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Abstract

Daily objects commonly experience state changes. For
example, slicing a cucumber changes its state from whole
to sliced. Learning about object state changes in Video
Object Segmentation (VOS) is crucial for understanding
and interacting with the visual world. Conventional VOS
benchmarks do not consider this challenging yet crucial
problem. This paper makes a pioneering effort to introduce
a weakly-supervised benchmark on Video State-Changing
Object Segmentation (VSCOS). We construct our VSCOS
benchmark by selecting state-changing videos from existing
datasets. In advocate of an annotation-efficient approach to-
wards state-changing object segmentation, we only annotate
the first and last frames of training videos, which is different
from conventional VOS. Notably, an open-vocabulary set-
ting is included to evaluate the generalization to novel types
of objects or state changes. We empirically illustrate that
state-of-the-art VOS models struggle with state-changing
objects and lose track after the state changes. We analyze
the main difficulties of our VSCOS task and identify three
technical improvements, namely, fine-tuning strategies, rep-
resentation learning, and integrating motion information.
Applying these improvements results in a strong baseline
for segmenting state-changing objects consistently. Our
benchmark and baseline methods are publicly available at
https://github.com/venom12138/VSCOS.

1. Introduction
Object state changes are common in the real world. For

example, when slicing a cucumber, the cucumber’s state
changes from whole to sliced. Humans learn commonsense
knowledge about actions and associated objects by memo-
rizing the state change in a certain time period [12]. Un-
derstanding state changes in visual perception tasks, for
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Figure 1. We propose Video State-Changing Object Segmentation
(VSCOS), which is significantly more challenging than conven-
tional VOS. State-of-the-art VOS model XMem [2] performance
drops from 89.5 J&F (Jaccard & F-Score) to 66.7 J&F on our
benchmark, because it fails to associate drastically changing object
appearance. Best viewed in color with zoom.

example, video object segmentation (VOS), is also crucial
for autonomous agents to interact safely and efficiently with
objects. In the example of slicing a cucumber, without state
change knowledge, an autonomous agent might not know
how to pick up and cut the cucumber such that it becomes
slices. However, objects under state changes are largely ig-
nored in previous VOS research. Existing VOS benchmarks
tend to focus on normal objects, while overseeing the sig-
nificantly more difficult state-changing ones with shifting
appearances.

This work investigates this under-explored problem of
object state change in VOS. To the best of our knowledge,
we are the first to formally define the task of Video State-
Changing Object Segmentation (VSCOS). VSCOS aims to
predict pixel-wise masks of state-changing objects in each
frame of the video, given the first frame mask as reference.

In an effort to facilitate research on the VSCOS task, our
first contribution is to construct a dedicated benchmark that
reveals the failure of existing VOC methods and identifies
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Visualization of our pilot study. On an example of cutting
a cucumber, we apply a state-of-the-art VOS model XMem [2].
Provided with the first frame mask as a reference (top row), the
model segments the whole cucumber but omits the sliced pieces.
Similarly, provided with the last frame mask as a reference (bottom
row), the model segments the sliced pieces but loses track of the
whole part of the cucumber. This shows the state-of-the-art model
segments the object in each individual state but fails to associate the
segmentation when the state change happens. This key difficulty
motivates us to derive the setting for our VSCOS task. Best viewed
in color with zoom.

the key challenges of the VSCOS task. As shown in the
example in Figure 1, on conventional VOS benchmarks (e.g.,
DAVIS-2017 [11]), the model is expected to segment nor-
mal objects that do not experience major state or appearance
changes like camels. Therefore, state-of-the-art VOS meth-
ods (e.g., XMem [2] or DeAOT [23]) could satisfactorily
segment these objects in videos, by matching the current
frame’s visual appearance to the reference frames or previ-
ous frames’ predictions. By contrast, on our benchmark, the
state-changing objects have large appearance changes. Given
the first frame mask as reference, the model fails to coher-
ently segment both the whole cucumber and the slices before
and after the cutting action, which is notably more challeng-
ing. Correspondingly, the performance of the state-of-the-art
VOS model XMem drops from 89.5 J&F on DAVIS-2017
to 66.7 J&F on our benchmark. This result highlights the
significance of learning about object state changes in VOS.

We further show in Figure 2 that state-of-the-art VOS
methods fail on our VSCOS benchmark, because they lose
track of objects when state changes happen. This phe-
nomenon indicates that the state-of-the-art VOS models lack
the understanding of the identity of objects experiencing
state changes. Therefore, we highlight a key difficulty of our
VSCOS task as that the existing VOS models can segment
the object in each individual state reasonably given the cor-
rect reference, but cannot associate the segmentation before
and after the state change.

Our benchmark also possesses several desirable proper-
ties, as we have constructed it following two crucial prin-
ciples. Primarily, our VSCOS benchmark should be es-
tablished in an annotation-efficient fashion, so it could be

easily extended to different video datasets. Doing so also
encourages the advancement of weakly-supervised VSCOS
methods. Based on the previous discovery that the key diffi-
culty in VSCOS is the association, our setting provides two
annotated frames for each training video, namely, the first
and last frames. At test time, only the first frame mask is
provided for online inference.

Another principle is that we propose an open-vocabulary
setting alongside our conventional setting. This setting aims
to test the models’ generalization to novel state changes and
objects that are previously unseen in training. Our open-
vocabulary setting simulates a practical scenario where the
trained model may encounter new types of objects under seen
state changes, new types of state changes on seen objects,
or even completely novel state changes and objects. This
setting advocates models that do not overfit to categories
seen in training, but generalize to the complex scenarios in
the open world.

Based on our proposed VSCOS benchmark, we investi-
gate how to adapt any existing VOS models to enable robust
segmentation for state-changing objects, and propose our
baseline method. Our baseline contains three components
centered around solving the key difficulty of segmentation
association before and after the state changes. First, we
design an effective fine-tuning method that explicitly tack-
les the association problem with cycle consistency and a
teacher-student loss. Our fine-tuning strategy significantly
improves VSCOS performance, while avoiding training in-
stability and trivial solutions. Then, we point out a promising
direction in improving feature representation for VSCOS.
Specifically, the features for the object region before and
after the state changes should be aligned, while both should
be distinguished from the background feature. As an ini-
tial approach, we adapt Contrastive Random Walk [7] to
be an auxiliary loss and it demonstrates a noticeable perfor-
mance improvement. Finally, we explore whether motion
information in the form of optical flow could assist VSCOS
in connecting the states before and after the changes. We
design a simple approach to fuse flow features into VOS
models and also observe a minor improvement. Here we do
not claim that our baseline method is necessarily an optimal
strategy, but it points out key research directions for VS-
COS including fine-tuning, feature learning, and integrating
motion information.

We further analyze the results of our baseline method
on VSCOS from different perspectives. For example, we
investigate the contribution of different design decisions, the
performance comparison for different action categories, as
well as the different phenomena in different sets of the open-
vocabulary setting. From these experiments, we draw empir-
ical conclusions on how to improve VSCOS performance.
Finally, we observe and categorize key failure cases of our
baseline model and the main difficulties of our VSCOS task.
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Dataset Perspective Annotated Length (h) # of Action Categories Segmentation Label Open-Vocabulary Setting

[1] Third-person 1 7 ✗ ✗
[8] Egocentric 3 14 ✗ ✗
ChangeIt [15] Third-person 48 44 ✗ ✗
VSCOS (Ours) Egocentric 4 271 ✓ ✓

Table 1. Comparison of dataset statistics between our VSCOS benchmark and previous work. Our VSCOS benchmark features the most
varied action categories, as well as fine-grained segmentation labels and open-vocabulary settings.

We also discuss the limitations of our approach and future
work.

To summarize, our contributions are three-fold:
(1) We propose a crucial yet under-investigated problem

of Video State-Changing Object Segmentation (VSCOS).
(2) We annotate a state-changing VOS dataset and build

our VSCOS benchmark. Our benchmark is annotation effi-
cient and contains an open-vocabulary setting to evaluate the
model’s generalization capability.

(3) We identify the key difficulty of our task: as-
sociating the object segmentation before and after state
changes. Based on this observation, we establish a model-
agnostic baseline method that adapts existing VOS models
for VSCOS. Our baseline method points out key research
directions for the VSCOS task. We present and analyze
the baseline results, as well as the key challenges of our
benchmark.

2. Related Work

Video Object Segmentation. Video object segmenta-
tion (VOS) has been comprehensively studied by previous
work [17]. On currently widely-used VOS benchmarks, e.g.,
DAVIS [11] and YouTube-VOS [18], the object of interest
does not experience large appearance or state changes. There-
fore, representative recent methods [10, 20, 2, 13, 21, 23]
mostly model the VOS problem as matching object appear-
ances between query frames and reference frames, leading
to their failure in the challenging object state change setting
where drastic appearance changes happen. We aim to bridge
this gap by proposing the video state-changing object seg-
mentation (VSCOS) task, which requires an understanding
of object identity through state changes beyond appearance
matching.

Object State Changes in Videos. Object state changes
have been investigated in the context of videos. The task
of jointly discovering states and actions by utilizing the
causal relationship between them is investigated [1]. States
and actions have also been studied under the name of flu-
ents and tasks [8], where they are classified in a closed
world setting via beam search. Recently, a self-supervised
method has been proposed to jointly localize action and state
changes temporally from noisy untrimmed long videos [15].
More comprehensive tasks of Point-of-No-Return detection
and state-changing object detection have been proposed in

Ego4D [5].
We develop upon these previous efforts by proposing a

more fine-grained video object segmentation benchmark for
spatial and temporal state change knowledge. We task the
model with pixel-wise segmentation of state-changing ob-
jects coherently for each frame of the video, while previous
methods only focus on frame-level classification or tempo-
ral detection. Meanwhile, prior work leverages the causal
relationship between state and action, while our VSCOS
benchmark does not have such a strong dependency. This
allows us to design an open-vocabulary setting to test the
generalization to unseen objects and novel types of state
changes.

Notably, a contemporary work [16] investigates video
object segmentation under transformations. Compared
with [16], our effort includes different types of state
changes. Meanwhile, we advocate a more challenging
weakly-supervised setting, where we only adapt models on
state-change videos that we annotated with first and last
frame masks. This provides new opportunities for investigat-
ing this practical and annotation-efficient scenario.

3. Video State-Changing Object Segmentation

In this section, we describe our formulation of the Video
State-Changing Object Segmentation (VSCOS) task. Based
on a pilot study on representative data, we identify the key
difficulty of VSCOS: state-of-the-art VOS models could
segment the object in its initial state, but they are unable to
associate the same object before and after the state change to
obtain the mask for the final state. This observation motivates
the design of our benchmark.

Data. We choose a representative scenario of egocentric
videos from EPIC-Kitchens [3]. The dataset is collected
by volunteers wearing GoPro cameras on their heads during
cooking. Cooking videos provide a rich set of state-changing
objects due to frequent human-object interaction. Therefore,
it is a natural testbed for modeling state-changing objects in
VOS. Meanwhile, these egocentric videos are continuously
captured. This avoids the problem of jump cuts and edits in
third-person state change videos [1, 15] that are problematic
for VSCOS.

Pilot Study on Design of VSCOS. We evaluate state-
of-the-art VOS models on our representative videos to in-
vestigate whether they could handle state-changing objects.
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Cut broccoli
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Cut butter using knife

Tear foil paper

Validation Set

Peel onion

Chop carrots

Separate slices

Figure 3. Visualization of data samples from our VSCOS bench-
mark. In the training set, only the first and last frames are annotated.
Best viewed in color with zoom.

We focus on the semi-supervised VOS setting, where the
model takes the segmentation mask of the first frame in
the video and propagates the segmentation mask across the
entire video. We discover that the state-of-the-art model
suffers a large performance drop on videos with object state
changes. To provide insight into why they fail, we visualize
the segmentation results of a representative state-of-the-art
model XMem [2] in Figure 2. On the top row, we simulate
an online inference scenario and provide the mask of the first
frame of the whole cucumber before the state change. The
model segments the rest of the whole cucumber reasonably
well, but loses track of the slices after the state change occurs.
This shows that the state-of-the-art VOS model is insufficient
for obtaining persistent segmentation through state changes,
potentially due to the large appearance change.

Similarly, on the bottom row, we reverse the video and
provide the model with the mask of the original last frame,
containing mostly cucumber slices. In this case, the model
segments the slices well, but loses track of the whole cu-
cumber. This phenomenon is prevalent in the results of our
pilot study. It points out the key difficulty of segmenting
state-changing objects: The state-of-the-art VOS model can
segment objects in their initial state, but cannot continue to
segment the object in their final state after the change. In
other words, the model cannot robustly associate the seg-
mentation for different states through the state change.

VSCOS Task. We propose an annotation-efficient setting
for our VSCOS task, such that it could be easily extended to
other datasets. In this task, we aim to adapt a pretrained VOS
model such that it could robustly segment objects undergo-
ing state changes. As shown in the pilot study, the first and
last frames provide reasonably accurate mask propagation
for the part of objects in the initial and final states respec-
tively. The state-of-the-art VOS model only fails through
the state changes when the object’s appearance transitions.
Therefore, an annotation-efficient setting would be to pro-
vide the model with the ground truth mask for the first and
last frames in training. At test time, we provide only the first
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Figure 4. Statistics of the action (top) and object (bottom) cate-
gories in our VSCOS dataset. Our dataset contains a large number
of varied actions and objects. The number of examples in these
categories follows a long-tail distribution, so we visualize them in
log scale. We separate seen categories (left) from novel categories
(right).

frame annotation to the model for online inference.
To summarize, the model is supplied with short video

clips containing state-changing objects in the training stage.
The object’s segmentation mask is provided for the first and
last frames. This informs the model of the object’s appear-
ance before and after the state change. The model learns to
propagate and associate the segmentation through the state
change. During inference, the model is provided with the
mask label of the first frame only. It should propagate this
mask to all following frames in an online fashion robustly
through the state change. Different from training, the model
does not explicitly know the object’s appearance in the final
state and must infer it based on the video content and the
learned knowledge about the state change in training.

Open-Vocabulary Setting. In the real world, a model
will often encounter novel objects or even novel state
changes unseen in training. To evaluate the generalization
of VSCOS models in the open world, we construct an open-
vocabulary setting alongside the conventional setting. In
this open vocabulary setting, apart from the object and state-
change pair seen in training, there are three additional scenar-
ios. There are novel objects experiencing seen state changes,
seen objects experiencing novel state changes, and the most
difficult case where both the object and the state change are
unseen in training. We report the performance for these four
scenarios individually in our experiments.

Evaluation Metrics. Following previous work in
VOS [17], we mainly evaluate VSCOS performance by Jac-
card index J , boundary accuracy F , and their mean J&F .

In addition, we propose a new metric specific to VSCOS,
named connected component Jaccard index, or ccJ . In
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Order of Time

LCE + LDice

Student

LCE + LDice
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Teacher
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EMA
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GT
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direction
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Figure 5. Our proposed baseline fine-tuning strategy. The oval masks represent ground truth annotations, while the square masks represent
model predictions for each frame. At each step, both the student and teacher models perform inference from either direction and align the
predicted mask with the ground truth. And the student predictions are aligned with the teacher’s predictions correspondingly. The teacher
model is an EMA copy of the student model and is not updated by gradients.

VSCOS, objects may often become fragmented, resulting
in multiple small pieces. If a model only focuses on the
primary part of the object and overlooks the small pieces, it
could still obtain a high J&F . To address this, we calculate
Jaccard index based on each connected component and take
an average over all components. Specifically, we first find
all connected components in the ground truth mask and
the model output mask. Then, we find an optimal bipartite
matching that maximizes the average Jaccard index over
all matches. We take that averaged result as our ccJ . By
quantifying the performance for each connected component,
this ccJ metric better captures the ability of the model to
robustly segment objects through state changes, particularly
those that involve fragmentation.

4. Benchmark
Annotation. Contemporary to our work, EPIC-Kitchens

has released mask labels [4]. Unfortunately, their human-
annotated labels are too sparse to be useful for our fine-
grained VSCOS task, while their machine-propagated dense
labels are often not accurate. So we do not apply them,
and we annotate our segmentation masks instead. We first
manually filter the action labels to extract a subset of EPIC-
Kitchens that contains state changes. After obtaining this set
of state change videos, we annotate the segmentation labels.

As described in the task setting, we annotate the first and
last frames of training videos. For the test videos, we anno-
tate densely (one frame per second) to guarantee a reliable
evaluation. Segmentation labeling is known to be labor inten-
sive, since it requires drawing pixel-wise masks around the
spatial extent of objects. This challenge is more severe on

our dataset, since the state changes involve many fine details
and small pieces. To further alleviate annotation burdens,
we modify f-BRS [14] interactive segmentation GUI as our
interactive annotation tool, which proposes regions based on
user clicks. We manually double-check the annotations and
fix ambiguities to ensure the reliability of our segmentation
labels. For a specific video, we annotate the manipulated
object based on the action label. For example, if the video
action is cutting cucumber, we annotate the cucumber being
cut.

Statistics and Comparison. There are 1,905 video clips
containing state changes in our VSCOS dataset, each span-
ning 7.4 seconds on average. These videos span 30 action
categories and 124 object categories, yielding a total of 271
valid combinations. We visualize these data samples in Fig-
ure 3. For the training set, we have 1,809 videos and 3,618
annotated frames in total. The average length of training
videos is 442 frames. For the test set, we have 98 videos and
1,254 annotated frames. The average length of validation
videos is 450 frames. We summarize that in our benchmark,
there are four prominent categories of state changes:

1. Rigid Object Composition and Decomposition (com-
bine, cut, split, disintegrate, unpackage, ...)

2. Non-rigid Object Transformation (pour (liquid), crack
(egg))

3. Object Appearance Change (cook, clean, ...)

4. Object Articulation (open, close, twist, ...)

We compare our VSCOS dataset with previous efforts in
Table 1. Our dataset has the most variety in action categories,
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Method J&F ↑ J ↑ F ↑ ccJ ↑
CFBI [19] 51.5 47.0 56.0 43.7
CFBI+ [22] 58.2 53.3 63.1 48.2
XMem [2] 66.7 59.7 73.7 54.8
AOT [21] 72.6 65.2 80.1 60.8
DeAOT [23] 73.3 65.6 80.9 60.7

XMem-SC (Ours) 76.5 70.0 83.1 64.7
DeAOT-SC (Ours) 77.1 69.7 84.4 66.0

Table 2. Results on the conventional setting of our VSCOS task.
Our adapted VOS approaches achieve large performance improve-
ments on our benchmark in all metrics. Note that ccJ represents
our proposed connected component Jaccard index in Section 3.

corresponding to a more varied set of state changes. Mean-
while, our dataset is the only existing work with pixel-wise
segmentation labels and open-vocabulary settings.

5. Method

In this section, we investigate several different perspec-
tives for adapting existing VOS models for the VSCOS task
and we propose a baseline method. To tackle the key diffi-
culty of associating the segmentation before and after the
state change, we first propose an effective fine-tuning strat-
egy for VOS models. Then we highlight the importance of
improving the representation learning for VSCOS by align-
ing the region features before and after the state change.
Finally, we attempt to integrate motion information in the
form of optical flow to assist VSCOS. These improvements
are mostly agnostic to the underlying VOS model. Here we
take XMem [2] and DeAOT [23] as representative examples
because of their strong performance.

Fine-tuning Strategy. In our annotation-efficient
VSCOS setting, only the mask labels for the first and last
frames is available for each video. Therefore, conventional
VOS training is not feasible. The model is required to
robustly associate the segmentation before and after the
state change given the masks for the first and last frames.
Therefore, we propose a natural cycle consistency approach.
Specifically, we provide the first frame mask to the model to
predict the last frame mask and calculate a loss between the
result and the last frame ground truth. Then, in an opposing
fashion, we provide the last frame mask to the model and
predict the first frame mask. The loss is calculated again
between the first frame result and the first frame ground
truth. Here we follow XMem [2] or DeAOT [23] and use
their respective losses.

Empirically, we discover that this fine-tuning strategy is
effective but sometimes unstable in training. This is because
of a trivial solution where the model predicts no mask for all
middle frames and only memorizes the first and last frame
masks. We alleviate this problem by introducing a teacher-
student loss based on an exponential moving average (EMA)

teacher model. The teacher and student models are identi-
cal, and both are initialized with a pretrained state-of-the-art
VOS model (e.g., XMem [2] or DeAOT [23]). During train-
ing, our teacher model is updated solely through the EMA
of the student model’s parameters and not updated by gra-
dients. Apart from the aforementioned first and last frame
loss, we apply a Dice segmentation loss for each training
frame between the student and teacher models’ predicted
masks. This teacher-student loss alleviates the trivial solu-
tion by smoothing the training process, avoiding the abrupt
changes in model update that leads to the trivial solution. We
visualize our final fine-tuning strategy in Figure 5.

Representation Learning. Associating the segmentation
before and after the state change requires special properties
of the deep representation. Specifically, the feature of the
object region before and after the state change should be
aligned, while both should be distinct from the background
feature. To show the promise of such desirable feature rep-
resentation, we propose our baseline approach by adapting
Contrastive Random Walk (CRW) [7] to be an auxiliary loss
in fine-tuning. CRW is a self-supervised approach to align
the features for corresponding regions in a video. This is ac-
complished by constructing a palindrome space-time graph
from the video and performing link prediction in the graph.
Instead of using image patches, we take the features from
the image encoder of the VOS model and apply the CRW
loss on each of our training frames.

Motion Information. During object state changes, the vi-
sual appearance changes drastically. However, in some types
of state changes, the motion provides useful information to
the association throughout the state change. For example,
when slicing a cucumber and a small slice falls off, all pixels
corresponding to the slice will have consistent movement
when it is separated from the rest of the cucumber. This
could potentially enable the model to associate the slice with
the rest of the cucumber. Therefore, we make an initial at-
tempt to introduce motion information in the form of optical
flow into VOS models. Namely, we randomly initialize a
ResNet [6] model as the flow encoder. The optical flow
extracted with existing models is passed through the flow
encoder to obtain flow features. We concatenate the flow
feature with the appearance feature from the VOS model,
and apply a light-weight fusion module to combine them.
Finally, we feed the fused flow and appearance feature into
the decoder. The flow encoder and fusion module are trained
end-to-end during our fine-tuning.

Loss Function. Suppose we sample n frames from the
video for training, including the first frame with label y0 and
the last frame with label yn. We represent our student model
as ϕS and our teacher model as ϕT , and we use λ as the
decay parameter in EMA. α and β are loss balancing factors.
We use subscripts to denote the frame index. Then we derive
our loss, taking XMem [2] as an example as follows:
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Method
Seen State Changes

+ Seen Objects
Seen State Changes

+ Novel Objects
Novel State Changes

+ Seen Objects
Novel State Changes

+ Novel Objects

XMem [2] 68.7 68.7 63.0 57.4
XMem-SC (Ours) 77.5 77.2 64.1 66.2

Table 3. Open-vocabulary results on our VSCOS benchmark measured by the J&F score. All four sets are challenging to different degrees
for XMem. The performance improves consistently for all sets for our XMem-SC.

FT TS CRW OF J&F ↑ J ↑ F ↑ ccJ ↑
66.7 59.7 73.7 54.8

✓ 73.6 66.6 80.6 61.6
✓ ✓ 75.1 68.4 81.8 62.9
✓ ✓ ✓ 75.4 68.6 82.3 62.9
✓ ✓ ✓ ✓ 76.5 70.0 83.1 64.7

Table 4. Ablation study of our XMem-SC. “FT” refers to our fine-
tuning strategy without the teacher-student loss. “TS” refers to
teacher-student loss. “CRW” refers to the Contrastive Random
Walk loss. “OF” refers to the integration of optical flow. We
show that all these strategies improve the performance to different
extents.

LXMem−SC =LCE(ϕ
S(y0)n, yn) + LCE(ϕ

S(yn)0, y0)

+LDice(ϕ
S(y0)n, yn) + LDice(ϕ

S(yn)0, y0)

+α(

n∑
i=1

LDice(ϕ
S(y0)i, ϕ

T (y0)i))

+α(

n−1∑
i=0

LDice(ϕ
S(yn)i, ϕ

T (yn)i))

+βLCRW

where ϕT ← λϕT + (1− λ)ϕS .

Implementation Details. We train our student model
with the AdamW [9] optimizer. We train for 10000 iterations
on our VSCOS dataset with a base learning rate of 1e-5.
A weight decay of 0.05 is applied, and we use a multistep
learning rate schedule to reduce the learning rate to 1e-6 at
1000 steps. We sample n = 8 frames from each video with
a batch size of 8 videos. For the EMA teacher model, we set
the student-teacher loss weight α to 0.01, CRW loss weight
β to 1, and the decay parameter λ to 0.99. Since we only
aim to stabilize training with our mean teacher, we differ
from previous semi-supervised learning works and do not
apply different augmentations for student and teacher input
videos.

When calculating the CRW loss, instead of image patches,
we use the features from the image encoder of the VOS
model. We apply average pooling such that its spatial di-
mension is 12× 12. As for the optical flow, we concatenate
5 adjacent flow frames, normalize these frames, and feed
them to a randomly initialized ResNet-18 [6] flow encoder
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Figure 6. Average performance of our XMem-SC model for each
action category in our VSCOS benchmark. The performance is
measured by J&F . Different action classes have different difficul-
ties for VSCOS.

to obtain the flow feature. Finally, we concatenate the flow
feature with the corresponding image feature and use a light-
weight multilayer perceptron(MLP) fusion model to produce
the final feature used to predict the mask. Additional hy-
perparameter settings are discussed in the supplementary
material.

6. Experiments

In this section, we introduce our baseline results on the
VSCOS benchmark.

Main Results. We evaluate several widely used VOS
models on our VSCOS benchmark,including CFBI [19],
CFBI+ [22], XMem [2], AOT [21], and DeAOT [23]. We
pick the best performing and most representative method
XMem [2] and DeAOT [23] and build our baseline method
XMem-StateChange (XMem-SC) and DeAOT-StateChange
(DeAOT-SC) based on them as described in Section 5. Ta-
ble 2 shows the performance comparison of several baseline
methods. These VOS models are pretrained on DAVIS-17.
Intriguingly, we observe that the relative performance of
different methods is inconsistent with conventional bench-
marks without state change. For example, while AOT [21]
performs slightly worse than XMem [2] on DAVIS-17 (84.9
vs. 86.2 J&F), it performs noticeably better than XMem
on our benchmark (72.6 vs. 66.7 J&F). This observation
again highlights the importance of our dataset for evaluating
the under-explored problem of VOS with state-changing ob-
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Figure 7. Visualization of qualitative results of our method. Best
viewed in color with zoom.

jects, as an advanced VOS method does not necessarily lead
to improved performance on dealing with more challenging
state-changing objects.

We empirically demonstrate that after integrating our
adaptation, the performance achieves a large improvement.
For example, for XMem-SC, the improvement is 9.8 J&F ,
10.3 J , 9.4 F , and 9.9 ccJ . Meanwhile, for the stronger
baseline DeAOT, our adaptation still manages to improve
for 3.8 J&F , 4.1 J , 3.5 F , and 5.3 ccJ . Qualitatively, we
show in Figure 7 that our adapted models no longer lose
track of the state-changing objects and tend to achieve a
consistent segmentation through state changes.

Ablation Study. In Table 4, we show how different de-
sign decisions have an impact on the performance of our
XMem-SC model on our VSCOS benchmark. If we fine-
tune the model without the teacher-student loss, the training
becomes unstable and sometimes collapses to a trivial solu-
tion. In cases where the model is trained well, we already
achieve a relative improvement of 6.9 J&F . By adding
the teacher-student loss, we stabilize training and further
improve the J&F by 1.5. This shows that our proposed

fine-tuning strategy is effective. Our attempt of integrating
motion information by introducing optical flow does bring
a marginal performance improvement of 0.3 J&F , and im-
proves F slightly more by 0.5. Since our most direct way of
integrating optical flow improves performance, we argue that
integrating motion information in more advanced manners is
a promising direction for VSCOS. Finally, our Contrastive
Random Walk auxiliary loss improves the performance mod-
erately by 1.1 J&F , and especially improves ccJ by 1.8.
This shows the promise of aligning the local feature represen-
tation of the objects before and after the state change, while
distinguishing their features from the background. More
sophisticated strategies may bring even larger performance
improvements in this regard.

Performance Breakdown by Action. We examine the
performance of our best models on VSCOS by action cate-
gories and compare them in Figure 6. The bar chart shows
the per-action VSCOS performance of XMem-SC. Note that
each action corresponds to a type of state change. It is ob-
served that some actions that are most difficult for VSCOS
(e.g., pour, squeeze, and break) have large temporal appear-
ance changes. Conversely, actions with more minor or intri-
cate temporal appearance changes (e.g., wrap and wash) are
reasonably easy for VSCOS.

Open-vocabulary Setting. Table 3 shows the perfor-
mance of XMem and XMem-SC in the open-vocabulary
setting of our VSCOS benchmark. All splits pose a degree
of challenge for XMem. After integrating our three strate-
gies, the performance consistently improves across all four
splits, though the degree differs. This shows that our XMem-
SC learns a somewhat generalizable concept of state change
that enhances model performance on both seen and unseen
state changes and objects. Interestingly, the improvement
on novel state changes + seen objects is less than the other
splits. This potentially suggests that a seen object category
does not necessarily make the VSCOS problem easier. The
model may overfit by memorizing the potential change of
state by the object’s appearance before the state change.
When a novel state change occurs on a seen object category,
the model might still be overfitted to the seen state change.
This may result in the model experiencing more difficulty
learning this novel state change than never having seen the
object. This could be a potential difficulty for our VSCOS
task.

7. Discussion
Failure Modes of Our Approach. Figure 8 shows cases

where our XMem-SC model fails on our VSCOS dataset.
We identify three main failure modes, which may indicate
the difficulties of our benchmark:

(1) Over-segmentation. The first example shows that the
model tends to over-segment the background more than it
under-segments, which has been observed in a number of
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Figure 8. Visualization of our three main failure cases. The three
examples show over-segmentation, missing parts, and difficult state
change cases respectively. The top result for each example is the
ground truth, while the bottom result is from our XMem-SC. Best
viewed in color with zoom.

different cases on our benchmark. A potential explanation is
that in training, the model only receives direct supervision at
the first and last frames. In the middle frame, there is no su-
pervision apart from the mean teacher loss. This potentially
means that the model could generate an arbitrary mask in the
middle frames as long as it could correctly propagate the first
frame label through the middle frames to the last frame and
vice versa. In this situation, over-segmenting might be easier
for propagating labels than under-segmenting. We assume
this might be the reason for over-segmentation, when the
model is uncertain in the middle frames of certain videos.

(2) Missing parts. Baseline XMem tends to lose track of
the separated parts of state-changing objects (e.g., the pieces
of a cucumber being sliced off). Our XMem-SC improves
in most cases, but still misses these parts in some difficult
cases. The second example depicts this phenomenon in a
video where the lighting is dim and the scene is cluttered.
Although these cases are in the minority, it still calls for
better future methods for adapting VOS models.

(3) Difficult state change cases. Since our VSCOS in-
cludes a large range of different state changes, some are
more difficult for the model to identify. The third example
shows a tablecloth being squeezed, where the object of in-
terest experiences shape changes, gets occluded by human
hands, and shrinks severely in spatial extent. Such cases
are inherently difficult and our XMem-SC does not perform
well on these especially difficult samples, here our model
considers a part of the hand also as the object of interest.

Difference to VISOR. We build our dataset based on
a representative scenario of egocentric videos from EPIC-
Kitchens, where understanding state change is crucial. A
recent dataset VISOR [4] is also built on EPIC-Kitchens
with segmentation annotations. However, we do not uti-

lize VISOR annotation when building our dataset due to its
sparsity of human annotations. Specifically, at the start and
end of the state changes, there is usually no human anno-
tation from VISOR. At these crucial times, the machine-
propagated labels are often not accurate enough for VSCOS.
In the supplementary material, we show empirically that
VISOR-pretrained backbone fails for our VSCOS task, fur-
ther proving that our task is challenging and not directly
resolvable by using the existing VISOR dataset.

Limitations and Future Work. Finally, we list some lim-
itations of our approach and future directions. Our VSCOS
benchmark utilizes EPIC-Kitchen data as a representative
scenario. We design the VSCOS benchmark in an annotation-
efficient way such that it could be easily extended to other
sources of video data. In the future, we plan to extend
our benchmark to more in-the-wild video datasets, e.g.,
Ego4D [5]. We also plan to investigate VSCOS in more
depth, for example, in scenarios with multiple objects and
long-form state changes. Meanwhile, our baseline models
achieve reasonable performance improvements, but we do
not claim that they are the optimal strategies. They serve
as initial attempts to explore whether these directions of
improving VOS models are effective for VSCOS. We advo-
cate more advanced strategies for fine-tuning VOS models,
improving feature representation, and integrating motion
information.

8. Conclusion

We propose a challenging yet under-investigated problem
of Video State-Changing Object Segmentation (VSCOS),
where we evaluate the robustness of a VOS model for state-
changing objects. We facilitate the research of this problem
with a novel benchmark based on Egocentric video datasets
in an annotation-efficient and open-vocabulary setting. We
observe that this task is significantly challenging for existing
VOS models, and identify the key difficulty in VSCOS be-
ing associating the object segmentation before and after the
state change. Based on this observation, we investigate three
main approaches to adapt existing VOS models and enable
robust segmentation under state change. Namely, we explore
effective fine-tuning strategies, representation learning, and
integration of motion information. We combine them as our
baseline method, and empirically show a large performance
improvement. We hope our released benchmark could fa-
cilitate future research on the fine-grained understanding of
object state changes.
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