, 35]. LCT [25] makes
isotropic assumption of the light reflection and introduces
the confocal NLOS setting. Ahn et al. [1] report that the in-
verse kernel, e.g., computed using Wiener filtering [25, 38],
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Figure 2: Overview of our framework. In the top row we illustrate our framework. Our framework first takes as input a raw
transient and output a downsample feature volume (S-T features) with a 3D CNN. Then we map the feature volume into a
Fourier space so as to convolve with our learned kernel K, yielding spatial features (S-feature) that suits followup tasks. In
the bottom row, we show how we learn our kernel. Our kernel is implemented as a learnable Fourier volume that is initialized
with LCT [25]. We then conduct our proposed attention guidance learning to enhance the K for light cone transform in the
deep Fourier space.

resembles a Laplacian filter and propose a convolutional
Gram operator to refine the reconstruction. Wave-based
methods transform light transport as wave propagation and
can handle complex NLOS scenes [15, 19, 24, 34]. Phys-
ical model-based methods, however, suffer from a critical
limitation in which they are unable to account for nonlinear
light propagation, including self-occlusions. This issue is
particularly acute when the depth of the hidden object ex-
hibits significant variations. We utilize neural networks to
induce the precise inverse light transport operator using a
substantial amount of data, thus overcoming the limitations
of traditional physical models.

Learning-based reconstruction. Data-driven solvers [6,
31, 16, 23, 39, 26, 30] learn 2D or 3D features from in-
put transients of hidden objects without strong assumptions.
Both traditional and learning-based approaches consider the
inverse operator to be spatial-invariant and optimize the
NLOS reconstruction. Chen et al. [6] propose an end-to-
end learning framework capable of extracting features from

the transients for different downstream tasks. They intro-
duce a feature propagation module based on physical model
to ensure stable training. Mu et al. [23] incorporate the
physical priors of wave propagation and volume rendering
into neural networks for robust NLOS reconstruction. Sim-
ilar to Chen et al. [6], Liu et al. [16] introduce additional
priors to enhance output features. However, the utiliza-
tion of an approximated inverse kernel in these frameworks
presents a constraint that hinders the learning of features
for scenes with highly variable depth. Additionally, pre-
vious works have predominantly focused on the extraction
of spatial-temporal features, overlooking frequency domain
learning, which limits the ability to obtain a more precise
and memory-efficient feature extractor. Our method uti-
lizes the widely used attention mechanism [32, 21, 27, 36]to
guide the kernel estimation and learn accurate features in
the frequency domain.
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3. Methods
Our end-to-end learnable framework is capable of learn-

ing attention-guided inverse kernel and versatile feature em-
beddings from only NLOS transients, which turns out to
be useful for downstream tasks like 2D imaging, depth
reconstruction and object classification. It first learns an
attention-guided inverse kernel that effectively captures
high-frequency information during reconstruction. The
network then embeds NLOS transient data into a high-
dimensional latent space, which helps extracting meaning-
ful cues and priors. This allows mapping learned transient
features into the spatial domain so as to conduct down-
stream tasks. Our pipeline is illustrated in Fig. 2.

3.1. NLOS imaging model

Transients. The input transients, denoted by τ ∈
RT×H×W , conform to the widely-used confocal setting,
where the illumination point and the scanning point over-
lap. The transients record the photon counts with their ar-
rival time and are formulated as follows:

τ(t, x′, y′) =

∫
Ω

1

r4
ρ(x, y, z)δ(t− r

c
)dV (1)

where (x′, y′) represents the location of the illumination
and scanning points, while Ω denotes the entire hidden
scene. The function δ represents a hemisphere centered at
(x′, y′) with radius r = ct, representing the length of the
light path. The parameter ρ denotes the albedo of the hidden
object and encodes the geometric information. As indicated
by Eq. 1, the transients represent an integral signal of scat-
tered light. Recovering the hidden objects from these tran-
sients is a non-trivial inverse problem. Most physics-based
methods make some assumptions to introduce the inverse
kernel K0 (the physics-based kernel (PBK) in Fig. 1), and
recover the NLOS image by

ρ = R′{IFFT3D{FFT3D{R{τ}} ⊙ K0}} (2)

where R and R′ are resampling operators at a temporal or
depth axis [25]. ⊙ is an element-wise multiplication. How-
ever, the linear inverse kernel K0 is inaccurate especially in
high-frequency domain (see Fig.1(b)). Thus we leverage the
attention mechanism to guide to learn the inverse kernel in
low-frequency and high-frequency domains, respectively.

3.2. Attention-guided kernel learning

We estimate an inverse kernel K ∈ Ct̂×ĥ×ŵ that is
jointly learned from the data distribution. We aim to learn
the inverse kernel that translates from transients to spatial
domain in the deep feature space. Transient data are usu-
ally sparse and have difficulties in encoding high-frequency
details. We design our framework to learn high-frequency
components that traditional methods cannot capture. To

learn such a kernel, we propose to model the low frequency
part and a high-frequency part separately. We then employ
attention mechanisms to enhance both components during
the training.

More specifically, we obtain a learnable kernel Ko. We
initialize this kernel with LCT [25] and find that other ini-
tializations are also plausible. We then separate it into two
parts according to the frequency coordinates, as follows

Slow = {Ko
ijk : i < t/2 & j < h/2 & k < w/2} ∈ CL

Shigh = {Ko
ijk : i ≥ t/2 & j ≥ h/2 & k ≥ w/2} ∈ CL.

(3)

where L = (t̂× ĥ× ŵ)/2. This process simply divides the
kernel Ko into two equal-size components that contain dif-
ferent frequency ’tokens’ for the following attention-based
learning. We adopt this 50-50 separation in our work be-
cause, unlike previous methods, our kernel is learnable.
Due to the self- and cross-attention mechanisms, our frame-
work enables weight adjustment by integrating information
from different frequencies, even when separation is not opti-
mal. We provide detailed experimental results in Sec. 4.4 to
test the effectiveness of different separations, and find that
the differences in performance metrics are not significant.

Given two components of low and high frequency ex-
tracted from the kernel, we conduct attention guidance
learning. Following the processing in [32], we apply po-
sition encoding on the two components into S̄low and S̄high

so as to learn kernel embedding that correlates to the fre-
quency coordinate. We employ the low-frequency compo-
nents Slow to refine the low-frequency tokens, as low fre-
quency signals represent structural information, such as the
coarse geometry and layout of the hidden object. We first
project the components Slow into two subspaces as query
Qlow and Klow using two tiny linear layers. We then up-
date the low frequency components as follows:

Hlow = softmax(QT
lowKlow) · Slow

Ŝlow = σ(Hlow)⊙ Slow

(4)

where ⊙ is an element-wise multiplication.
High-frequency details are highly correlated to the low-

frequency structure. To refine the high-frequency compo-
nents, we exploit cross attention from the low frequency
representation obtained above to guide the learning of high
frequencies. More specifically, we use the updated low-
frequency components as the query and high-frequency
component as the key and the value. The high-frequency
components are then processed with cross attention, as fol-
lows:

Hhigh = softmax(ŜT
lowShigh) · Shigh

Ŝhigh = σ(Hhigh)⊙ Shigh

(5)
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After acquiring both Ŝlow and Ŝhigh, we recombine the two
components into a convolutional kernel K to conduct in-
verse projection from the transient latent into spatial fea-
tures, as depicted in Fig 2.

3.3. Feature extractor

NLOS feature encoding. Given a 3D transient volume
τ ∈ Rt×h×w, we first encode it into a 4D feature volume
C ∈ Rd×t/f×h/f×w/f with a 3D convolutional network
Fpre modified from [6]. This network has two components:
a deep 3D CNN Cd and a short-cut convolutional layer Cs.
The deep CNN consists of one 3D convolutional block and
two residual blocks to downsample the input transient vol-
ume into the latent space by a factor of f = 4. The short-
cut convolutional layer is implemented with kernel size 1,
stride 4 and is initialized with ones, so that at the training
beginning this serves as a pooling layer. We find that such
design enables our training stable, especially benefiting our
optimization of learnable kernel. We then concatenate the
outputs to obtain the transient latent:

C = Cd(τ)⊕ Cs(τ) ∈ Rd×t/4×h/4×w/4 (6)

Feature propagation. Given the transient latent from the
3D CNN, we aim to mapping it to spatial domain so as to
conduct downstream tasks in a pixel-align manner. Several
linear and approximated kernels exist, such as BP, LCT and
PF. However, none of these methods produce desirable re-
sults because they only model simplified light propagation
and are not designed for transients in the latent space. To
model accurate light transport for complex scenes, we in-
stead adopt a learned kernel K that makes good use of ge-
ometric cues and priors from the training data distribution,
as described in Sec. 3.2.

To map the transient latent into the spatial space, we first
pad the output transient latent to t/2×h/2×w/2, which are
then mapped to Fourier representation with FFT. The zero
padding improves frequency resolutions as zero padding in
the spatial domain results in increase of frequencies in the
Fourier domain. We find that this process benefits our learn-
ing of a high resolution K̂ and consequently boosts the final
results. Specifically, we obtain the spatial features S as fol-
lows

C̄ = PAD(C) ∈ Rd×t/2×h/2×w/2 (7)

S = IFFT3D{FFT3D{C} ⊙ K} (8)

where PAD is a zero padding operation and ⊙ is a element-
wise multiplication.

3.4. Task-specific decoding

The learned feature representation allows us to address
different NLOS tasks. Based on a specific downstream task,
we design the decoder called Dpost accordingly and connect

it to the extractor to process our 3D features. For 2D image
reconstruction and depth estimation tasks, we collapse the
3D features into a 2D feature map along the depth axis, and
then use a convolutional network with upsampling layers
to obtain an image with the same resolution as the target
image. We then adopt the mean square error (MSE) loss
as the objective for these regression tasks. For the digit
recognition task, we directly use the 3D features as input
and utilize a 3D convolutional network as the backbone to
extract distinguishable features for classification. We then
map the features to the probability distribution of different
categories using the cross entropy loss. In a nutshell, we
decode the spatial feature according to tasks,

T = Dpost(S) (9)

where Dpost is a task-specific head that can be implemented
as an image regressor or a classifier.

4. Implementation
4.1. Datasets

We evaluate our work using three synthetic datasets, one
of which is a publicly available dataset in [6]. The other
two datasets are generated at small time bins of 4 ps and
are convolved with Poisson noise by mimicking the NLOS
imaging system with a SPAD [12].

Public Motorbikes Dataset. The motorbikes dataset
comprises a total of 1385 samples, including 277 motor-
bikes rendered from the ShapeNet [5] dataset in 5 different
random positions. The size of the transients is 256 × 256 ×
512. We divide the dataset into three subsets: 1000 samples
for training, 100 samples for validation, and 100 samples
for testing.

New Synthetic Datasets. The new synthetic datasets
comprise two sub-datasets. one is Digits Dataset includ-
ing digits from 0 to 9. We randomly sample 144 poses for
each digit to synthesize a total of 1440 samples. We then
split the dataset into 1200 for training and 240 for testing.
The other is Poses Dataset, serving as a complementary
addition to [16]. This dataset encompasses 2642 transient
samples, each of which incorporates a pose with depth vari-
ations of at least 1 meter. These samples comprise transients
of 256 × 256 × 512 along with corresponding ground truth
images of 256 × 256. The dataset has been partitioned into
training, validation, and testing sets, distributed in an 8:1:1
ratio.

Real data. To further evaluate the generalization abil-
ity of our approach to real-world data, we acquire a set of
real data using a confocal NLOS setup. Our hardware sys-
tem consists of an ultrafast pulsed laser (SuperK 299 EX-
TREME FIU-15, 47 mW average power, 670 nm, 20 ps
pulse width, 39 MHz repetition rate), a fast-gated SPAD
(12%detection efficiency, 200 ps time jitter) using a delayer
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Figure 3: Qualitative comparison of our method and LFE [6], NLOS3D [23], PF [18], LCT [25] and f-k [15]. Our method
is capable of reconstructing images of various poses whereas SOTA methods are inaccurate or suffer from different levels of
artifacts.

(PicoQuant PSD-065-A-MOD) with gate width 12ns and a
galvo scanning system. The laser scans the relay wall while
the SPAD focuses on the same position as the laser. For
each measurement, we scan a 64×64 grid within 1m×1m

square, with a 2-second exposure time for each scanning
point. We accumulate photon counts within the exposure
time at each bin by a photon counter (PicoHarp 300). The
captured transient has 6411 bins with a temporal resolution
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Figure 4: Comparison of reconstruction results on mo-
torbikes dataset. The results of our method are sharper and
more detailed than SOTA methods, especially in the wheels.

of 4 ps. We reduce the 6411 bins to 4096 bins by discarding
the last bins, which contains little information of the hidden
object.

4.2. Implementation details

All experiments are conducted on the PyTorch platform
using an NVIDIA RTX 3090 GPU card. For input tran-
sients, we encode the transients into a feature volume of
32 × 32 × 64 × 32 and batch size 4. For motorbikes and
digits datasets, we encode the transients into a feature vol-
ume of 128 × 128 × 256 × 4 and batch size 1. We adopt
AdamW as our optimizer, with lr = 1e − 5, β1 = 0.5 and
β2 = 0.99. All experiments are trained with 90k iterations
except motorbikes, which we only train 50k iterations as we
find that it has already converged.

4.3. Comparisons with previous methods

Baselines. We compare our method with state-of-the-
art (SOTA) methods, including LFE [6], NLOS3D [23],
PF [18], LCT [25], and f-k [15]. Two baselines are
LFE [6] and NLOS3D [23]. LFE [6] is an end-to-end
learning system that also learns feature embedding and
conduct feature propagation with a physics-based kernel.
NLOS3D [23] uses an encoder which equips Rayleigh-
Sommerfeld diffraction (RSD) as a physical feature propa-
gation, combined with a conditional radiance field to predict
both density and color and render images via volume ren-
dering. We implement these baselines and adapt them to our

Figure 5: Results of depth estimation on poses dataset. Our
method successfully recovers the hidden objects in a larger
depth range.

tasks for fair comparisons. For LFE [6], we directly adopt
the public code and keep the hyper-parameters the same as
described in the paper. For NLOS3D [23], we slightly mod-
ify their framework since their method is implemented for
non-confocal setting. Specifically, we replace their RSD
function with Phasor Fields [18] and only use single-view
images as supervision. We train them with the same batch
size and iterations as ours, but keep other hyper-parameters
as the same as their original implementation.

2D Image reconstruction. We report the quantitative
2D imaging results on poses dataset in Tab. 1. Our method
achieves better PNSR and SSIM, surpassing both LFE [6]
and NLOS3D [23]. As shown in Fig 3, our method is ca-
pable of reconstructing images of various poses and large
depth variations because we learn a disentangle represen-
tation of the inverse transport kernel that preserves both
coarse shape and highly-detail edges. By contrast, LFE [6]
and NLOS3D [23] are prone to produce noise and artifacts,
harming the final results, especially in the cases that the
approximated kernel does not match the actual light trans-
port. While other baselines typically perform on a specific
scenes (as is shown in the last column), our method is ca-
pable of recovering both shape and details across different
poses. We further validate this in the motorbikes experi-
ment, where our technique consistently outperforms these
baselines in both quantitative measurements and qualitative
visualizations (as Fig. 4 shows). Our method is the only
one that clearly reconstructs the high frequency details of
the motorbikes, e.g., the shape and contour of the wheels.
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Table 1: Quantitative comparison of our technique and
the baselines. Our algorithm demonstrates superior per-
formance on imaging task compared to the LFE [6] and
NLOS3D [23] algorithms on two distinct datasets.

Dataset Methods MSE↓ PSNR↑ SSIM↑

Poses
LFE [6] 0.09 21.43 0.84
NLOS3D [23] 0.08 22.65 0.91
Ours 0.06 24.59 0.94

Motorbikes
LFE [6] 0.07 25.79 0.92
NLOS3D [23] 0.08 25.59 0.91
Ours 0.05 26.61 0.94

Depth estimation. We conduct depth estimation experi-
ments on the poses dataset with significant depth variations.
Figure 5 illustrates the results for four different postures. In
the first three poses, since the hands are up, the depth of
the arm exhibits significant variation and the self-occlusion
is severe. PF [18], which assumes a physical based ker-
nel, only recovers the basic shape and fails to estimate the
depth. LFE [6] uses a convolutional neural network to ex-
tract dense spatio-temporal domain features, allowing it to
obtain a more complete shape. However, the lack of cor-
rections for the approximate physical model prevents LFE
from recovering clear details, such as the depth of the arm.
In contrast, our method can accurately predict the depth in-
formation of hidden objects using a learnable kernel. For
the most challenging posture of the bent pose with a most
severe self-occlusion, the PF and LFE can only recover the
depth of a limited region (e.g., the head). In comparison,
our method can achieve accurate depth estimation, includ-
ing the obscured parts such as the legs, by sharing informa-
tion at high and low frequencies in the kernel.

Digits classification. We utilize ResNet3D-50 [33] as
the downstream decoder for digit classification. We report
standard metrics for classification tasks, including preci-
sion, recall, and accuracy on average. The results of our
experiments are presented in Tab. 2.

Results on real data. Although Our method is trained
with synthetic data, we demonstrate its ability to general-
ize to real-world scenarios. We capture NLOS transients of
a mannequin with various poses using our system. Due to
limited GPU memory, the time resolution of our method is
constrained. As a result, we need to resample the measured
data from its original bin resolution of 4e-12 with 4096 bins
to a bin resolution of 3.2e-11 with 512 bins. We then feed
these raw transients into our network trained on the poses

Table 2: Digits classification results. Our method consis-
tently outperforms LFE [6].

Methods precision recall accuracy

LFE [6] 0.91 0.89 0.89
Ours 0.95 0.94 0.94

Figure 6: Results on real data. Our method can general-
ize to the captured real data, matching and even outper-
forming the learning-based counter-part LFE [6] and the
backprojection-based PF [18].

dataset to predict their imaging, as shown in Fig 6. In addi-
tion, we compare our results to two methods: a learning-
based counter-part LFE [6] and a SOTA backprojection-
based PF [18]. We show that our method clearly recovers
the overall shape and significantly reduces artifacts.

4.4. Ablation studies and analysis

We carry out three ablation analyses: Low- and High-
frequency attention mechanisms,Different kernel separa-
tion, and Generalization of learned kernels.

Low- and high- frequency attention. We aim to vali-
date the effectiveness of our frequency attention design to
leverage the importance between Klow and Khigh. To en-
sure the clarity of the experiment, we conduct our experi-
ments using the poses dataset with significant depth varia-
tions. We compare three different attention structures. LS:
we only add self-attention to the low-frequency kernel and
do not perform any operations on the high-frequency part.
LSHS: we perform self-attention on both the low-frequency
and high-frequency kernels. LSHC is the scheme we use in
the paper, which add the refined low-frequency kernel infor-
mation to guide the learning of the high-frequency kernel.

Figure 7 showcases the 2D image reconstruction on a
bending pose. The LS scheme enhances the low-frequency
information and preserves the fundamental shape at the
front. However, the absence of high-frequency information
causes the back of the body to be blurred. On the other
hand, the LSHS scheme utilizes high-frequency attention
to obtain sharper and cleaner details, including half of the
arm. Instead of allowing high-frequency kernel learning on
its own, the LSHC technique utilizes low-frequency infor-
mation to guide the learning of high-frequency details. This
enables the utilization of existing priors in low-frequency to
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Figure 7: Pose reconstruction using different attention
mechanisms: LS, LSHS, LSHC (ours).

infer challenging details, such as the recovery of the entire
arm and a clear back body. These results effectively demon-
strate the effectiveness of employing cross-attention to learn
the frequency domain kernel.

Different kernel separation. The aperture size of dif-
ferent NLOS systems affects the optimal separation of the
low- and high-frequency kernels. We include additional re-
sults in Tab. 3 to test the effectiveness of different kernel
separation, and to show that the differences in performance
metrics are not significant because, unlike previous meth-
ods, our kernel is learnable. Due to the self- and cross-
attention mechanisms, our framework enables weight ad-
justment by integrating information from different frequen-
cies, even when the separation is not optimal. We also ac-
knowledge that better incorporating prior of frequency dis-
tributions is an avenue for future research.

Generalization of learned kernels. Generalization is
an inevitable challenge that deep learning methods need
to address. We visualize and compare the kernels learned
from different datasets. Fig. 8 (a) illustrates the similar-
ity of the kernels. Additionally, we conduct tests across
datasets. Fig. 8 (b) presents the recovering results with a
model trained on the motorbikes dataset and on the poses
dataset. These results showcase good generalization capa-
bility of our approach. We observe that our method can
learn how to integrate and enhance low- and high-frequency
information, rather than relying solely on scene priors.

5. Conclusion
In this paper, we propose an end-to-end deep learning

framework that improves the ability of neural networks to
learn high-frequency information for NLOS imaging and
reconstruction. Our method introduces a learnable inverse
kernel in the Fourier domain and using an attention mech-

Table 3: Quantitative results using different kernel separa-
tion.

Low - High MSE ↓ PSNR ↑ SSIM ↑
50% - 50% 0.05 26.61 0.94
25% - 75% 0.06 26.59 0.93
75% - 25% 0.05 26.61 0.93

Figure 8: (a) The inverse kernels learned on three datasets.
(b) From left to right: Ground truth, images reconstructed
by training a model on the respective datasets.

anism. Our method avoids the inaccurate inverse kernel
that can occur in physics-based methods due to invalid as-
sumptions, and also addresses the limited high-frequency
representation problem of neural networks. We evaluate
our method on different datasets and demonstrates supe-
rior performance compared to previous physics-based and
learning-based methods, especially for objects with large
depth variations. In addition, our method generalizes well
on experimental NLOS data and can be applied to tasks
such as NLOS imaging, depth reconstruction and classifi-
cation.
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