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Figure 1. A gallery of generated results by our Point-UV diffusion. Our method is capable of processing meshes of any genus, generating

diversified, geometry-compatible, and high-fidelity textures.

Abstract

In this work, we focus on synthesizing high-quality tex-

tures on 3D meshes. We present Point-UV diffusion, a

coarse-to-fine pipeline that marries the denoising diffu-

sion model with UV mapping to generate 3D consistent

and high-quality texture images in UV space. We start

with introducing a point diffusion model to synthesize low-

frequency texture components with our tailored style guid-

ance to tackle the biased color distribution. The derived

coarse texture offers global consistency and serves as a

condition for the subsequent UV diffusion stage, aiding in

regularizing the model to generate a 3D consistent UV tex-

ture image. Then, a UV diffusion model with hybrid con-

ditions is developed to enhance the texture fidelity in the

2D UV space. Our method can process meshes of any

genus, generating diversified, geometry-compatible, and

high-fidelity textures. Code is available at https://cvmi-

lab.github.io/Point-UV-Diffusion.

†: Corresponding authors

1. Introduction

Texturing 3D meshes is a fundamental task in computer

vision and graphics. It enhances the visual richness of

3D objects, thereby facilitating their application in various

fields such as video games, 3D movies, and AR/VR tech-

nologies. However, generating high-quality textures can

be daunting and time-consuming, often requiring special-

ized knowledge and resources. As such, there is a pressing

need for an efficient approach to automatically create high-

quality textures on 3D meshes.

Despite the substantial progress the community has

made in 2D image synthesis and 3D shape generation using

GANs [13, 20, 44, 11] or diffusion models [34, 36, 35, 19],

crafting realistic textures on mesh surfaces remains chal-

lenging. One major difficulty stems from the need for suit-

able 3D representations for texture synthesis. Early ap-

proaches investigate the use of voxels [5, 45, 6] or point

clouds [10] and synthesize point/voxel colors. However,

they can only afford to synthesize low-resolution results

with low-fidelity textures due to memory and model com-

plexity constraints. In response, Texture Fields [29] adopts

an implicit representation with the potential to synthesize
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high-resolution textures, but still could not yield satisfac-

tory results as shown in Figure 2 (a): over-smoothed results.

Most recently, Siddiqui et al. [38] propose to parameterize

the shape as tetrahedral meshes and introduce tetrahedral

mesh convolution to enhance local details. Albeit improv-

ing results, tetrahedral parameterization inevitably destroys

geometric details of the input mesh and thus cannot faith-

fully preserve the original structure. As shown in Figure 2

(b), the delicate structures of the chair’s back are absent.

Moreover, the generative models utilized in these methods

are limited to GANs [29, 38] and VAEs [29, 12]. The more

advanced diffusion model, which could potentially open up

new avenues for high-quality texture generation, remains

insufficiently explored.

In this paper, we delve into a novel texture representa-

tion based on UV maps and investigate the advanced dif-

fusion model for texture generation. The 2D nature of the

UV map enables it to circumvent the cost of high-resolution

point/voxel representations. Besides, the UV map is com-

patible with arbitrary mesh topologies, thereby preserving

the original geometric structures. However, while promis-

ing, direct integration of the UV map representation with

a 2D diffusion model presents challenges in synthesizing

seamless textures, leading to severe artifacts, as shown in

Figure 2 (c). This occurs because the UV mapping process

fragments the continuous texture on the 3D surface into iso-

lated patches on the 2D UV plane (see Figure 3).

To this end, we introduce Point-UV diffusion, a two-

stage coarse-to-fine framework consisting of point diffu-

sion and UV diffusion. Specifically, we initially design a

point diffusion model to generate color for sampled points

that act as low-frequency texture components. This model

is equipped with a style guidance mechanism that allevi-

ates the impact of biased color distributions in the dataset

and facilitates diversity during inference. Next, we project

these colorized points onto the 2D UV space with 3D coor-

dinate interpolation, thereby generating a coarse texture im-

age that maintains 3D consistency and continuity. Given the

coarse textured image, we develop a UV diffusion model

with elaborately designed hybrid conditions to improve the

quality of the textures (see Figure 2 (ours) and Figure 1).

In short, our contributions are as follows: 1) We propose

a new framework for texture generation for given meshes.

Our representation can handle meshes with arbitrary topol-

ogy and is able to faithfully preserve geometric structures.

2) To the best of our knowledge, we are the first to train

a diffusion model specifically for mesh texture generation.

Our coarse-to-fine framework allows us to enjoy the effi-

ciency of 2D representation while enhancing 3D consis-

tency. 3) We compare our approach with multiple meth-

ods in unconditional generation and achieve state-of-the-art

results. Furthermore, we demonstrate that our method can

be easily extended to scenarios with text-conditioning and

Figure 2. Comparisons with different methods. Our generative

results (a) possess high-quality details, (b) faithfully preserve the

mesh structure, and (c) are better consistent with the given shape,

compared with Texture Fields [29], Texturify [38] and 2D diffu-

sion [16], respectively.

Figure 3. Illustration of UV mapping process. It establishes con-

nections between the 2D texture map and the surface appearance

of 3D shape.

image-conditioning.

2. Related Work

Texture generation. Early works [41, 43, 6] propose us-

ing voxels to represent colors. However, due to a cubic in-

crease in memory usage and computational cost with ris-

ing resolution, these methods produce only coarse, low-

resolution textures. For meshes, recent work in texture

generation [38] predicts the color for each face, but the

representation capacity remains largely constrained by the

mesh’s resolution. Another set of works [30, 42, 26, 12]

leverage UV mapping, but they require either spherical pa-

rameterization or part segmentation and, therefore, are con-

fined to handling low-genus shapes. Other works [32, 14]

rely on image exemplars, while our approach focuses on un-

conditional generation. Recently, implicit functions attract

increasing attention for generative tasks [11, 31, 39, 3, 9,

37, 29, 22]. Most of this research centers on generating 3D-

aware images [39, 3, 9, 37], rather than synthesizing tex-

tures for given 3D meshes. Texture Fields [29] represents
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the most similar work to our task, which, however, tends to

produce over-smoothed results.

Some methods focus on test-time optimization for gen-

eration tasks. For instance, Text2Mesh [24] employs

CLIP [33] to design a loss function. This function stylizes a

3D mesh to align with a target text prompt, predicting both

the color and displacement for each mesh vertex. More re-

cently, DreamFusion [31] and Magic3D [21] leverage pre-

trained stable diffusion [35] for score distillation, creating

either NeRF [25] or a 3D mesh. However, these approaches

often demand extensive optimization time or necessitate al-

terations to the existing mesh geometry [24]. In this paper,

our objective is to generate textures for specified full-3D

meshes with arbitrary topology. This goal entails two fun-

damental requirements: 1) preserving the original mesh’s

geometric structure; 2) producing a 3D texture representa-

tion exportable as either vertex color or a uv-texture-image,

instead of merely generating/rendering multi-view or 3D-

aware images.

Diffusion models for 3D generation. In addition to 2D

image generation, diffusion models recently gain signifi-

cant attention in 3D generation, leading to many related

works [49, 18, 19, 28, 31, 47, 1]. For instance, Zhou et

al. [49] introduce point-voxel diffusion for point cloud

generation and completion. Hui et al. [19] and Hu et al.

[18] suggest a compact wavelet domain representation for

shapes, enabling higher-quality shape creation via diffusion

models. Nichol et al. [28] present Point-E, a system that

uses a text-conditional strategy to produce colored 3D point

clouds. This approach enables an efficient synthesis of in-

tricate 3D shapes from textual prompts. Yet, this system

yields lower-resolution point clouds, often missing detailed

shapes and textures. In this work, we develop a brand new

3D diffusion model for texture image synthesis, which al-

lows high-fidelity and 3D-consistent texture generation.

3. Preliminaries

3.1. Denoising diffusion model.

Diffusion model [40, 16] is a kind of likelihood-based

generative model that has gained significant attention re-

cently. It learns the data distribution q(x0) by progres-

sive denoising from a prior Gaussian distribution. Given

a sample from the data distribution x0 ∼ q(x0), a fixed for-

ward process q (x1:T | x0) =
∏T

t=1 q (xt | xt−1) is used

to perturb the data with Gaussian kernels q (xt | xt−1) :=
N (√

1− βtxt−1, βtI
)
, producing increasingly noisy latent

variables {x1, x2, ..., xT }. Then, a parameterized Markov

process pθ (x0:T ) = p (xT )
∏T

t=1 pθ (xt−1 | xt) with tran-

sition kernel pθ (xt−1 | xt) := N (
μθ (xt, t) , σ

2
t I
)

is opti-

mized through maximizing a variational lower bound of log

data likelihood, which essentially targets to match the joint

distribution q (x0:T ):

Eq(x0) [log pθ (x0)] ≥ Eq(x0:T )

[
log

pθ (x0:T )

q (x1:T | x0)

]
. (1)

After training, novel samples can then be generated via

iterative sampling from pθ (xt−1 | xt) following:

xt−1 = μθ (xt, t) +
√

βtz, z ∼ N (0, I).

Diffusion models have shown impressive capabilities in

generating high-quality and diverse content. This paper pro-

poses a texture generation framework based on diffusion

model.

3.2. UV mapping and challenges.

UV mapping is a method of surface parameterization that

translates a 3D surface into a 2D image, effectively creating

a 2D coordinate system known as a UV map for a polyg-

onal mesh S. This is achieved by explicitly assigning UV

coordinates to each vertex of the mesh. Further, an arbi-

trary surface coordinate on the mesh can be mapped to its

2D coordinate through barycentric interpolation:

(u, v) = f(p) f : S → Ω, (2)

where f represents the UV mapping process.

As illustrated in Figure 3 “UV warping”, we can apply

textures to the mesh surface by generating a high-resolution

texture image in the UV space. Besides texture, we can also

create this kind of 2D map for surface normals and point

coordinates. Our objective is to generate a high-quality 2D

UV texture image of the given mesh. However, the map-

ping process requires cutting the continuous texture on the

3D shape into a series of individual patches in the 2D UV

plane, as depicted in Figure 3. This fragmentation makes

it challenging for the generative model to directly learn the

3D adjacency relationships of the patches within the 2D tex-

ture UV map. Consequently, this can lead to discontinuity

and inconsistency issues when the generated texture map is

applied back to the 3D mesh surface. As shown in Figure 2

“2D Diffusion”, the diffusion model generates inconsistent

textures and suffers from discontinuity issues.

4. Method

The challenge mentioned in Section 3.2 motivates us to

propose a coarse-to-fine framework for texture image syn-

thesis, namely Point-UV diffusion, illustrated in Figure 4.

To start, we design a 3D point diffusion model to colorize

a set of sampled points on the mesh surface, as shown in

Figure 4 (Top). This stage leverages the 3D topology for

predicting low-frequency colors on the mesh, without being

affected by the discontinuity of the UV map. Based on the

color components generated by the coarse stage, we then
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Figure 4. The overview of our Point-UV-diffusion framework. (Top) The coarse stage first samples a point cloud on the mesh surface,

and then predicts the color for each point using a 3D diffusion model conditioned on shape features including surface normal, mask, and

coordinates. Then the points are mapped to the 2D UV map and the remaining uncolored points are filled up by tri-linear interpolation

based on the 3D coordinates. (Bottom) The fine stage predicts high-quality textures with a 2D diffusion model conditioned on the shape

attributes and the coarse texture image.

establish a 2D diffusion model in the UV space. This en-

hances the fidelity of the generated texture, as depicted in

Figure 4 (Bottom).

4.1. Coarse Stage: Point Diffusion

In the coarse stage, we begin by executing farthest point

sampling (FPS) on the mesh surface, deriving a point set

consisting of K points. These points are defined by their

coordinates zcoord and colors z0. During training, a forward

diffusion process degrades the clean colors z0, transforming

them into a noisy state zt. The noise level is dictated by the

time step t, where t ∈ {0, 1, ..., T}.

Our network is trained to reverse this diffusion pro-

cess, aiming to denoise zt back to its original clean colors.

This denoising network is informed by three pre-computed

maps: a coordinate map xcoord, a normal map xnormal, and a

mask map xmask (details in Section 3.2). Unless stated oth-

erwise, these conditions concatenate along the channel di-

mension, culminating in what we term the shape map xshape:

xshape = ([xnormal,xmask,xcoord]) . (3)

Our network architecture is constructed upon PVCNN [23],

drawing similarities to point-voxel diffusion [49]. However,

we introduce slight modifications to amplify the integration

of global shape information, contrasting with the approach

in [49] which primarily relies on point coordinates. Ini-

tially, we employ a lightweight shape encoder Eφ to extract

a global shape embedding fg from xshape. This embedding

is subsequently fed into the 3D network G1
θ1

along with zt,

zcoord, and t to predict the color ẑ0:

fg = Eφ (xshape) ,

ẑ0 = G1
θ1
([zcoord, zt, fg, t]) .

(4)

Style guidance. We observe that the synthesized colors

are largely influenced by the predominant colors within the

dataset (for instance, textures in the ShapeNet “chair” cat-

egory are typically white, pure magenta, or wood-colored),

leading to a lack of diversity in the outputs. To address this

bias and promote color diversity, we introduce a style guid-

ance mechanism. This is achieved by flattening each z0 into

a unidimensional vector, followed by employing PCA to ex-

tract the principal component coefficients, thus reducing the

dimensionality of z0. Subsequently, K-means clustering is

utilized to assign a style label to each z0. As depicted in

Figure 5, shapes within a particular cluster exhibit similar

color styles. During training, we provide the network with

an additional style label zstyle as a condition, which is re-

ferred to as style guidance:

ẑ0 = G1
θ1
([zcoord, zt, fg, t, zstyle]) . (5)

In this way, we can guide the network to predict the desired

color during inference by providing a certain style condi-
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tion, thereby alleviating the biased color issue.

Coarse texture image. With the colored point clouds, we

then project them onto the 2D UV space based on the pre-

calculated UV mapping. Following this, we perform KNN

interpolation based on the 3D coordinates to assign colors to

the remaining uncolored pixels, thereby generating a coarse

texture image xcoarse for the given mesh. This coarse tex-

ture image offers a coherent base color initialization and

functions as a conditional element to guide the high-fidelity

texture generation in the second stage, helping to avoid dis-

continuity caused by UV mapping.

4.2. Fine Stage: UV Diffusion

To further refine the coarse texture image, we design a

fine stage using 2D diffusion in the UV space, as depicted

in Figure 4 (Bottom). In addition to the conditions used in

the coarse stage, we incorporate the coarse texture image

xcoarse as an additional condition. We apply a 2D U-Net

G2
θ2

combined with self-attention modules to learn the high-

quality texture image x̂0, from a noisy texture image xt:

x̂0 = G2
θ2
([xshape,xt,xcoarse, t]) . (6)

Hybrid condition. During training, we employ FPS on

the ground-truth texture image, x0, followed by interpo-

lation to simulate the coarse texture image, xcoarse. How-

ever, in joint cascaded testing involving both stages, we

note that the output quality of x̂coarse from the first stage

doesn’t always align flawlessly with the quality of xcoarse.

Such mismatches can influence the performance of the sub-

sequent stage. To address this, we introduce a hybrid

conditioning method aimed at narrowing this discrepancy.

Firstly, we create a smooth texture image xsmooth (see Fig-

ure 6), inspired by the blur augmentation described in [17]

for cascaded diffusion models. In particular, we segment

the mask map into multiple discrete regions using four-

connectivity detection, then perform average color pooling

within each region based on its connectivity. After this pro-

cedure, xsmooth maintains merely the regional color, ensur-

ing more consistent alignment across both training and test-

ing phases. Then, we combine xcoarse with xsmooth, using a

certain probability phybrid during training. Thus, the network

is forced to be capable of generating textures even when

adopting a weaker condition xsmooth in the fine stage during

inference. Considering that the diffusion model first gen-

erates low-frequency information and then higher one [8],

we also explore a condition-truncated sampling, as detailed

discussed in Section 5.4, where we condition both maps for

generation during the initial time steps and then exclusively

utilize the smooth map for the remainder of the generation.

Figure 5. Illustration of samples across various clusters. Shapes

within a particular cluster exhibit analogous color styles. However,

there exists an imbalance in the quantity of shapes among different

clusters, leading to challenges in unbiased synthesis.

Figure 6. Varieties of texture images. (a) Original texture image

enriched with high-frequency details, (b) Coarse texture image,

and (c) Smooth texture image.

5. Experiments

5.1. Datasets and Implementation Details

We conduct experiments across four categories of the

ShapeNet dataset [4], namely, chair, table, car, and bench.

Before training, we use an open-source UV-Atlas tool [46]

to generate the UV map and pre-process the dataset to ob-

tain the shape maps and ground-truth texture images. We

sample K = 4096 points in our coarse stage and synthe-

size a texture image in the UV space with a resolution of

512 × 512 for the fine stage. For training the diffusion

models, akin to [1], we predict the clean signals. This

approach provides more stable training than predicting the

noise component as recommended by [16]. We employ the

cosine noise scheduling [27] ranging from 0.0001 to 0.02
over 1, 024 time steps for both stages. In the fine stage,

we leverage the noise scaling strategy from [7] and also in-

corporate a rendering loss. Specifically, we randomly select

four views and render the mesh using the predicted UV map

and the ground-truth UV map to produce 1024 × 1024 im-

ages. Subsequently, we crop 224× 224 patches from these

images and compute the corresponding L1 loss. For the hy-

brid condition in the fine stage, we use phybrid = 0.3 and

sweep over condition-truncated time tc (see Figure 12).

Compared methods. We compare our method with state-

of-the-art approaches, including Texturify [38], Texture
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Figure 7. Our texture synthesis results in different categories. The results on chairs, tables, cars, and benches demonstrate that our

approach can generate natural, vivid, and diverse textures, even though the given 3D shapes are challenging, such as cutouts on the bench.

Fields [29], and PVD [49], in the context of unconditional

texture generation. PVD was originally designed for point

cloud generation instead of texture generation, so it can-

not be directly compared with our approach. To facilitate

comparison, we modify this framework to learn RGB val-

ues from the sampled point cloud. This extension, referred

to as “PVD-Tex”, serves as a baseline for directly learning

texture in the point space using the diffusion model.

5.2. Unconditional Texture Generation

Gallary. First, we showcase our texture generation results

for each category without additional conditions. The results

in Figure 7 and Figure 1 demonstrate the remarkable perfor-

mance of our method, which is able to generate appealing

textures with fine details and preserve the geometric struc-

tures. Note that our method is compatible with meshes of

diverse topology and intricate geometric details.

Qualitative comparisons. As depicted in Figure 8, our

approach excels at generating high-quality textures while

maintaining the geometric intricacies of the input mesh.

Firstly, the results of Texture Fields [29] appear deficient in

high-frequency details. Additionally, while PVD-Tex [49]

is able to produce spatially varying colors to some extent

(e.g., the car in Figure 8), it falls short in synthesizing in-

tricate high-frequency details. Lastly, even though Textu-

rify [38] demonstrates an ability to generate finer textures,

it compromises on preserving slender structures (i.e. chair).

Quantitative comparisons. To quantitatively compare

with existing works, we follow [38] and assess the genera-

tion quality using Frechet Inception Distance (FID)[15] and

Kernel Inception Distance (KID)[2], metrics that are widely

used for evaluating image generation models. To this end,

we render 512 × 512 images from each generated textured

mesh and ground-truth textured mesh using four distinct

camera views. Table 1 presents the quantitative compar-

isons with current approaches, revealing that our method

surpasses existing works.

5.3. Conditional Texture Generation

In addition, we demonstrate the capability of our frame-

work to synthesize textures conditioned on either text

prompts or a single-view image. We conduct our experi-

ments on the chair and table categories. For the text condi-

tion, we utilize text-shape pairs as provided in [6] (with ad-

ditional corrections for text accuracy). For the image con-

dition, we randomly render a view from the ground-truth

mesh. To infuse the network with condition-specific in-

formation, we use the pre-trained vision-language model

CLIP [33] to extract the corresponding embedding from

either the image or the text. This embedding is then fed

into a simple MLP to incorporate the information into the

diffusion model as a condition for both training and in-

ference. As depicted in Figure 9, our method succeeds

in generating textures that align well with the given text

descriptions or images. We also compare our approach

with Text2Mesh [24], a test-time optimization method.

Text2Mesh takes around 10 minutes per instance, while

ours only requires 30 seconds. Importantly, to adapt to

our task which requires preserving the mesh geometry, we

freeze the geometry deformation branch of Text2Mesh to

generate only colors. As shown in Figure 10, Text2Mesh
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Figure 8. Qualitative comparisons with existing works. Given

pure 3D shapes, Texturify [38] generates textures on the surface

of 3D shape but tends to damage the topology; Texture fields [29]

and PVD-Tex [49] produce textures with limited details. On the

contrary, our approach faithfully preserves topology and produces

realistic appearances.

is bound by vertex resolution, while our method can deliver

detailed visuals even on low-resolution meshes, offering a

distinct advantage in graphics.

5.4. Ablation Studies

Coarse-to-fine diffusion. To manifest the effectiveness

of our coarse-to-fine diffusion strategy, we conduct exper-

iments on two baselines “w/o coarse stage” and “w/o fine

stage”. The “w/o coarse stage” configuration indicates that

we directly generate the UV texture image using the fine

stage, bypassing the initialization from the coarse stage.

The “w/o fine stage” configuration signifies the result of the

coarse stage, after assigning colors to the uncolored pix-

els using KNN interpolation. In both scenarios, the model

produces inferior outcomes relative to our full model, as

shown in Table 2 and Figure 11. Absent the coarse stage, the

generated result suffers from noticeably inconsistent colors.

Without the fine stage, the results are over-smoothed.

Hybrid condition. As shown in Table 2 and Figure 11

“coarse condition”, the fine stage cannot generate high-

quality textures when it is exclusively conditioned on the

A brown and 
black 
geometric 
patterned 
chair

Wood chair 
with cream 
cushion in half 
moon shape and 
slit at the back

Rolling table 
with blue 
shelves

Small brown 
wooden end 
table with 
shelf on the 
bottom

A wooden chair 
with straight 
armrests and a 
seat like a 
boardwalk

A coffee 
table made 
of concrete 
bricks

Figure 9. Results of conditional texture generation. Our method

is adaptable to craft textures guided by text descriptions (rows 1-3)

or single-view images (rows 4-6).

brown color in 
rectangle shape 
in wooden 
material with 
four leg desk

Figure 10. Comparison with Text2Mesh. We freeze the geometry

deformation branch of Text2Mesh to adapt to our task. Ours can

generate high-frequency details for low-resolution mesh.

coarse map. Further, the generated quality remains un-

satisfactory if we apply a hybrid condition entirely dur-

ing training (i.e., phybrid = 1.0), as shown in “phybrid =
1.0”. We attribute this to the network’s propensity to de-

pend solely on the coarse map during training and gener-

ation. In contrast, our full model (i.e., hybrid condition

with phybrid = 0.3) achieves significant improvement both
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Chair Car Table Bench

Methods FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓
Texture Fields [29] 24.24 1.07 156.38 13.64 68.96 4.20 62.71 2.96

Texturify [38] 27.80 1.32 73.16 4.71 - - - -

PVD-Tex [49] 15.52 0.62 59.47 3.74 16.12 0.55 28.94 0.39

Ours 9.88 0.22 26.89 0.68 9.63 0.15 23.09 0.15

Table 1. Quantitative comparisons with existing works. Ours outperforms other approaches on both FID [15] and KID (×10
2) [2] .

Figure 11. Ablation studies. Without our two-stage generation

pipeline or hybrid condition designs, the generated results are in-

consistent with the 3D shape or lack high-frequency details.

FID ↓ KID ↓
w/o fine stage 17.88 0.76

w/o coarse stage 15.11 0.49

coarse condition 14.93 0.56

phybrid = 1.0 15.25 0.59

Ours 9.88 0.22

Table 2. Ablation studies. This table shows the effectiveness of

each component in our proposed method.

qualitatively and quantitatively, as presented in Table 2 and

Figure 11 “ours”. Furthermore, we also sweep over the ef-

fect of condition-truncated time tc for inference. As Fig-

ure 12 shows, tc = 0.4 strikes a sweet point. The model

utilizes information from both conditions maps to better

generate low-frequency components during the first 40% of

the sampling timesteps. After that, the coarse map xcoarse

is dropped, and the model further focuses on fine-grained

detail generation without relying on the coarse map.

Style guidance. The style guidance is aimed at address-

ing the issue of insufficient diversity due to color distribu-

tion bias in the dataset. As a result, we do not utilize FID or

KID for evaluation since they evaluate the distribution sim-

Methods Preference↑ LPIPS↑
Ours 49.8% 0.083

Texturify [38] 15.9% 0.086

PVD-Tex [49] 29.2% 0.029

Texture Fields [29] 5.1% 0.005

Table 3. LPIPS and user study. This table shows the average

LPIPS and preference via user study in the chair category.

ilarity between generated results and ground truth. How-

ever, the ground-truth distribution shows a strong bias to-

wards particular colors, making these metrics inappropriate

for assessing generative texture diversity. In contrast, we

adopt LPIPS [48] to measure the pairwise similarity among

five textures generated by our method given the same in-

put mesh, where a larger diversity in textures will lead to a

higher LPIPS value. In Figure 13, we report the quantita-

tive results for 500 shapes. Our approach achieves a higher

LPIPS in most of the evaluated cases, indicating better di-

versity. Besides, as shown in Figure 14, we present the re-

sults of generating three textures randomly for the shapes

without and with style guidance. In the latter case, we uni-

formly sample three style labels as style inputs. It is evi-

dent that without style guidance, the generated textures are

nearly identical, and the color styles of different shapes tend

to be similar. With the introduction of style guidance, how-

ever, the diversity of colors has significantly increased. We

also conduct a comparison with other methods in terms of

diversity, as well as a quality assessment through user stud-

ies, as shown in Table 3.

6. Discussion, Limitations, and Conclusions

This paper presents Point-UV diffusion, a brand-new

framework that employs a coarse-to-fine pipeline to gen-

erate textures for 3D meshes. We begin with a 3D diffu-

sion model to synthesize low-frequency texture components

from point clouds, which maintain 3D consistency. We then

refine the textures using a 2D UV-space diffusion model.

Our method is compatible with meshes with arbitrary topol-

ogy and can faithfully preserve the geometry structure. We

further demonstrate the flexibility of our framework by ex-

tending it to conditional generative models.

Despite its merits, our method has inherent limitations.

Similar to other methodologies relying on 3D data for train-
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Figure 12. Examination of condition-truncated time. The hori-

zontal axis denotes the percentage of time points when the coarse

texture image is conditioned during inference. The left vertical

axis indicates the FID value, while the right vertical axis shows

the KID value (×10
2).

Figure 13. Diversity measurement. Utilizing style guidance leads

to larger LPIPS scores, indicating enhanced generation diversity.

ing, our technique is upper-bounded by the scope and diver-

sity of current 3D datasets. This restriction poses challenges

in generating textures that parallel the depth of effects seen

in 2D image synthesis. Moreover, our method’s efficacy re-

lies on the quality of UV mapping. Our approach faces dif-

ficulties in rendering high-quality results for meshes where

the UV mapping produces excessive fragmented cuts, re-

sulting in fragmented artifacts. This phenomenon is com-

monly observed in the car category, as shown in the Fig-

ure 15. We believe the emergence of larger and more di-

verse 3D datasets would be helpful for generating superior-

quality textures. Further advancements in UV parameteri-

zation would also be beneficial in augmenting our method’s

consistency.
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