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Abstract

Point cloud registration is a task to estimate the rigid
transformation between two unaligned scans, which plays
an important role in many computer vision applications.
Previous learning-based works commonly focus on super-
vised registration, which have limitations in practice. Re-
cently, with the advance of inexpensive RGB-D sensors, sev-
eral learning-based works utilize RGB-D data to achieve
unsupervised registration. However, most of existing unsu-
pervised methods follow a cascaded design or fuse RGB-
D data in a unidirectional manner, which do not fully ex-
ploit the complementary information in the RGB-D data. To
leverage the complementary information more effectively,
we propose a network implementing multi-scale bidirec-
tional fusion between RGB images and point clouds gen-
erated from depth images. By bidirectionally fusing vi-
sual and geometric features in multi-scales, more distinc-
tive deep features for correspondence estimation can be ob-
tained, making our registration more accurate. Extensive
experiments on ScanNet and 3DMatch demonstrate that our
method achieves new state-of-the-art performance. Code
will be released at https://github.com/phdymz/
PointMBF.

1. Introduction

Point cloud registration [28] aims at aligning partial
views of the same scene, which is a critical component of
many computer vision tasks. Commonly, point cloud regis-
tration starts from feature extraction [55, 10] and correspon-
dence estimation [46, 43], followed by robust geometric fit-
ting [16, 37, 3, 72]. Among them, feature extraction plays
a vital role in point cloud registration, as distinctive fea-

*Equal contribution.
Corresponding author.

tures can reduce the occurrence of outlier correspondences,
thereby saving time on robust geometric fitting.

Many traditional methods rely on hand-crafted features
[55, 34], but they commonly show limited performance.
Benefiting from the rapid progress of deep learning, many
learning-based features [10, 64, 25] have been proposed in
recent years. Compared to hand-crafted features, they are
distinctive enough to achieve robust performance in many
challenging conditions such as low overlap. However, most
deep learning-based features need supervision on poses or
correspondences, which limits their practical applications.
For unannotated datasets with different distributions from
the training set, they tend to suffer from performance degra-
dation.

With the recent advance of inexpensive RGB-D sensors,
it has become easier to simultaneously acquire both depth
information and RGB images, which inspires unsupervised
point cloud registration using additional color information.
UR&R [14] proposed a framework for unsupervised RGB-
D point cloud registration. It utilizes a differentiable ren-
derer to generate the projections of the transformed point
clouds and calculates geometric and photometric losses be-
tween the projections and the registration targets. Based on
these losses, UR&R can train its deep descriptor without an-
notations and achieve robust registration on RGB-D video.
Similar to UR&R, BYOC [15] proposed a teacher-student
framework for unsupervised point cloud registration for
RGB-D data, which also shows competitive performance.
However, all these RGB-D-based methods use RGB images
and depth information separately and do not further exploit
the complementary information within RGB-D data. Re-
cently, LLT [67] first utilized a linear transformer [35, 59]
to fuse these complementary information and achieved new
state-of-the-art performance. However, LLT focuses on us-
ing depth information to guide RGB information and ne-
glects the interaction between the two modalities, which
hinders better performance.
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To fully leverage these complementary modalities, we
propose a multi-scale bidirectional fusion network named
PointMBF for unsupervised RGB-D point cloud registra-
tion, which fuses visual and geometric information bidirec-
tionally at both low and high levels. In this work, we pro-
cess depth images in the form of point clouds and utilize
two network branches for RGB images and point clouds, re-
spectively. Both branches follow the U-Shape [54] structure
to extract features for information fusion in multiple scales.
Unlike the fusion strategy in LLT [67], we perform cross-
modalities fusion in all stages rather than only in the last few
layers, making fused features more distinctive. Moreover,
different from the unidirectional fusion strategy in LLT,
we adopt a bidirectional design for more effective fusion.
Specifically, in each scale, we first find the regional cor-
responding points/pixels for each query pixel/point. Then
we sample the KNN points/pixels among them and gather
their features to a set. The feature set is fed to a PointNet-
style module to achieve permutation-invariant aggregation.
Finally, the information communication between different
modalities can be achieved by fusing the aggregated fea-
tures with the query feature using a shallow neural network
with residue design.

To evaluate our method, we conduct experiments on
two popular indoor RGB-D datasets, ScanNet [11] and
3DMatch [73]. Our PointMBF not only achieves new state-
of-the-art performance but also shows competitive general-
ization across different datasets. When tested on an unseen
dataset ScanNet, our PointMBF trained on 3DMatch still
shows comparable performance to recent advanced methods
directly trained on ScanNet. We also conduct comprehen-
sive ablation studies to further demonstrate the effectiveness
of each component of our multi-scale bidirectional design.

To summarize, our contributions are as follows:

* We propose a multi-scale bidirectional fusion network
for RGB-D point cloud registration, which fully lever-
ages the information in the two complementary modal-
ities. Compared to unidirectional fusion or fusion in
the final stage, our fusion strategy can achieve the in-
formation communication more effectively, so that it
can generate more distinctive features for registration.

* We introduce a simple but effective module for bidi-
rectional fusion, which adapts to density-variant point
clouds generated by view-variant depth images.

* We provide a comprehensive comparison between dif-
ferent fusion strategies to analyze their effect empiri-
cally.

e Our method achieves new state-of-the-art results on
RGB-D point cloud registration on ScanNet [11] using
weights trained either on ScanNet or 3DMatch [73].

2. Related Work
2.1. Point Cloud Registration

Point cloud registration aims at aligning partial scan
fragments, which is widely used in many tasks such as
autonomous driving [44], robotics [49], and SLAM [74].
Except for some ICP-based methods [5, 47], metric-based
methods [27, 2, 39], and so on, most methods follow the
process of feature extraction [55, 10, 71], correspondence
estimation [46, 43], and robust geometric fitting [16, 37, 3].
In the past, many traditional methods were often lim-
ited by hand-crafted features [55, 34]. Recently, many
learning-based 3D descriptors [10, 8, 1, 4, 70, 52] were
proposed. They have achieved impressive performance and
some methods [70, 52] are even free of RANSAC. However,
most of them rely on pose or correspondence supervision,
which limits their practical application. For unannotated
datasets, they can only infer using weights trained on other
datasets, which tends to degrade their performance. Benefit-
ing from inexpensive RGB-D sensors, many RGB-D video
datasets [11, 73] were proposed. The extra color informa-
tion contains richer semantics and many works achieve un-
supervised learning based on it. To the best of our knowl-
edge, UR&R [14] is the first learning-based work using
RGB-D data for unsupervised registration. It also follows
the above mentioned registration process but it utilizes a
differentiable renderer-based loss to optimize its learnable
descriptor. Inspired by self-supervised learning [6], BYOC
[15] proposed a teacher-student framework for 3D descrip-
tor unsupervised learning. It teaches a 3D descriptor by a
2D descriptor, making the 3D descriptor achieve compa-
rable performance to supervised methods. However, nei-
ther of the above two methods fully leveraged the comple-
mentary information inside RGB-D data. For UR&R, point
clouds are only used for localization but do not participate in
feature extraction. For BYOC, their 3D descriptors are lim-
ited by their single-modality teacher. To address above the
problem, LLT [67] introduced a linear transformer-based at-
tention [35, 59] to embed geometric features into visual fea-
tures in the last two stages. This fusion improves extracted
features and helps LLT achieve the state-of-the-art perfor-
mance. Whereas we believe unidirectional fusion in late
stages does not fully exploit the complementary information
in RGB-D data. Therefore, we design a multi-scale bidirec-
tional fusion network, which implements bidirectional fu-
sion in all stages. Benefiting from our fusion strategy, our
network can achieve better performance with easily accessi-
ble backbones than unidirectional fusion with sophisticated
backbones in LLT.

2.2. RGB-D Fusion

RGB image commonly contains rich semantic informa-
tion, while depth image or point cloud can provide precise
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Figure 1. Comparison on fusion strategies.

geometric description. Therefore, fusing these two modali-
ties is a promising direction as they provide complementary
information. With the advance of inexpensive RGB-D sen-
sors, many works have studied how to fully leverage this
complementary information in many tasks such as detec-
tion [40, 61, 62, 68, 42, 26, 41], segmentation [24, 18, 51,
32, 65, 12, 23, 31, 19, 7] and pose estimation [21, 22, 63].
As shown in Figure 1, the common fusion strategies can be
roughly divided into three categories according to their in-
formation flow direction. The first category is undirected
fusion [62, 18, 22, 63, 69]. This category is the most in-
tuitive one and is commonly implemented by directly con-
catenating or adding the separately extracted features. For
example, DenseFusion [63] fuses geometric information
and texture information by concatenating the embeddings
from CNN and PointNet [50] and adding extra channels for
global information. The second category is unidirectional
fusion [40, 68, 42, 26, 67, 51, 32, 65, 12, 30, 29, 19]. This
kind of methods usually use one modality to guide the other
modality. For instance, DeepFusion [40] sets Lidar fea-
tures as queries and utilizes a cross-attention-based mod-
ule called LearnableAlign to embed RGB image features
into them. Similar to DeepFusion, LLT [67] adopts a fu-
sion module which is based on linear transformer [35] and
fuses high-level features in the last two layers. However,
all above methods do not fully exploit the interconnection
between different modalities. Therefore, the third category
i.e. bidirectional fusion [38, 24, 21, 7] was proposed re-
cently. BPNet [24] reveals that joint optimization on dif-
ferent modalities in a bidirectional manner is beneficial to
2D/3D semantic segmentation. It designs a bidirectional
projection module to generate a link matrix i.e. the point-
pixel-wise map, so that information can interact between
two heterogeneous network branches in the decoding stage.
FFB6D [21] proposes a network fusing in full stages and
outperforms previous methods [22, 63] a lot in pose estima-
tion. Motivated by these success, we believe bidirectional
fusion can better leverage the complementary information
inside two different domains and propose a bidirectional
fusion-based network for RGB-D point cloud registration
for the first time.

3. Method

Figure 2 (a) shows the pipeline of our PointMBF, which
takes two RGB-D images as inputs and outputs their rela-
tive rigid transformation represented by a rotation R* and a
translation ¢*. Our PointMBF also follows the standard pro-
cess of feature extraction, correspondence estimation and
geometric fitting. PointMBF first extracts deep features us-
ing two heterogeneous network branches for each of the
two input RGB-D images, where the visual and geometric
features are extracted using different networks and they are
fully fused in a bidirectional manner in all stages by fusion
modules. Then the fused features are used to generate cor-
respondences based on their Lowe’s ratio [43]. Finally, our
PointMBF outputs the estimated rigid transformation using
these correspondences by a few RANSAC iterations. The
correspondence estimation and geometric fitting are free
of learnable parameters, and our feature extractor and the
fusion modules are trained unsupervisedly by a renderer-
based loss. The details of each component of our PointMBF
are explained in the following sections.

3.1. Heterogeneous Network Branches

Since there exists a big domain gap between RGB im-
ages and depth images, our PointMBF uses two different
network branches to process these two modalities sepa-
rately. As shown in Figure 2 (a), one branch i.e the visual
branch takes RGB images as input, while the other i.e. the
geometric branch takes point clouds generated from depth
images as input. Both branches follows a U-Shape [54]
structure to extract multi-scale information, and they are all
based on easily accessible backbones including ResNet18
[20] and KPFCN [4, 57]. Since our competitor LLT [67]
also has two branches for visual and geometric processing,
we introduce the details of our two branches in the follow-
ing paragraphs and compare them with similar structures in
LLT.

Visual branch. LLT designs a dilated convolution-based
network as its visual backbone. Although this kind of back-
bone is competitive, its performance is highly dependent
on the hyperparameter setting. To better illustrate the ef-
fectiveness of our multi-scale bidirectional fusion strategy
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Figure 2. The overview of our PointMBF. It takes two RGB-D images as inputs and outputs an estimated rigid transformation. For input
RGB-D pairs, it first extracts features using a multi-scale bidirectional fusion-based extractor, which contains two branches and fusion
modules (colored in grey) for feature interaction. Then the putative correspondences are determined based on the Lowe’s ratio of the
extracted features. Once obtaining the correspondences, our model outputs the estimated transformation using several RANSAC iterations.

The above model is trained end-to-end by a differentiable renderer.

and save cost on tuning the network architecture, we simply
modify a widely used ResNet18 [20] as our visual branch.

As shown in Figure 2 (a), our visual branch follows an U-
Shape encoder-decoder architecture with skip connections.
Both encoder and decoder extracts features at three differ-
ent scales. The encoder consists of convolution blocks from
ResNet18, while the decoder only contains simple shallow
convolution blocks. More details of our visual branch set-
tings are provided in the supplementary materials.

Geometric branch. Different from LLT [67], we process
depth images in the form of point clouds rather than the
original depth images. There exist many feature extrac-
tors for point cloud such as sparse convolution networks
[10, 9], point-based networks [50, 66] and so on. However,
as shown in Figure 3, there exists severe density variation
in the generated point clouds because the sampling density

of 3D surfaces is dependent on their distance to the sen-
sor. To extract density-invariant features, we select a shal-
lower KPFCN in D3Feat [4] as the building block of our
geometric branch because it introduces a density normal-
ization process to overcome the inherent density variation.

As shown in Figure 2 (a), our geometric branch has a
symmetric architecture to the visual branch, so that features
from the two branches at the same resolution can be fused
and this kind of fusion occurs at every scales. More details
of our geometric branch settings are also provided in the
supplementary materials.

3.2. Multi-scale Bidirectional Fusion

In this section, we introduce our proposed multi-scale
bidirectional fusion in detail. Note that semantics or local
geometry are dependent on a certain region rather than a
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single pixel or point. Therefore, it is intuitive to fuse com-
plementary information by embedding features of a certain
region into features of the other modality.

However, embedding regional features faces two chal-
lenges. First, as shown in Figure 3, density variation makes
the length of regional feature set uncertain. Second, the fea-
ture set is not structural data. Inspired by the process for
variable length sequence [60] and unstructured data [50],
we pad the regional features to a fixed number and design a
PointNet-style [50] fusion module for bidirectional fusion.
As shown in Figure 2 (b)(c), for a query pixel or a query 3D
point at a certain scale, we first find its corresponding region
in point cloud/image using the intrinsic matrix of the sensor.
Afterward, we sample the KNN corresponding points/pixels
in the corresponding region and gather their features to a set.
The set is then padded to a certain length and aggregated by
a simple PointNet. Since there exists a max-pooling opera-
tor in PointNet and grid sampling in the geometric branch,
the aggregated feature can achieve density-invariance. Fi-
nally, the aggregated feature is further fused with the fea-
ture of the query point/pixel by a shallow neural network
with residue design. In this way, visual and geometric fea-
tures can be fully fused in all scales. Besides, as shown in
Figure 2 (a), in addition to the above fusion using bidirec-
tional fusion module, we also conduct an undirected fusion
in the final stage to further boost the features for correspon-
dence estimation. Details of the visual-to-geometric, the
geometric-to-visual, and the final undirected fusion will be
introduced in the following subsections.
Visual-to-geometric fusion. Commonly, many ambigu-
ous and repetitive structures exist in point clouds, which
makes generated putative correspondences based on only
point clouds contain a large proportion of outliers. Incorpo-
rating semantic information extracted by the visual branch
can make geometric features more distinctive. Here, we
utilize visual-to-geometric fusion to embed regional visual
features into geometric features.

Specifically, given a geometric feature Féi extracted by
the geometric branch in the [-th stage for the ¢-th point, we
first find its corresponding region in the image by projecting
its neighbor with radius R!, o to the image. Then we sam-
ple the K4 nearest neighbor pixels within the correspond-

. . . K,
ing region and gather their visual features {Ff,k k:ig. If

there are less than K4 pixels in the corresponding region,
we will pad the null feature Fjq = [0,0,...,0] € R
in the gathered features. After that, we use a PointNet-

style fusion module to aggregate the regional visual features
Kyag.

{Fllﬁk k=1 "

Fl

2y, = Witk (MLP (F}, ) 1)

We then concatenate the aggregated feature F., g: With
the geometric feature Fglh_ and use a linear layer to map them

to a fused feature, which has the same dimension as Fé
Finally, this fused feature is treated as a residue and added
to the original geometric feature Fgli:

Fflusedgi = ng + W1l)29 (Fil)Qgi @ Fél) (2)

where @ denotes the concatenate operation, W/, 4 denotes
a linear map, and Fflusedgi denotes the final fused feature,
which replaces the original geometric feature Fgli to be sent
to the next stage. In our bidirectional fusion modules, we
adopt a residual design, since our full-stage fusion may
cause redundancy. Our following ablation study also ver-
ifies it experimentally.

/ “‘,;4’ /

(b) Generated‘point cloud

INUISE
(a) RGB image
Figure 3. Input RGB image (a) and the point cloud (slightly ro-
tated) generated from the corresponding depth image (b). Severe
density variation exists in the generated point cloud, which makes
local geometric feature extraction and fusion more challenging.

Geometric-to-visual fusion. Similar to visual-to-
geometric fusion, our geometric-to-visual fusion also
makes visual features more distinctive. = We achieve
geometric-to-visual fusion by embedding geometric fea-
tures into visual features.

Given a visual feature F 51 extracted by visual branch in [-
th stage for the i-th pixel, we first find its corresponding re-
gion in the 3D point clouds by the inverse projection. Then
we sample K g9, nearest neighbor points in the correspond-

. ) . . Ky
ing region and gather their geometric features { Fy, }, %"

We also use the null feature Fj,qq = [0,0,...,0] € R to
pad the gathered features when there are not enough points
in the corresponding region and aggregate them into Fézu,-i

Kgoy
= max (MLP (Fy, )) 3)

Fl
g e

21}1'

The aggregated feature Fém is concatenated with the

visual feature Fé and then mapped to a feature, which has

the same dimension as Ff, Finally, this fused feature is

treated as a a residue and added to the original visual feature
Fél

! l l l l
F‘fusedvi =F, + WgQU (Fg21)i S3) E)l) (4)

v;

where @ denotes the concatenate operation, Wégv denotes
a linear map, and Fflusedvi denotes the final fused feature,
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which replace the original visual feature Ff) to be sent to
the next stage.
Undirected fusion. After fully bidirectional fusion in both
encoding and decoding stages, we have obtained distinctive
features extracted by the visual and geometric branches. To
obtain more distinctive features for generating reliable cor-
respondences, we use a simple undirected fusion in the final
stage. We concatenate the outputs of both the visual and the
geometric branches and fuse them by a linear map:

Frusea; = Whna (Fy™ @ FM) 5)

9i

where Wrpa denotes a linear map, Fi™' denotes the geo-
metric feature output by the last layer of geometric branch,
Fl‘};‘al denotes the visual feature output by the last layer of
visual branch, and Fjyq, denotes the final fused features for
the following correspondence estimation.

3.3. Correspondence Estimation, Geometric Fitting
and Loss Function

Correspondence estimation and geometric fitting. Af-
ter obtaining the fused features for the source and the tar-
get point clouds, we build correspondences using the same
method as in UR&R [14] and LLT [67]. Specifically, the
correspondences are generated based on the the lowe’s ratio
[43]. For a point p in the source point cloud, the lowe’s
ratio ¢ is formulated as:

rS = M (6)
" D pl)

where D(-) denotes the Euclidean distance in the fea-
ture space and p/  is the k-th similar point in the tar-
get point cloud. Then we calculate the weight w =
1 — r for each correspondence and select the correspon-
dences with top k weights for source point cloud and tar-
get point cloud respectively. The selected correspondences
C = {(»°p",w),: 0 <i< 2k} with their weights are
fed into a RANSAC [16] module. The RANSAC module
achieves differentiable alignment and outputs an estimated
rigid transformation 7* with the minimum error E(C, T*),
where E(C,T') is formulated as:

E(C,T)= Y

(»S,p7 ,w)eC

wpS—T (")) /26 (7)

Loss function. In this work, we use the same loss function
as [14, 67] to train the model without the need for annota-
tion. The loss function consists three components:

L= lgeo + lm's +A\E (C, T*) (8)

where l4¢, and [,;s denote the geometric and photometric
losses based on a differentiable renderer, A represents a co-
efficient and we set A = 0.1. More details about the loss
function can be found in UR&R [14].

4. Experiment

We follow the setting in UR&R [14] and use two indoor
RGB-D datasets 3DMatch [73] and ScanNet [11] to con-
duct our experiments. The following sections are organized
as follows. First, we illustrate the details of our experimen-
tal settings including datasets, implementation, evaluation
metrics, and competitors in section 4.1. Next, we evalu-
ate our method on ScanNet in section 4.2. In this section,
we conduct two experiments. The former tests the perfor-
mance of our method trained on ScanNet [11] and the latter
tests our method trained on 3DMatch [73] to verify its gen-
eralization. To further understand the effect of our multi-
scale bidirectional fusion, we conduct comprehensive abla-
tion studies in section 4.3. We also provide more visualiza-
tions and extra experiments in the supplementary material.

4.1. Experimental Settings

Datasets. We use two widely-used RGB-D datasets Scan-
Net [11] and 3DMatch [73], which contain RGB-D im-
ages, camera intrinsics, and ground-truth poses of the cam-
era. For both datasets, we follow settings in [14, 15, 67] to
generate view pairs by sampling image pairs which are 20
frames apart. This results in 1594k/12.6k/26k RGB-D pairs
for ScanNet and 122k/1.5k/1.5k RGB-D pairs for 3DMatch
for train/val/test, respectively.

Implementation. To achieve a fair comparison, we use the
same settings as LLT [67] including batch size, learning
rate, image size, and so on. We set Ko, = 16 for training
and K9, = 32 for test. Since pixels are more dense than
valid points, we set K 49, = 1 to save memory. Before gen-
erating point clouds from depth images, we apply the hole
completion algorithm [36] to the depth images. Our net-
work is implemented in Pytorch [48] and Pytorch3d [53].
All the experiments are conducted on a single A40 graphic
card. For more details of implementation, please see the
supplementary material.

Evaluation metrics. Following prior work [14, 15, 67], we
evaluate the RGB-D point cloud registration by three evalu-
ation metrics: rotation error, translation error, and chamfer
error [45]. For the above metrics, we not only report their
mean and median values but also their accuracy under dif-
ferent thresholds.

Competitors. Our competitors can be divided into three
categories based on the modalities they use. The first cat-
egory is only based on point cloud. In addition to previ-
ous baselines including ICP [5], FPFH [55], FCGF [10],
DGR [8], 3D MV Reg [17] and BYOC [15], we also com-
pare our method to the state-of-the-art point cloud registra-
tion method REGTR [70]. We use its officially provided
weights, which are obtained by training on 3DMatch, for
inference on ScanNet to compare the generalization. The
second category is only based on RGB image. It includes
many classic baselines such as SIFT [43], SuperPoint [13],
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Table 1. Pairwise registration on ScanNet [11]. Pose Sup indicates the pose or correspondence supervision.

Rotation (deg) Translation (cm) Chamfer (mm)
Train Set  Pose Sup Accuracy? Error| Accuracy? Error| Accuracy? Error|
5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.
ICP [5] - 31.7 556 996 104 8.8 75 194 746 224 200 84 247 405 329 141
FPFH [55] - 341 640 903 20.6 72 88 267 668 426 186 27.0 60.8 733 233 2.9
SIFT [43] - 552 757 892 186 43 177 445 798 265 112 381 706 783 42.6 1.7
SuperPoint [13] - 655 869 96.6 89 36 212 517 88.0 16.1 9.7 457 81.1 882 192 1.2
FCGF [10] - v 702 877 962 95 33 275 583 829 23.6 83 520 78.0 837 244 0.9
DGR [8] 3DMatch v 81.1 893 948 94 1.8 545 762 887 184 45 705 855 89.0 137 0.4
3D MV Reg [17] 3DMatch v 87.7 932 970 6.0 1.2 690 831 918 117 29 789 892 918 102 0.2
REGTR [70] 3DMatch v 86.0 93,9 986 44 1.6 614 803 914 144 38 809 909 936 135 0.2
UR&R [14] 3DMatch 87.6 93.1 983 43 1.0 692 840 938 95 28 797 913 940 72 0.2
UR&R (RGB-D) 3DMatch 87.6 93.7 988 3.8 1.1 675 838 946 85 30 786 917 946 65 0.2
UR&R (Supervised)  3DMatch v 923 953 982 38 08 776 894 955 718 23 861 940 956 6.7 0.1
BYOC [15] 3DMatch 66.5 852 978 74 33 307 576 889 16.0 82 541 828 895 95 0.9
LLT [67] 3DMatch 934 965 988 25 08 769 902 967 55 22 864 951 968 4.6 0.1
Ours 3DMatch 946 97.0 987 3.0 08 81.0 920 971 62 21 913 966 974 49 0.1
UR&R [14] ScanNet 927 958 985 34 08 772 896 961 73 23 860 946 96.1 59 0.1
UR&R (RGB-D) ScanNet 941 97.0 99.1 26 08 784 91.1 973 59 23 873 956 972 50 0.1
BYOC [15] ScanNet 86.5 952 99.1 38 1.7 564 806 963 87 43 781 939 964 5.6 0.3
LLT [67] ScanNet 955 976 99.1 25 08 804 922 976 55 22 889 964 976 4.6 0.1
Ours ScanNet 96.0 97.6 989 2.5 07 839 938 977 56 1.9 928 973 979 47 0.1

Table 2. Single branch performance of our method and LLT [67] (upper rows) and comparison with other fusion strategies (lower
rows). Visual (Ours) and Geo (Ours) denote the visual and geometric branches of our PointMBF, respectively. Visual (LLT) denotes the
visual branch in LLT, which is based on the dilated convolution. Visual (RGB-D) denotes our visual branch with an additional channel for
depth images. All these networks can resemble augmented version of UR&R [14] with different feature extractors. CAT denotes fusion
using direct concatenation. DF denotes fusion using DenseFusion [63]. Trans denotes fusion using transformer [59, 40] in high-level
feature space like DeepFusion [40]. Ours wo res denotes removing the residue design in our fusion modules.

Rotation (deg) Translation (cm) Chamfer (mm)
Accuracy T Error) Accuracy Error) Accuracy Error)
5 10 45 Mean  Med. 5 10 25 Mean  Med. 1 5 10 Mean  Med.
Visual (Ours) 899 943 984 39 1.0 724  86.7 949 8.4 2.6 827 928 951 6.7 0.2
Geo (Ours) 328 619 934 15.9 7.5 11.7 276 62.1 36.1 18.5 24.1 54.0 67.7 21.8 4.1
Visual (LLT [67]) 904 950 98.6 3.6 1.0 70.8 86.5 95.3 8.1 2.8 81.8 93.1 95.4 6.2 0.2
Visual (RGB-D) 85.0 92.1 98.2 4.7 1.1 64.1 80.6 927 10.2 33 75.8 89.3 92.8 7.7 0.2
CAT 93.1 96.1 98.7 32 0.8 78.5  90.5 96.4 6.7 2.2 89.7 957 969 5.6 0.1
DF [63] 929  96.0 98.6 33 0.8 782 903 96.3 6.8 2.2 89.2 956 968 54 0.1
Trans [40] 91,5 952 983 3.6 0.9 74.7 88.1 95.6 7.7 2.5 873 948 963 5.6 0.1
Ours wo res 940 96.6 98.7 3.1 0.8 80.3 913 96.8 6.3 2.1 90.7 962 972 53 0.1
Ours 946 97.0 98.7 3.0 0.8 81.0 92.0 971 6.2 2.1 913 96.6 974 4.9 0.1

and the recently proposed UR&R [14]. To further verify the method LLT [67], our method gains large improvement in
effectiveness of our method, we also incorporate a super- translation, which is the bottleneck of the registration on
vised version of UR&R as our competitor. The last category ScanNet. Moreover, by comparing our method with the
is based on RGB-D images. We compare our method to the RGB-D version of UR&R and LLT, we find that the fusion
state-of-the-art method LLT [67] and an RGB-D version of strategy plays an important role in RGB-D point cloud reg-
UR&R, which treats depth information as an additional in- istration. Unidirectional fusion in LLT leverages the com-
put channel. plementary information of RGB-D data, but still does not
fully exploit them. Our multi-scale bidirectional fusion is a

4.2. Evaluation on ScanNet better choice for RGB-D fusion, which can achieve better

To fully evaluate the proposed method, we train our performance even without sophisticated branches as other
PointMBF on ScanNet [11] and 3DMatch [73], respec- methods [67]. This will be further demonstrated in our ab-
tively, and test them on ScanNet. The former experi- lation studies.
ment closely resembles the cases of processing unannotated Trained on 3DMatch. The generalization results of
datasets, while the latter evaluates the generalization. learning-based methods are also shown in Table 1, where
Trained on ScanNet. As shown in Table 1, when the train- the models are trained on 3DMatch and tested on Scan-
ing set and test set come from the same domain, our pro- Net. It can be observed that our method not only achieves
posed method achieves new state-of-the-art performances the state-of-the-art performance on almost all metrics but
on almost all metrics, especially in terms of accuracy un- also outperforms several recent supervised methods such as

der small thresholds. Compared to previous state-of-the-art REGTR [70] and the supervised UR&R by a large mar-
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Table 3. Ablation on fusion stages. Encode denotes bidirectional fusion during encoding stage. Decode denotes bidirectional fusion
during decoding stage. Concat denotes the concatenation and linear map in the final stage.

Encode Decode Concat Rotation (deg) Translation (cm) Chamfer (mm)
Accuracy? Error) Accuracy? Error] Accuracy? Error)
5 10 45 Mean  Med. 5 10 25 Mean  Med. 1 5 10 Mean  Med.

v 94.1 96.7 98.7 3.1 0.8 80.1 915 96.8 6.4 2.1 90.7 963 97.3 5.5 0.1

v 939 966 98.5 32 0.8 798 915 96.8 6.7 22 90.6 962 972 54 0.1

v 93.1 96.1 98.7 32 0.8 785 905 964 6.7 2.2 89.7 957 969 5.6 0.1

v v 943 96.8 98.7 3.0 0.8 80.5 92.0 970 6.1 2.1 91.0 964 974 5.1 0.1
v v 94.1 965 98.6 32 0.8 80.6 91.6 96.7 6.5 2.1 91.0 962 972 5.5 0.1

v v 942 96.7 98.7 3.1 0.8 80.3 917 969 6.3 2.2 90.8 963 973 54 0.1
v v v 94.6 97.0 98.7 3.0 0.8 81.0 920 97.1 6.2 2.1 91.3 96.6 974 4.9 0.1

Table 4. Ablation on fusion direction. V2G denotes reserving fusion from the visual branch to the geometric branch. G2V denotes
reserving fusion from the geometric branch to the visual branch. CAT denotes reserving final undirected fusion i.e. concatenation.

V2G G2V  CAT Rotation (deg) Translation (cm) Chamfer (mm)
Accuracy T Error] Accuracy T Error| Accuracy? Error|
5 10 45 Mean  Med. 5 10 25 Mean  Med. 1 5 10 Mean  Med.

v 914 958 984 38 1.1 72.6 883 96.0 7.8 2.8 87.1 952 965 5.9 0.1
v 93.1 96.1 985 34 0.8 78.1 904 964 7.0 2.3 89.5 959 96.8 5.5 0.1

v 93.1 96.1 98.7 32 0.8 785 905 964 6.7 2.2 89.7 957 969 5.6 0.1

v v 94.1 96.7 98.7 3.1 0.8 80.3 91.7 969 6.3 2.1 910 964 973 52 0.1
v v 934 964  98.7 3.1 0.8 792 909 96.7 6.4 2.1 899 96.1 97.1 5.1 0.1

v v v 94.6 97.0 98.7 3.0 0.8 81.0 920 971 6.2 2.1 913 966 974 4.9 0.1

gin. Overall, our method shows competitive generaliza-
tion. What is noticeable is that when the proposed method
is trained on 3DMatch and tested on unseen ScanNet, its
performance is comparable or even superior to LLT trained
directly on ScanNet on some metrics.

4.3. Ablation Studies

To further verify the effectiveness of our multi-scale
bidirectional fusion, we conduct comprehensive ablation
studies. All the models in our ablation studies are trained
on 3DMatch [73] and tested on ScanNet [11].
Comparison with other fusion strategies. As discussed
in the related work section, there exist many other fu-
sion strategies including undirected and unidirectional fu-
sion. To fully show the effectiveness of our fusion strategy,
we compare our multi-scale bidirectional fusion with many
other fusion strategies.

The results are shown in Table 2. It can be seen that our
fusion strategy outperforms other strategies including undi-
rected fusion (direct concatenation, DenseFusion [63]) and
unidirectional fusion (transformer-based fusion like Deep-
Fusion [40]), indicating the effectiveness of multi-scale
bidirectional fusion. Besides, Table 2 also shows the per-
formance of the two single branches of PointMBF and the
visual branch of LLT, and according to Table 1 and Table
2, we find our visual branch performs worse than the visual
branch of LLT [67] in rotation and our geometric branch
has poor performance, but our PointMBF still outperforms
LLT. These results strongly suggest that our multi-scale fu-
sion can exploit the complementary information between
different modalities more effectively. We also find that the
residue design in our fusion module plays an essential role.
This is because we use fusion in all stages, which tends to

cause redundancy in the network. Moreover, most fusion
strategies successfully boost the performances, but fusion
by treating depth information as an additional channel in-
put causes performance degradation. We speculate that the
shared network can not deal with the big domain gap be-
tween RGB and depth. It is more appropriate to use two
different networks to handle different modalities. This also
reveals that the design of fusion strategy plays a vital role in
RGB-D point cloud registration.

Effect of multi-scale fusion. In this work, we fuse infor-
mation in all stages rather than in the last layers as LLT
[67]. We believe that fusion in all stages can promote the
exchange of complementary information in multiple scales,
making features more distinctive. To verify this, we conduct
an ablation on fusion stages.

The results are shown in Table 3. We find fusion in each
stage all contributes to the feature extraction. By gradu-
ally stacking fusion at different stages, our method finally
achieves the best performance. It also can be seen that our
bidirectional fusion is powerful as only bidirectional fusion
in the encoding or decoding stage shows competitive per-
formance.

Effect of bidirectional fusion. There are three types of in-
formation fusion in our proposed framework, namely the
multi-scale visual-to-geometric (V2G) fusion, multi-scale
geometric-to-visual fusion (G2V) fusion, and the fusion
using direct concatenation (CAT) at the end of the two
branches. To further confirm the effectiveness of each
fusion, we conduct another ablation on fusion directions.
Specifically, we reserve one or two of the three fusion types
and compare their performance to our whole model. The
results are shown in Table 4. When only using one type of
fusion, the performance of CAT is similar to that of G2V
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and they are superior to V2G. On base of CAT, adding ei-
ther of V2G or G2V can help improve the performance and
the highest performance is achieved by adding bidirectional
fusion to CAT, as shown in the last row of Table 4.

5. Conclusion

In this work, we propose a multi-scale bidirectional fu-
sion network for unsupervised RGB-D point cloud registra-
tion. Different from other networks for RGB-D point cloud
registration, our method implements bidirectional fusion in
all stages rather than unidirectional fusion only at some
stages, which can leverage the complementary information
in RGB-D data more effectively. The extensive experiments
also show that our multi-scale bidirectional fusion not only
helps network achieve new state-of-the-art performance but
also outperforms a series of fusion strategies using the same
network branches for feature extraction. Furthermore, we
believe our multi-scale bidirectional network is a general
framework, which can be transferred to more applications
such as reconstruction, tracking, etc in the future.
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