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Figure 1: Given a single source view, our model allows us to sample multiple plausible sets of views over a camera trajectory.
Here, we show two samples (middle and right) of a sequence using the three source views (left). Our method is able to
maintain consistency between observed regions, while plausibly extrapolating unseen regions. Notice that the final frames
reveal regions that are largely unseen in the source view, and show different plausible appearances in each sample.

Abstract

Novel view synthesis from a single input image is a chal-
lenging task, where the goal is to generate a new view of
a scene from a desired camera pose that may be separated
by a large motion. The highly uncertain nature of this syn-
thesis task due to unobserved elements within the scene (i.e.
occlusion) and outside the field-of-view makes the use of
generative models appealing to capture the variety of pos-
sible outputs. In this paper, we propose a novel generative
model capable of producing a sequence of photorealistic
images consistent with a specified camera trajectory, and a
single starting image. Our approach is centred on an au-
toregressive conditional diffusion-based model capable of
interpolating visible scene elements, and extrapolating un-
observed regions in a view, in a geometrically consistent
manner. Conditioning is limited to an image capturing a
single camera view and the (relative) pose of the new cam-

era view. To measure the consistency over a sequence of
generated views, we introduce a new metric, the thresholded
symmetric epipolar distance (TSED), to measure the num-
ber of consistent frame pairs in a sequence. While previous
methods have been shown to produce high quality images
and consistent semantics across pairs of views, we show
empirically with our metric that they are often inconsistent
with the desired camera poses. In contrast, we demon-
strate that our method produces both photorealistic and
view-consistent imagery. Additional material is available
on our project page: https://yorkucvil.github.
io/Photoconsistent-NVS/.

1. Introduction
Novel view synthesis (NVS) methods are generally

tasked with generating new scene views, given a set of ex-
isting views. NVS has a long history in computer vision
[6, 18, 2] and has recently seen a resurgence of interest with
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the advent of NeRFs [23, 46, 41]. Most current approaches
to NVS (e.g. NeRFs) focus on problem settings where gen-
erated views remain close to the input and whose content is
largely visible from some subset of the given views. This
restricted setting makes these methods amenable to direct
supervision. In contrast, we consider a more extreme case,
where a single view is given as input, and the goal is to gen-
erate plausible image sequence continuations from a trajec-
tory of provided camera views. By plausible, we mean that
visible portions of the scene should evolve in a 3D consis-
tent fashion, while previously unseen elements (i.e. regions
occluded or outside of the camera field-of-view) should ap-
pear harmonious with the scene. Moreover, regions not vis-
ible in the input view are generally highly uncertain; so,
there are a variety of plausible continuations that are valid.

To address this challenge, we propose a novel NVS
method based on denoising diffusion models [12] to sam-
ple multiple, consistent novel views. We condition the dif-
fusion model on both the given view, and a geometrically
informed representation of the relative camera settings of
both the given and target views. The resulting model is able
to produce multiple plausible novel views by simply gener-
ating new samples from the model. Further, while the model
is trained to generate a single novel view conditioned on an
existing view and a target camera pose, we demonstrate that
this model can generate a sequence of plausible views, in-
cluding final views with little or no overlap with the starting
view. Fig. 1 shows the outputs of our model for several dif-
ferent starting views, with two samples of plausible sets of
views.

Existing NVS techniques have been evaluated primar-
ily in terms of generated image quality (e.g. with Fréchet
Inception Distance (FID) [11]) but have generally ignored
measuring consistency with the camera poses. Based on the
epipolar geometry defined by relative camera poses [10], we
introduce a new metric which directly evaluates the geomet-
ric consistency of generated views independently from the
quality of generated imagery. The proposed metric does not
require any knowledge of scene geometry, making it widely
applicable even on purely generated images. We evaluate
the proposed method on both real and synthetic datasets
in terms of both generated image quality and geometric
consistency. Further, previous work only evaluates perfor-
mance based on in-distribution camera trajectories. Here,
we evaluate the generalization ability of extant models and
our own by generating sequences based on novel trajecto-
ries (i.e. trajectories that differ significantly from those in
the training data).

2. Related Work
NVS has been long studied in computer vision (e.g.

[6, 18, 2]), and a full review is out of scope for this paper.
NVS methods can largely be categorized as those which fo-

cus on view interpolation, where generated views remain
close to the given views, and view extrapolation, where
the generated field-of-view may contain large amounts of
novel content. Many current view interpolation methods are
based on NeRFs [23, 46], which leverage neural-network
representations of radiance fields fit to the observed im-
ages. Others attempt to directly regress novel views [34]
from a set-encoded representation of the given views. Al-
ternatively, if depth information is available, images can be
back-projected into 3D, and missing regions inpainted [17].
We focus on view extrapolation NVS where significant por-
tions of the generated images are not visible in the inputs.

View extrapolation methods are largely built on prob-
abilistic approaches to capture the high degree of uncer-
tainty. GAUDI [3] learns a latent variable model of entire
3D scenes represented as a neural radiance field and then
estimates the latents given observed images. However, the
estimated scene representation often has a limited spatial
extent, which is in contrast to image-to-image methods [20]
which may extend indefinitely. GeoGPT [31] uses an au-
toregressive likelihood model to sample novel views condi-
tioned on a single source view. In contrast, we use a latent
diffusion model [25, 30], and investigate sequential view
generation. LookOut [28] extends GeoGPT [31] to generate
sequences of views along a trajectory while conditioning on
up to two previous views. To enforce consistency, LookOut
requires a post-processing step that uses generated outputs
as additional conditioning. In contrast, our model is con-
ditioned on a single view, and does not require additional
post-processing to achieve consistency. A closely related
method [43] also formulates a diffusion model for NVS;
however, it was only applied to simple scenes (i.e. isolated
objects) with constrained camera poses. Here, we consider
view extrapolation on real indoor scenes with complex ge-
ometry, and without constraints on camera motion.

Conditional generative models are a common approach
for view synthesis [31, 28], image editing [22], and video
prediction [19]. Recent years has seen significant progress
in generative modelling [16, 35, 12, 8, 7] with diffusion
models [30, 37, 12] showing promise in many tasks, e.g.
text-to-image generation [30, 33] and video modeling [14].
In our problem, we utilize latent diffusion models [25, 30],
which first compress high dimensional images with an au-
toencoder and discourage the diffusion model from expend-
ing capacity on modeling imperceptible details. The result-
ing model is more efficient, and uses less computation dur-
ing training and inference.

Generative methods and 3D capable models are currently
a very active research topic and there have been other highly
related concurrent works investigating pose-conditional dif-
fusion models. RenderDiffusion [1] uses an explicit 3D
tri-plane representation [4] for object-centric NVS, and re-
lies on score-distillation [26] for 3D regularization, rather
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than relying on multi-view training data. In contrast to our
method, RenderDiffusion focuses on object-centric NVS,
and utilizes a 3D representation with limited spatial extent,
while we focus on extrapolating scenes. The pose-guided
diffusion model from Tseng et al. [39] is very similar to our
method but uses a cascade diffusion model [13], and only
investigates performance on in-distribution trajectories. In
contrast, our method uses a latent diffusion model, and in-
vestigates generalization to out-of-distribution trajectories.

3. Technical Approach
3.1. Background: Diffusion Models

Here, we provide a brief introduction of diffusion models
to ground the following developments but refer interested
readers to a recent detailed review [44]. Diffusion mod-
els are a class of generative models where sampling is per-
formed by reversing a stochastic diffusion process [12, 37].
The forward process is fixed, typically Gaussian, and dis-
cretized into t ∈ 1, ..., T timesteps which are defined recur-
sively as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where x0 is a sample from the data distribution of interest,
q(x0), I is an identity matrix, and the values of βt are de-
pendent on the particular forward process used. Repeatedly
applying Eq. 1 adds Gaussian noise with xT approximately
normally distributed for large values of T . The reverse pro-
cess is parameterized by θ and takes the form of a Gaussian:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where the variance, Σθ(xt−1, t), is generally set as con-
stant. Here, xt−1 is expressed using ϵθ(xt, t) which is im-
plemented as a neural network:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtzt, (3)

where αt = 1− βt, ᾱt =
∏t

s=1 αs, and zt ∼ N (0, I). The
function ϵθ(xt, t) is referred to as the score function and
can be interpreted as a noise estimator which can be used
to denoise xt to produce xt−1. Training is performed using
denoising score matching [42]:

L = Ex0,t,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
. (4)

Samples can be drawn from the model by initializing xT

with Gaussian noise, and iteratively applying the learned
reverse process given in Eq. 2. The model is made condi-
tional by providing additional inputs to the score function,
ϵθ(xt, t). Due to the redundant and high dimensional nature
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Figure 2: An overview of our model with two streams cou-
pled with cross-attention. Our diffusion model is imple-
mented as a two-stream U-Net [32], where latent repre-
sentations for the given view, z1 (blue) and the generated
view at diffusion step t, z2,t (red), are processed by separate
streams consisting of spatial layers with shared parameters
(black). The latent of the given view, z1, is used to condi-
tion the score of z2,t, and the camera poses are c1 and c2.
Both streams are conditioned on the noise variance, which
is omitted for clarity. The two streams communicate via
cross-attention layers (green). The queries are augmented
with rays in a canonical reference frame, Rref. The keys,
K1 and K2, are augmented with ray information, R1 and
R2, respectively, which are each localized in the reference
frame of the opposite view, c2 and c1, illustrated on the top.
The inset on the middle-right illustrates the cross-attention
layer, where f1 and f2 are incoming features.

of images, it is beneficial to first reduce their dimensional-
ity. There are several ways to approach the dimensionality
reduction task [9, 13, 25, 30]. Here, we use a latent diffusion
model [25, 30] that first transforms an image, x, into a latent
representation, z, with a learned autoencoder, z = E(x).
The diffusion model is then learned in the latent space, z,
and images are recovered by using the corresponding de-
coder, x = D(z). Critically for us, the learned latent rep-
resentation can maintain the spatial structure of the image,
e.g. through the use of a convolutional encoder architecture.
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3.2. Novel View Synthesis with Diffusion Models

We now describe how we use a diffusion model to sam-
ple multiple plausible views in novel view synthesis. A con-
ditioning image, x1, is first mapped into the latent space,
z1 = E(x1), and then is used to condition the distribution
over the latent representation of the desired view:

pθ(z2|z1, c2,1), (5)

where c2,1 is the relative camera pose between the source
and target views. The distribution is estimated using a dif-
fusion model [37] with score function ϵθ(z2,t, z1, t, c2,1),
where z2,t is the value of z2 at diffusion step t. The novel
view, x2, is then decoded from the sampled latent represen-
tation: x2 = D(z2,T ).

To obtain views along a trajectory with our model we
generate them in sequence. Ideally, these would be sampled
using the distribution conditioned on all previously gener-
ated views:

zi+1 ∼ p(zi+1|z0, . . . , zi, ci+1,0, . . . , ci+1,i) . (6)

We approximate this by assuming a Markov relationship be-
tween views in the sequence. That is, given an initial image,
x0, samples in the sequence of length L are obtained by en-
coding the initial image, z0 = E(x0), and recursively sam-
pling from:

zi+1 ∼ p(zi+1|zi, ci+1,i), (7)

with the final image decoded from the sampled latent rep-
resentation: xL−1 = D(zL−1). We structure our model
specifically for NVS, by equipping it with a specialized rep-
resentation for relative camera geometry, and a two-stream
architecture.

Reasoning about novel views requires knowledge of ge-
ometric camera information. To provide this information
we augment the input of the score function with a represen-
tation of the camera rays for the conditioning and generated
views [45, 34]. Our camera model is defined by the intrinsic
matrix, K, and the extrinsics, c = [R|t], where R and t are
the 3D rotation and translation components, respectively.
Given the projection matrix of a camera, P = K[R|t], the
camera center is computed as τ = −R−1t. The direction
of the camera ray at pixel coordinates (u, v) is given by:

d̄u,v = R−1K−1
[
u v 1

]⊤
, (8)

which is then normalized to unit length to obtain du,v . Fi-
nally, before being used as conditioning for the diffusion
model, the ray direction is concatenated with the camera
center, ru,v = [du,v, τ ], and frequency encoded [40] :

R = [sin(f1πr), cos(f1πr), . . . , sin(fKπr), cos(fKπr)] ,
(9)

where K is the number of frequencies, fk are the frequen-
cies which increase proportionally to 2k, and the sinusoidal
functions are applied element-wise.

The standard architecture for a score function is a U-Net
architecture [32]. Here, we base our architecture on the
Noise Conditional Score Network++ (NCSN++) architec-
ture [37], with a variance exploding forward process. We
modify this backbone architecture to incorporate the ray
representation and the conditioned view. Inspired by video
diffusion models [14], we propose a two-stream architec-
ture using two U-Nets with shared weights to process the
novel view, x2,t, and conditioning view, x1. These net-
works communicate with one another exclusively via cross-
attention layers, which are inserted after every spatial at-
tention layer. We also augment the queries and keys of
the attention with camera pose information. The output of
the novel view stream is used as the output of the score
function, ϵθ(z2,t, z1, t, c2,1). In short, the model contains
a stream for each view, and couples them using augmented
cross-attention. Our architecture is illustrated in Fig. 2 and
more details are given in the supplementary material.

3.3. Thresholded Symmetric Epipolar Distance
(TSED)

Existing evaluation metrics for NVS primarily focus on
the view interpolation case and are based on notions of re-
construction (e.g. PSNR and LPIPS) or general image qual-
ity (e.g. FID); however, reconstruction metrics are inappli-
cable to view extrapolation, where there is no reasonable
expectation of a single ground truth output. General image
quality metrics are relevant for view extrapolation but exist-
ing measures like FID are insensitive to the accuracy of the
geometry. That is, generated images can completely ignore
the required camera pose and still achieve excellent FID.
To address this issue recent work [43] proposed a metric
that is sensitive to accurate camera geometry, but the evalu-
ation involves fitting a NeRF [23] to multiple generated im-
ages, and measuring consistency as the FID of unseen inter-
polated views; however, this evaluation is complex, exces-
sively expensive to compute, and difficult to interpret. Here,
we propose the Thresholded Symmetric Epipolar Distance
(TSED) as a new lightweight metric for measuring geomet-
ric consistency of NVS models.

Our metric is motivated by two consistency criteria.
First, the appearance of objects should remain stable be-
tween views, and should contain image features that can
be identified and matched. Second, these matched features
should respect epipolar constraints [10], given by the de-
sired relative camera pose. With the camera poses used to
condition the generation of the novel view, we compute the
fundamental matrix, F, which, given a feature point p in
one image, allows us to define the epipolar line p′⊤Fp = 0
on which its corresponding feature p′ should lie. We de-
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fine the symmetric epipolar distance (SED) of correspond-
ing points p and p′ as:

SED(p,p′,F) =
1

2

[
d(p′,Fp) + d(p,F⊤p′)

]
, (10)

where d(p′,Fp) is the minimum Euclidean distance be-
tween point p′ and the epipolar line induced by Fp.
(We note this definition of SED is similar in spirit but
slightly different than those found in some standard ref-
erences.) Given a set of feature correspondences, M =
{(p1,p

′
1), . . . , (pn,p

′
n)}, between two views (e.g. com-

puted with SIFT [21]) we define the pair of images to be
consistent if there are a sufficient number of matching fea-
tures, i.e. n ≥ Tmatches, and the median SED over M is less
than Terror. The median is chosen to mitigate the influence
of incorrect correspondences. The threshold Tmatches makes
the metric robust against image pairs with few matches as
this likely indicates a low-quality generation, assuming the
scenes are not largely textureless and the cameras do not
undergo an extreme viewpoint change. The use of epipolar
geometry here is key as it does not require knowledge of
the scene geometry or scale. It should be noted that using
epipolar geometry results in TSED having lower sensitiv-
ity to errors when most of the epipolar lines have a similar
orientation, because SED for a match is insensitive to er-
rors in 2D correspondence that parallel to the epipolar line.
An empirical sensitivity analysis of TSED is provided in
the supplementary material. Given a NVS model, we eval-
uate it by generating sequences of images and computing
which fraction of neighbouring views are consistent. We
use Tmatches = 10 and explore consistency as a function of
different values of Terror in our experiments.

4. Experiments
We evaluate and compare to extant methods with a focus

on both independent image quality and consistency across
views. We conduct an ablation study on CLEVR [15], a
synthetic dataset, to validate the various components of our
model (Sec. 4.2). We further demonstrate the capabilities
of our model using RealEstate10K [47], a large dataset of
real indoor scenes, Matterport3D [5], a small dataset of
building-scale textured meshes, and compare our method
with two strong baselines (Sec. 4.3): GeoGPT [31] and
LookOut [28].

4.1. Experimental Setup

For our experiments, we implement our model using a
latent diffusion model (LDM) [30] with a VQ-GAN [7] as
the latent space autoencoder, and a modified architecture
as described in the previous section. During inference, we
sample with ancestral sampling using a predictor-corrector
sampler [37]. Training requires pairs of images along with
camera intrinsics, and relative extrinsics. For evaluation

we use the CLEVR [15], RealEstate10K [47], and Matter-
port3D (MP3D) [5] datasets.

CLEVR [15] is a synthetic dataset consisting of scenes of
simple geometric primitives with various materials placed
on top of a matte grey surface. We repurpose the Blender
based pipeline to uniformly scatter the primitives in the cen-
ter of the scene in an 8 × 8 Blender unit area, and render
views from a slightly elevated position to prevent the cam-
era from being placed inside an object. The initial cam-
era position is chosen uniformly in the same area that the
objects are placed, and oriented towards the center of the
scene with a [−20, 20] degree jitter around the yaw axis. For
the second view, the camera is randomly translated [−1, 1]
units along the ground plane, and jittered [−20, 20] degrees
around the yaw axis. Images are rendered at a resolution
of 128 × 128. The left most panel in Fig. 4 provides an
example image.

RealEstate10K [47] consists of publicly available real
estate tour videos scraped from YouTube. The videos are
partitioned into disjoint sequences, and the camera param-
eters provided with the dataset were recovered using ORB-
SLAM2 [24]. The large amount of real, diverse, and struc-
tured environments available in RealEstate10K make it an
ideal and commonly used dataset for NVS evaluation, in-
cluding by the most relevant baselines [31, 28]. Following
previous work [28], the videos are obtained at 360p, center
cropped, and downsampled to 256× 256. One challenging
aspect of using this dataset is the limited diversity in camera
motions. Many of the sequences consists of a simple for-
ward motion that travels through and between rooms. This
gives us an opportunity to evaluate the generalization of the
model to novel camera motions not present in the dataset.

Matterport3D [5] consists of 90 indoor, building-scale
environments that have been scanned using RGB-D sensors,
and reconstructed as a textured mesh. Following previous
work [28], we convert the scenes into videos using an em-
bodied agent in the Habitat [36] simulation platform to nav-
igate between two randomly chosen locations in the scene,
and render each frame at a resolution of 256 × 256. For
each frame of the sequence, the agent chooses one of three
actions: move forward, turn left, and turn right. The limited
actions that the agent can perform greatly reduces the di-
versity of camera motions, which is even more limited than
those available in RealEstate10K.

For our evaluations, we compare our method with two
recent state-of-the-art generative scene extrapolation meth-
ods. GeoGPT [31] is an image-to-image NVS method, us-
ing a similar probabilistic formulation as our method. Four
variants were proposed with options to leverage monocular
depth maps provided by MiDaS [27], and perform explicit
warping of the source image. For our evaluation, we use
their model with implicit geometry and without access to
depth maps as this is most similar to our proposed method,
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Method Single view Last view
LPIPS ↓ PSNR ↑ FID ↓

Naive concat 0.121 23.24 79.57
Two-Stream SC - - 78.11

Two-Stream 0.112 24.20 76.85

Table 1: Reconstruction metrics and FID for single view
prediction and sequential prediction on CLEVR. Two-
Stream is our two stream model, Two-Stream SC is our two-
stream model sampled with stochastic conditioning, and
Naive concat is the naive variant where inputs are concate-
nated along the channel dimension. We evaluate the FID
on the last generated image of a trajectory. Stochastic con-
ditioning is only applicable with more than two generated
views, no results are provided for this method on single
view evaluations.
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Figure 3: Percent consistent image pairs computed with
TSED on different variants of our model, and sampling, on
CLEVR.

and can, similarly, be applied autoregressively to generate
sequences. LookOut1 [28] is an extension of GeoGPT with
a focus on improving the generation of novel views over a
long camera trajectory. The model takes up to two input
frames of a sequence, and uses the camera pose informa-
tion to explicitly bias the attention layers inside the model.
The final LookOut model is fine-tuned with a form of sim-
ulated error accumulation [20] to make the model robust to
errors present in its inputs during autoregressive generation.
In our evaluation, we consider two variants of LookOut,
one including this post-processing step (LookOut), and one
without (LookOut-ne). Note both GeoGPT and our model
do not include a post-processing step and could potentially
benefit from it. For MP3D, we use the publicly available
weights for LookOut.

In addition to our introduced consistency metric (Sec.
3.3), we evaluate the quality of the generated images using
standard image-centric metrics, specifically PSNR, LPIPS,
and FID. PSNR and LPIPS are standard full reference im-
age reconstruction metrics used to evaluate differences be-
tween generated and ground truth views. However, as the
camera view changes significantly the space of plausible

1An official public implementation is available without the pretrained
weights on RealEstate10k. After email correspondence with the authors,
we were unable to obtain the pretrained model. Reported results are based
on a retrained model using the authors’ publicly available code.

Source Markov Stochastic Cond. Naive Concat.

Figure 4: Samples of the sixth generated frame from the
initial image on the left. Note the small red cube visible in
the initial image disappears for the naive model.

views increases dramatically and reconstruction metrics like
PSNR and LPIPS become less relevant due to a lack of sin-
gle ground truth reference. While these metrics are not suit-
able for evaluating view extrapolation tasks [38, 29], they
can still provide some sense of consistency for short-term
generation, where uncertainty in the novel views is low. FID
[11] is a standard reference-free metric for generative meth-
ods which measures sample quality of a set of i.i.d. samples,
compared to a set of real samples. While FID does not pro-
vide a measure of consistency between images, it gives a
sense of the overall realism of the generated images.

4.2. Ablations

Here, we explore variations on model architecture and
sampling, and compare performance. First, we compare
our two-stream architecture with a naive conditional diffu-
sion model architecture, where both source and target views
are concatenated to create a six channel image, and the
model estimates the score for the target view. The results
are shown in Tab. 1, which shows clearly that our proposed
architecture is effective.

We also explore an alternative strategy for sampling tra-
jectories of novel views. Previous work [43] proposed a
heuristic for extending a single source view novel view dif-
fusion model to use an arbitrary number of source views
called stochastic conditioning. Given m possible source
views, each iteration of the diffusion sampling process is
modified to be randomly conditioned on one of the m views.
We consider this heuristic for generating sets of views, con-
ditioning on up to two of the previous frames. For these
ablations, we sample ten images from a trajectory orbiting
the center of the scene, using 100 different starting images.

We evaluate consistency using TSED; quantitative re-
sults are provided in Fig. 3, and qualitative results are shown
in Fig. 4. We find that the naive model can generate im-
ages where clearly visible objects may disappear, leading
to less consistency qualitatively and quantitatively. Sam-
pling with stochastic conditioning is qualitatively similar to
Markov sampling. Quantitatively, stochastic conditioning
is less consistent when Terror is high, which is the result of
fewer matches being made. In general, recovering corre-
spondences on CLEVR is challenging due to few distinct
features. Despite the challenges presented by this dataset,
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Method Short-term Long-term
LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑

R
ea

lE
st

at
e1

0K GeoGPT [31] 0.444 13.35 0.674 9.54
LookOut-ne [28] 0.390 14.19 0.688 9.65

LookOut [28] 0.378 14.43 0.658 10.51
Ours 0.333 15.51 0.588 11.54

M
P3

D LookOut [28] 0.604 12.76 0.739 10.60
Ours 0.504 14.83 0.674 13.00

Table 2: RealEstate10K and MP3D reconstruction metrics
with in-distribution trajectories. LookOut-ne refers to the
LookOut method without the final error accumulation train-
ing step.

Method Short-term FID ↓ Long-term FID ↓

R
ea

lE
st

at
e1

0K GeoGPT [31] 26.72 41.87
LookOut-ne [28] 30.38 72.01

LookOut [28] 28.86 58.12
Ours 26.76 41.95

M
P3

D LookOut [28] 80.97 132.36
Ours 73.16 100.99

Table 3: RealEstate10K and MP3D FIDs with in-
distribution trajectories. FID scores between generated im-
ages at short-term and long-term generations, and a fixed
set of randomly selected images from the test set.
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Figure 5: RealEstate10K TSED on in-distribution trajec-
tories. Consistency is measured as the average percent of
consistent image pairs in the generated sequences. We set
Tmatches = 10.

our metric is still able to provide a measure of consistency.
Overall, these results show that in contrast to previous work
[43], stochastic conditioning has no benefit to our approach
and may actually hurt performance. We also attempt to per-
form stochastic conditioning on RealEstate10K, but the im-
ages are qualitatively poor; results are available in the sup-
plementary material.

4.3. Generation with In-Distribution Trajectories

For our initial set of experiments on RealEstate10K and
MP3D, we consider the generation of novel views along
in-distribution trajectories. To generate representative, in-
distribution trajectories, given a start image, we randomly
sample camera trajectories from the test set, as done in pre-
vious work [28].
Image quality. We evaluate the reconstruction performance
of novel views using PSNR and LPIPS, across short-term
and long-term generations. Following previous work [28],
we only consider test sequences where at least 200 frames
are available, for RealEstate10K. This choice ensures that
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Figure 6: A visualization of our custom trajectories: Hop
(a), Orbit (b), and Spin (c). All cameras point towards a
pivot in the scene, and the dotted lines represent the optical
axes of the cameras. We use a coordinate space where x is
right, y is up, and z is backward.

there are ground truth images to evaluate against. Starting
with the first frame from the ground truth test sequences
as our initial images, we generate 20 images of a sequence
using 20 camera poses of the ground truth trajectory. The
camera poses are spaced ten frames apart with respect to the
sequence’s native frame rate, yielding a final camera pose
that is 200 frames from the initial view. Short-term eval-
uations are performed over the fifth generated image, and
long-term evaluations are performed on the final generated
image. Quantitative results for RealEstate10K are provided
in Tab. 2. Compared to the baselines, our method has the
lowest reconstruction error in all cases. We also evaluate
LookOut [28] without their additional post-processing step
(LookOut-ne), and find that it yields slightly worse recon-
struction results.

Similar to our full reference metric evaluation, we eval-
uate short-term and long-term quality with the no-reference
metric FID. To measure the generation image quality over
time, we evaluate the FID between generated views at a
specific time, and a fixed set of randomly selected views
from the test set. Tab. 3 presents quantitative results for
RealEstate10K. As seen from the table, all methods suf-
fer from some level of error accumulation, and yield worse
performance as the sequence length increases. We find
that LookOut produces images with significantly higher
FID without the final error accumulation step. For in-
distribution trajectories, our method generates images with
comparable quality as GeoGPT, and outperforms LookOut
in terms of FID. Notably, GeoGPT has the tendency to gen-
erate viewpoint-inconsistent images, where the semantics
remain the same but the content changes. This point is ex-
amined later using our viewpoint consistency metric.

In addition to RealEstate10K, we evaluate on MP3D
with a similar setup, except the images in the sequence
are neighboring frames since the rendered images from
MP3D differ by larger camera motions. We also provide
reconstruction-based results for MP3D in Tab. 2, and FID-
based results in Tab. 3, with LookOut as the baseline. Quan-
titatively, we find the results with MP3D are similar to
Realestate10K, where our method outperforms LookOut on
all standard metrics for in-distribution trajectories.
Consistency over long-term generations. We evaluate the

7100



2 4 6 8
Frame index

60

80

FI
D

RealEstate10K FID Hop

GeoGPT
LookOut

Ours
LookOut*

2 4 6 8
Frame index

60

80

FI
D

RealEstate10K FID Orbit
GeoGPT
LookOut

Ours
LookOut*

2 4 6 8
Frame index

60

70

80

FI
D

RealEstate10K FID Spin
GeoGPT
LookOut

Ours
LookOut*

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Terror(pixels)

0

50

100

Pe
rc

en
t o

f i
m

ag
e

pa
irs

 c
on

sis
te

nt

RealEstate10K TSED Hop
GeoGPT
LookOut

Ours
LookOut*

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Terror(pixels)

0

50

100

Pe
rc

en
t o

f i
m

ag
e

pa
irs

 c
on

sis
te

nt

RealEstate10K TSED Orbit
GeoGPT
LookOut

Ours
LookOut*

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Terror(pixels)

0

50

100

Pe
rc

en
t o

f i
m

ag
e

pa
irs

 c
on

sis
te

nt

RealEstate10K TSED Spin

GeoGPT
LookOut

Ours
LookOut*

Figure 7: RealEstate10K FID (top), and TSED (bottom), on custom trajectories. Sequences are sampled using three novel
trajectories designed to differ from the dominant modes in the dataset: Hop, Orbit, and Spin. LookOut* is a version of
LookOut without error accumulation post-processing. For TSED, we set Tmatches = 10 while sweeping over a range of Terror
values.
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Figure 8: MP3D FID (top), and TSED (bottom), on custom trajectories. Evaluation on MP3D is performed using the same
custom trajectories and TSED parameters as RealEstate10K.

percent of consistent pairs of neighboring views out of 20
total pairs using our proposed metric, TSED (Sec. 3.3).
Quantitative results for RealEstate10K are shown in Fig. 5,
where we evaluate the consistency over a range of values for
Terror, with Tmatches = 10. The average number of matches
per pair on RealEstate10K is 33, 87, and 94, for GeoGPT,
LookOut, and our method, respectively. The lower consis-
tency of GeoGPT is partly due to fewer matches per im-
age pair. Samples from LookOut have a comparable num-
ber of matches to our method, suggesting that the inconsis-
tency is due to larger violations of the epipolar constraints.
Compared to the baselines, our method can generate bet-
ter views with consistent appearances, and motion that re-
spects epipolar constraints. LookOut performs similarly on
our consistency metric with and without error accumulation
training. We also compare LookOut and our method using
TSED on MP3D, shown in Fig. 5, and find that our method
is more consistent on this dataset as well.

4.4. Generation with Novel Trajectories

Previous work limited evaluation to the ground truth tra-
jectories in the RealEstate10K and MP3D datasets. Conse-
quently, given the biased nature of the trajectories, this may
lead to overfitting. Here, we explore the generalization ca-

pability of both our method and the baselines by evaluating
on out-of-distribution trajectories.

As mentioned in Section 4.1, the camera motions avail-
able in RealEstate10K, and MP3D are limited. We sample
novel views over three manually defined trajectories distinct
from those found in the training data: (i) a 90-degree orbit
around the azimuth (Orbit), (ii) a vertical orbit along a semi-
circular path (Hop), and (iii) a translation along a circular
path parallel to the ground plane (Spin). These trajectories
are illustrated in Fig. 6.

As ground truth images are not available, we evalu-
ate performance using the reference-free metrics, FID and
TSED. Quantitative results for RealEstate10K are summa-
rized in Fig. 7. In terms of FID, our model’s generation
quality degrades faster than GeoGPT but slower than Look-
Out. Qualitative results such as those shown in Fig. 9 sug-
gest that when the baseline methods fail, they favour gen-
erating good-quality images, even though they may not be
photometrically consistent with the other views. The con-
sistency of our generated sequences, evaluated using TSED,
is higher than the baselines on all trajectories. Between the
three custom trajectories, Hop is the most novel as it con-
tains a vertical motion that is rare in RealEstate10K, while
Spin is the closest to the training trajectories, which contain
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Figure 9: Samples from the Orbit trajectory. Each row presents a generated image sequence from our method and the
baselines, GeoGPT [31] and LookOut [28]. The columns, are sampled views along the trajectory with the left most image
being given. Notice both baselines give the impression of an orbiting camera motion, but parts of the visible scene in
both views change between frames, i.e. the cabinet under the sink. Images generated from LookOut tend to lose details in
subsequent frames. Our method tends to maintain photometric consistency across the sequence.

many forward and backward motions. Interestingly, Look-
Out without error accumulation performs better in the Hop
trajectory on TSED. This suggests that the error accumula-
tion post-processing may trade off generalization for higher
image quality. Overall, our method provides the best trade-
off of photometric quality and consistency.

Fig. 8 shows quantitative results on MP3D comparing
LookOut, and our method. LookOut is significantly less
consistent than our method in terms of TSED, especially on
Hop. Qualitative inspection reveals that LookOut general-
izes poorly to our custom trajectories, and often does not
generate images that respect the requested camera motion.

5. Conclusion and Discussion

We addressed the most challenging setting for NVS, i.e.
generative view extrapolation from a single image. Our
method exploits recent advancements in diffusion-based
generative models to sample multiple consistent novel
views. Empirically, we presented a finer-grained evaluation
of the task compared to previous studies. In particular,

reported results of previous work focus on generated image
quality of each image but ignore geometric consistency.
Here, we introduced a new metric based on epipolar
geometry, which directly evaluates geometric consistency
of generated views independent of image quality. Based on
both new and standard metrics, we showed that our method
generates images that are more consistent than current
methods, while maintaining high image quality. Further,
on camera trajectories that are atypical of the training data,
we showed that our method generates images that are more
consistent than the baselines.
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