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Abstract

Multi-task learning faces two challenging issues: (1) the
high cost of annotating labels for all tasks and (2) balanc-
ing the training progress of various tasks with different na-
tures. To resolve the label annotation issue, we construct
a large-scale “partially annotated” multi-task dataset by
combining task-specific datasets. However, the numbers
of annotations for individual tasks are imbalanced, which
may escalate an imbalance in training progress. To bal-
ance the training progress, we propose an achievement-
based multi-task loss to modulate training speed based on
the “achievement,” defined as the ratio of current accu-
racy to single-task accuracy. Then, we formulate the multi-
task loss as a weighted geometric mean of individual task
losses instead of a weighted sum to prevent any task from
dominating the loss. In experiments, we evaluated the ac-
curacy and training speed of the proposed multi-task loss
on the large-scale multi-task dataset against recent multi-
task losses. The proposed loss achieved the best multi-task
accuracy without incurring training time overhead. Com-
pared to single-task models, the proposed one achieved
1.28%, 1.65%, and 1.18% accuracy improvement in ob-
ject detection, semantic segmentation, and depth estima-
tion, respectively, while reducing computations to 33.73%.
Source code is available at https://github.com/
samsung/Achievement—-based-MTL.

1. Introduction

Cooperation of various vision tasks is often required for
high-level vision applications for autonomous driving and
surveillance cameras [6, 16, 41, 8, 12, 38]. The vision
task models typically consist of two parts: a feature ex-
tractor and a prediction head, and most computations are
concentrated on the feature extractor. Hence, sharing the
feature extractor among different tasks, multi-task learn-
ing, can significantly expedite inference and enhance the

*Corresponding author

feature extractor to produce more general representations
[25, 18, 3, 12, 38]. However, multi-task learning faces two
major challenges: balancing the training progress of vari-
ous tasks with different natures and the cost of annotating
the labels of all tasks for plenty of images.

There are two major approaches to balancing the training
progress: loss scale-based [25, 5, 20] and gradients-based
[4, 31, 40, 24]. Primitive multi-task losses [25, 5] address
the difference in loss scale among individual tasks due to
their distinct loss functions (e.g., cross entropy for classifi-
cation and L1 loss for regression). However, simply match-
ing the loss scales is insufficient to balance the gradients
because the derivatives of distinct functions can differ.

Recent multi-task losses have directly adjusted back-
propagated gradients [4, 31, 40, 24, 23]. The gradient-based
methods seek to equalize the task gradients at the last shared
layer [4, 24]. However, achieving balance in task gradients
does not guarantee balance in the training progress because
the difficulty of tasks may differ. Easy tasks quickly con-
verge, while difficult ones are trained slowly [13]. Hence, it
is insufficient to consider only gradients to balance the train-
ing progress, but task difficulty should also be regarded.

Annotating labels for all tasks on plenty of images is
expensive and time-consuming. Thus, multi-task datasets
[33, 7, 10] suffer from a lack of annotations, while task-
specific datasets have become larger and larger [29, 22, 32].
Some previous works [18, 38] construct a union dataset
composed of task-specific datasets to resolve this issue. Im-
ages of the union dataset are partially annotated. Because
task losses are only produced for existing labels, multi-task
models can be easily biased toward the dominant task if the
numbers of labels for individual tasks differ significantly.
Moreover, the gradient of each task is also heavily influ-
enced by the number of task labels presented in a batch,
and thus gradient-based multi-task losses are significantly
disturbed on a partially annotated dataset.

In this paper, we propose a novel multi-task loss that can
balance the training progress of different tasks effectively,
without using task gradients. The proposed loss controls
the training progress based on accuracy achievement, de-
fined as the ratio of current accuracy to single-task accuracy.
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Figure 1. Achievement and task weight curves for (a) multi-task, (b) object detection, (c) semantic segmentation, and (d) depth estimation
on the PASCAL VOC [9] + NYU v2 [33] dataset. The blue and orange lines are the proposed method and IMTL-G [24], respectively. The
solid lines mean achievements (left y-axis), and the dotted lines denote task weights (right y-axis). Delivering the same amount of task
gradients to the shared feature extractor, IMTL-G learned easy tasks (segmentation and depth) quickly while the difficult one (detection)
suffered from under-fitting. The proposed method much focused on the challenging task (detection) having lower achievement than others,

and as a result, demonstrated better multi-task accuracy than IMTL-G.

Furthermore, refraining from using a general weighted sum
based loss, the proposed loss is composed of a weighted
geometric mean to exploit its scale-invariant property.

The main contributions of this paper are as follows:

1. We propose an achievement-based multi-task loss that
employs a weighted geometric mean in multi-task
learning. The proposed loss effectively balances the
training progress and prevents any task from domi-
nating the loss. Moreover, the proposed weights and
weighted geometric mean also dramatically improve
the accuracy of other multi-task losses, respectively.

2. We conduct a robust evaluation for multi-task losses
on a large-scale partially annotated multi-task dataset.

3. We empirically validate that multi-task learning on a
partially annotated dataset can achieve better accuracy
than filling in absent labels using single-task models.

2. Related Works
2.1. Multi-Task Loss

Recent research on multi-task learning has focused on
developing effective multi-task losses to train all tasks in
balance and improve the accuracy of each task as much as
possible. Most multi-task losses are generally represented
as the weighted sum of task losses as follows:

Nt
Liotar = »_wiLy @)
t=1

where w; and L; mean the task weight and task loss of ¢-th
task, Nt is the number of tasks, and L;.:,; denotes the total
multi-task loss. The task weight directly affects the accu-
racy of the corresponding task [17]. Hence, finding optimal
weights is crucial for achieving good accuracy, but manual
tuning of task weights is prohibitively expensive. Thus, ex-
tensive research has been conducted to determine the task
weights automatically.

The first approach is the learning-based method [17],
which defines task weights as learnable parameters based on
the task-agnostic homoscedastic uncertainty of task losses.
This method can be easily applied by simply adding the
learnable parameters and regularization. However, it is only
applicable if the uncertainty of output distribution can be
derived to the task loss [24].

Loss scale-based methods [25, 20, 5] address the scale
difference in task losses. RLW [20] chooses random task
weights, while DWA [25] modulates task weights to de-
crease task losses evenly. Simply defining multi-task losses
as the geometric mean of task losses, GLS [5] effectively
addresses the scale variance. However, matching loss scales
does not guarantee balance in task gradients because the
derivatives of different functions are distinct, even if their
scales are similar.
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Gradient-based methods adjust task weights to control
task gradients directly [31, 40, 23, 4, 24]. MGDA [31]
employs an iterative optimization process to find the task
weights so that the gradient vector of shared parameters
is aligned toward the minimum norm points of the convex
hull. PCGrad [40] and CAGrad [23] directly modulate task
gradients, without using task weights, to avoid conflicts in
their directions, which prevents destructive interference. In
contrast, GradNorm [4] and IMTL [24] focus on task gra-
dients at the last shared layer. While GradNorm controls
task weights to make the magnitudes of the task gradients
close to each other, IMTL [24] adjusts the task weights so
that the gradient has an identical length when projected onto
each task gradient. However, all gradient-based methods
are sensitive to popular regularization modules that drop out
units or layers during training, such as dropout or stochastic
depth [15]. In addition, selecting shared and task-specific
parameters incorrectly can significantly degrade accuracy.
Furthermore, even if the same amount of gradient is deliv-
ered for all tasks, the training speed may vary depending on
the difficulty of the tasks.

DTP [13], an accuracy-based method, introduces task
difficulty to multi-task learning. DTP estimates task dif-
ficulty based on current task accuracy. Regarding tasks
with low accuracy as difficult, DTP increases task weights
of ones with low accuracy to expedite their training and
vice versa. However, estimating training progress based on
current accuracy alone is insufficient. If easy and difficult
tasks have the same accuracy, DTP assumes their training
progress is the same, regardless of how much task accuracy
can be improved further. Moreover, DTP does not address
the imbalance scales of individual task losses.

In this paper, we rediscover and improve GLS [5] and
DTP [13], which were developed earlier, but have not re-
ceived much attention. Based on DTP using current ac-
curacy alone, we elaborate accuracy-based task weights by
introducing the “achievement,” defined as the ratio of cur-
rent and single-task accuracy. Employing the proposed
achievement-based task weight, we propose a novel multi-
task loss that consists of a weighted geometric mean of indi-
vidual task losses to effectively address the training imbal-
ance caused by different derivatives and scales of distinct
loss functions.

2.2. Annotating Multi-Task Labels

The biggest challenge of multi-task learning for practical
usages is data collection and annotation [11]. Especially,
the effort to annotate labels for all tasks is linearly propor-
tional to the number of tasks. Thus, representative multi-
task datasets [7, 33, 10] are order-of-magnitude smaller
than conventional single-task datasets, and most research on
multi-task learning [4, 31, 24, 25, 40] has used these small
datasets for training and evaluation.

UberNet [18] attempts to construct a union dataset by
combining different single-task datasets. To handle the is-
sue of imbalanced data sizes across tasks, it also proposes
a training method that delays parameter updates until suffi-
cient data is accumulated. However, it focuses on the task-
specific part of multi-task models, so the label imbalance
issue still exists for the shared one.

MuST [11] applies self-training [39] to relieve the ef-
forts for annotating multi-task labels, which constructing a
fully-annotated multi-task dataset from partially annotated
images by creating pseudo labels for label-absent tasks us-
ing pre-trained single-task teachers.

KD-MTL [19] adopts pre-trained single-task teachers in
the training phase. Balancing the training progress of the
tasks with different difficulties, KD-MTL trains a multi-task
model to generate shared features similar to what the task-
specific teachers produce.

In this paper, we empirically validate that multi-task
learning on a partially annotated dataset can provide su-
perior multi-task accuracy than methods leveraging single-
task models by learning general representation for multiple
tasks. Moreover, we also provide robust accuracy compar-
isons for various multi-task losses on a large-scale partially
annotated dataset.

3. Achievement-based Multi-Task Loss

The proposed multi-task loss is inspired by focal loss
[21], which was introduced to resolve the class imbalance in
object detection. Generally, numerous background samples
are in images, while foreground objects are only a few. As
a result, most detection losses are from the easily-detected
background, even though hard-to-detect foreground objects
are critical. To focus on objects, focal loss modulates cross-
entropy with focal weighting term, (1 — p.)7:

FL(pe;vy) = (1 = pe)’CE = —(1 —p.)7 log(pe) , (2)

where v means the focusing factor and p. denotes the prob-
ability that the prediction is correct (i.e., p. is p for fore-
ground samples and 1 — p for background). Through fo-
cal weighting, focal loss diminishes the contribution of easy
samples while enhancing the influence of difficult ones.

We introduce focal weighting, (1 —p.)7, as task weights
for multi-task learning to address the imbalance of training
progress across tasks. We define the achievement of each
task as the ratio of current and single-task accuracy, and use
it instead of p,. as follows:

wy (Acey;y) = (1 — Acey/pr)” 3)

where Acc; denotes current accuracy of task ¢, and p; means
task potential, defined as single-task accuracy. Like the
focal loss, the achievement-based task weight encourages
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tasks with low achievement to expedite their training while
slowing down the early converged ones.

Learning multiple tasks can enhance feature extractors
to learn more general representations than single-task learn-
ing. Hence, a multi-task model often outperforms its single-
task counterparts. During training, the achievement-based
task weights decrease as the task accuracy of the multi-task
model approaches the single-task accuracy. However, the
task weights can unintentionally increase if the accuracy of
the multi-task model surpasses the single-task ones. To pre-
vent the unintended increase, we introduce a slight margin,
m > 1, to the potential:

N
:<1_ Acct> . @
m- Pt

As the accuracy of a task improves during training, its
task weight is decreased. Decreasing task weights is the-
oretically identical to reducing the learning rate, inducing
the under-fitting of the corresponding task. To avoid under-
fitting, we normalize the task weights using softmax.

Finally, to resolve the scale imbalance of individual task
losses, the proposed achievement-based multi-task loss em-
ploys the weighted geometric mean instead of the conven-
tional weighted sum as follows:

Nt
Liotar = [ Lt 5)
t=1

4. Experimental Results
4.1. Experimental Setup
4.1.1 Preprocessing

We applied both geometric and photometric augmentations
to improve accuracy. We conducted random scaling, resize,
and random horizontal flip as geometric augmentation, and
then performed SSD’s photometric distortions [26] and ran-
dom adjust sharpness as photometric augmentation.

4.1.2 Evaluation Metrics

A popular metric for multi-task accuracy is the average per-
task accuracy drop [36]:

Nt
1 Mn t M £
Ayrr = Ny Z StL’thb’f, (6)
t=1 ,

where m and b denote the multi-task model and single-task
baseline, respectively. M, means the accuracy metric for

task ¢. S; is 1 if M, is higher is better, otherwise -1. We
slightly modified this metric for multiple metrics for a task:

m 7 Mb t,i
A _ ¢,
MTL = N E Nt E St T My, (7

where N; denotes the number of metrics for task ¢.

Depending on the single-task baseline, the average per-
task accuracy drop influenced by the accuracy of single-task
models. Hence, we propose a new multi-task accuracy met-
ric, independent of the quality of single-task models, based
on the geometric mean:

Nt N

Aceyrr = H H NTN\f/ Mrittl ®)

t=1:=1

For example, the multi-task accuracy metric for segmen-
tation, depth estimation, and surface normal is as follows:

0 . 11.2
ACC]WTL = i/mIOU \/ ! Y o " .
rmse mean - median
€))

4.2. Comparison to Recent Multi-Task Losses

In this subsection, the accuracy and training speed of the
proposed multi-task loss was compared to recent multi-task
losses. As multi-task baseline, we simply added all task
losses (uniform task weight). Then, as benchmark meth-
ods, we used loss-scale based method (RLW [20], DWA
[25] and GLS [5]), gradient-based methods (MGDA [31],
PCGrad [40], CAGrad [23], GradNorm [4], IMTL-G, and
IMTL [24]), and an accuracy-based method (DTP [13]). All
benchmark methods were implemented on the same code
base for a fair comparison; the same augmentation, op-
timizer, search range of learning rates, and LR scheduler
were applied to all benchmark and proposed methods. No
manual scalers were used for all task losses.

4.2.1 Comparison on the NYU v2 Dataset

We evaluated the performance of the proposed and bench-
mark multi-task losses on the NYU v2 dataset for seman-
tic segmentation, depth estimation, and surface normal.
We used DeepLabV3 [2] as the baseline architecture and
ResNet50 [14] as a feature extractor. The single-task and
multi-task models were trained 10 times for learning rates of
8e-4, 4e-4, 2e-4, le-4, and 8e-5. The representative metric
values were obtained by averaging the results of all trials,
excluding the maximum and minimum of Accyry (aver-
age of 8 trials). The metric values for the learning rate with
the best average Accysry were presented in Table 1. More
training details are available in Appendix A.

Although multi-task models learned general features,
none of the multi-task losses surpassed the single-task base-
line because surface normal requires significantly different
features, causing conflicts in training. Learning segmenta-
tion and depth estimation results improved accuracy than
the single-task baseline as presented in Appendix B.
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segmentation  depth estimation surface normal total
methods mloU 1 o1 1 rmse ] mean| median] 11.2571  Accyrr T Amrrn T time
Single-Task 0.4437 0.8087  0.5814  19.3462 13.2045 0.4553 0.3989 0.00% -
Constant Uniform 0.4446 0.8091  0.5776  22.8531 17.7271 0.3322 0.3666 -8.64%  31.07
(0.20%) (0.05%) 0.66%) (-18.13%)  (-34.25%)  (-27.05%) (-8.10%) - -
RLW [20] 0.4447 0.8082  0.5759  22.8410 17.6180 0.3350 0.3673 -8.43%  30.78
(0.23%) (-0.06%)  (0.94%) (-18.06%) (-33.42%) (-26.43%) (-7.91%) - -
icalfzj DWA [25] 0.4465 0.8093  0.5751  22.7934 17.6902 0.3330 0.3676 -8.34%  30.84
-base 0.62%) 0.07%)  (1.08%) (-17.82%) (-33.97%) (-26.85%)  (-7.82%) - -
GLS [5] 0.4321 0.8221  0.5665  20.7032 15.0512 0.3982 0.3837 -3.90%  30.07
(-2.61%) (1.65%) (2.56%) (-7.01%) (-13.99%)  (-12.54%) (-3.80%) - -
MGDA [31] 0.2511 0.7636  0.6266  19.2796 13.1962 0.4553 0.3229 -16.65% 76.23
(-43.41%) (-5.58%) (-7.77%) (0.34%) (0.06%) (-0.01%) (-19.05%) - -
PCGrad [40] 0.4435 0.8017  0.5825  24.2444 19.3005 0.3038 0.3558 -11.83% 58.06
(-0.06%) (-0.87%) (-0.19%) (-25.32%) (-46.17%) (-33.27%) (-10.79%) - -
Gradient  CAGrad [23] 0.4448 0.8001  0.5854  24.2759 19.3395 0.3033 0.3556 -11.91%  59.08
“based (0.24%) (1.07%) (-0.68%) (25.48%) (-46.46%) (-33.38%)  (-10.85%) - -
GradNorm [4] 0.4458 0.7888  0.5928  22.3488 16.9259 0.3524 0.3690 7195%  35.56
(0.46%) (-2.46%) (-1.96%) (-15.52%) (-28.18%) (-22.60%) (-7.50%) - -
IMTL-G [24] 0.4361 0.8021 0.5788  20.5248 14.6814 0.4097 0.3846 -3.67%  35.84
(-1.72%) (-0.82%)  (0.45%) (-6.09%) (-11.19%) (-10.01%) (-3.58%) - -
IMTL [24] 0.4162 0.7876  0.5930  20.8134 14.8333 0.4064 0.3746 -6.24%  58.98
(-6.20%) (-2.61%) (-2.00%) (-7.58%) (-12.34%)  (-10.74%) (-6.08%) - -
DTP [13] 0.4458 0.7648  0.6140  22.2556 16.7507 0.3568 0.3660 -8.74%  31.07
Accuracy (0.46%) (-5.42%) (-5.61%) (-15.04%) (-26.86%) (-21.63%) (-8.23%) - -
-based AMTL 0.4377 0.8205 0.5667  20.7974 15.1003 0.3969 0.3847 -3.64% 31.05
(proposed) (-1.35%) (1.46%) (2.54%) (-7.50%) (-14.36%) (-12.82%) (-3.54%) - -

Table 1. Comparison to recent multi-task losses on the NYU v2 dataset. mIoU, 61, 11.25, Aceymrrr, and Ay, are better when higher
while rmse, mean, and median are better when lower. time denotes the average training time for epoch in seconds. The best and
runner-up results for each metric are highlighted by bold and underline, respectively.

RLW [20], randomly choosing task weights, showed
similar accuracy to the multi-task baseline. Modulating task
weights to decrease task losses evenly, DWA [25] provided
slightly better multi-task accuracy than the baseline. GLS
[5], based on a scale-invariant geometric mean, demon-
strated the best accuracy among scale-based methods even
though it did not use task weights. All scale-based losses
did not incur additional training time.

There are three types of gradient-based multi-task losses:
using optimization (MGDA [31]), resolving gradient con-
flict (PCGrad [40] and CAGrad [23]), and modulating the
task gradients on the last shared layer (GradNorm [4],
IMTL-G, and IMTL [24]). When task gradients conflict,
MGDA [31] excessively enhanced the task of which gra-
dient magnitude was the least. As a result, while MGDA
provided the best accuracy in surface normal, its multi-
task accuracy suffered seriously. PCGrad [40] and CA-
Grad [23] directly modified task gradients to resolve gradi-
ent conflict, easily affected by dropout or stochastic depth.
Thus, they did not improve accuracy compared to the multi-
task baseline. We discussed the influence of droupout to

gradient-based losses in Appendix B.5. GradNorm [4] con-
trolled task weights so that all task losses evenly decreased,
which promoted multi-task accuracy compared to the base-
line. IMTL-G [24] achieved the best multi-task accuracy
among gradient-based methods by adjusting task weights so
that the gradient at the last shared layer has the same length
when projected to each gradients.

All gradient-based losses incurred overhead in training
time for computing task gradients. GradNorm and IMTL-
G have the smallest overhead because using task gradients
only for determining task weights. Resolving the conflict
(PCGrad and CAGrad) and additional back-propagation for
task-specific parameters (IMTL) further increased training
time. The iterative optimization process of MGDA induced
the most significant overhead in training time.

The proposed multi-task loss effectively addressed scale
difference in task losses by employing a weighted geometric
mean that is invariant to loss scale. The proposed one also
balanced training progress of various tasks by modulating
the achievement-based task weights. As a result, it achieved
the best multi-task accuracy without impeding training.
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Shared ASPP Individual ASPP
DeepLabV3 DeepLabV3+ DeepLabV3 DeepLabV3+
(197 GMAC) (207 GMAC) (334 GMAC) (343 GMAC)
Methods Aceyrr, Anmrr time  Aceyrr Amrr time  Aceyrr Aprr time  Aceyrr Anmrrn o time
Single-Task 0.3989 - - 0.3986 - 0.3989 - - 0.3986 - -
Constant Uniform 0.3666 -8.64% 30.24  0.3683 -8.07% 3098 0.3763  -6.00% 4331 0.3762 -596%  45.61

-8.55% 3155 03774  -571% 4322 03764  -5.88%  43.37

Scal RLW [20] 0.3673 -8.43%  30.50  0.3665
cale
_based DWA [25] 0.3676 -8.34%  30.65 0.3677

-8.25%  30.77 03768  -5.87% 43.01  0.3761 -5.97%  43.83

GLS [5] 0.3784 -5.33%  31.08  0.3761

-5.83% 3127 03786  -525% 44.16 0.3798  -4.80%  43.70

MGDA [31] 03229  -16.65% 74.99  0.3394

-13.41% 76.78 03770  -534% 8897 03793  -475%  90.15

PCGrad [40] 0.3558  -11.83% 58.05  0.3581

-11.04% 58.02  0.3697 -795% 6391 03710 -7.44%  64.25

Gj;;dsi:élt CAGrad [23] 0.3556  -1191% 57.63 0.3584 -10.94% 58.99  0.3689 -8.15% 63.01 0.3708 -7.51%  63.75
GradNorm [4]  0.3690 -7.95%  35.12  0.3677 -821% 36.19 0.3773 -574% 57.90  0.3760 -6.02%  59.13
IMTL-G [24] 0.3846 -3.67% 3522 0.3838 -3.78% 3533 03917 -1.79% 57.89 03910 -1.93%  58.67
IMTL [24] 0.3746 -6.24%  57.31 0.3746 -6.18%  57.85  0.3815 -4.43% 99.27  0.3807 -4.57%  103.50
Accuracy DTP [13] 0.3660 -8.74%  29.88  0.3625 -9.63% 3146  0.3739 -6.63% 4343  0.3751 -6.24%  43.10
-based AMTL 0.3847 -3.64% 32.08 0.3831 -3.98% 30.65 0.3899  -2.29% 44.08 0.3883  -2.59%  43.39
Table 2. Comparison of multi-task accuracy and training time for various DeepLab prediction heads.
MobileNetV2 [30]  EfficientNetV2-S [34] Aceyrr AmrTeL
Methods Aceyrr Amrr Acemyrrn Ao DTP [13] 0.3660  -8.74%
single—task 0.3581 B 0.3877 B + aCh.leVement-base(.i Welght 0.3745 -6.11%
Uniform 03313 -791% 03868  -0.20% + weighted geometric mean  0.3847  -3.64%
RLW [20] 0.328 -8.92% 0.383 -1.20%
DWA [25] 0.3311 -7.94% 0.387 -0.14% Table 4. Ablation study for the proposed multi-task loss.
GLS [5] 0.3464  -3.30% 0.3958 2.06%
MGDA [31] 0.3109  -11.93%  0.3268 -14.08% Uniform Achievement-based
PCGrad [40] 0.3204 -11.44%  0.3743 -3.51%
CAGrad 23] 03202 -11.48% 03742 -3.50% Aceyry  Amrr  Acemrr  Amri
GradNorm [4]  0.3346  -6.87% 0.3873 -0.06% PCGrad [40] 03558  -11.83% 03662  -8.73%
IMTL-G [24]  0.3513  -1.88%  0.3991 2.90%
ML [24] 03445 380% 03936 154% CAGrad [23] 0.3556  -1191% 03653  -8.98%
DTP [13] 0.3289  -8.58% 0.3837 -0.97% . . .
AMTL 03476 2.95% 0.3989 2.85% Table 5. Comparison of multi-task accuracy for the uniform and

Table 3. Comparison of multi-task accuracy for MobileNetV2 and
EfficientNetV2-S backbones.

Robustness We evaluated the robustness of the proposed
method for various prediction heads and backbones. First,
we estimated the performance of the proposed and bench-
mark methods for various DeepLab heads (Table 2). The
details of the architectures are described in appendix B.
No remarkable accuracy improvement was achieved by ex-
ploiting high resolution features (DeepLabV3+) since we
adopted the dilated ResNet50 [1] like MTI-Net [37]. How-
ever, it significantly escalated GMAC to use individual
ASPP for each task. The proposed multi-task loss provided
stable and excellent accuracy across all prediction heads.

Next, we evaluated the accuracy of the benchmark and
proposed losses with other backbones: MobileNet-V2 [30]

achievement-base weights.

Arithmetic Geometric
Aceyrr, Amrr Acenyrrn AuTr
RLW [20] 0.3673 -8.43% 0.3774  -5.59%
DWA [25] 0.3676 -8.34% 0.3811 -4.60%
DTP [13] 0.3660  -8.74% 0.3800 -4.81%

Table 6. Comparison of multi-task accuracy for the weighted arith-
metic and geometric means.

and EfficientNetV2-S [34] (Table 3). We used shared ASPP
and DeepLabV3+ architecture in this comparison. The
results showed similar patterns when using the ResNet50
backbone. The proposed method achieved runner-up accu-
racy for the MobileNetV?2 and EfficientNetV2-S backbones.
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detection segmentation depth estimation total
methods mAPQ50:95 1 mloU T o T rmse )  Accyrr T Amrr T time
Single-Task 0.5795 0.7895 0.8882  0.4393 0.8665 - -
Constant Uniform 0.5922 0.7823 0.8731  0.4498 0.8642 -0.25%  713.65
(2.19%) (-0.91%) (-1.69%)  (-2.40%)  (-0.26%) - -
0.5900 0.7835 0.8716  0.4587 0.8605 -0.70%  707.60
RLW 20] (1.81%) (-0.76%) (-1.87%) (-442%)  (-0.69%) - -
Scale 0.5853 0.7835 0.8621  0.4565 0.8574 -1.06%  737.70
-based DWA [25] (1.01%) (-0.75%) (-2.93%)  (-3.92%)  (-1.05%) - -
GLS [5] 0.5833 0.8007 0.8917  0.4329 0.8752 1.00%  733.23
(0.65%) (1.42%) 0.39%)  (1.45%) (1.00%) - -
0.4064 0.7714 0.8880 0.4453 0.7621 -10.95%  1475.13
MGDA [31] (-29.88%) (-2.29%) (-0.02%)  (-1.36%)  (-12.04%) - -
0.5898 0.7799 0.8428  0.4829 0.8470 2.32%  1120.39
PCGrad [40] (1.78%) (-1.22%) (-5.11%)  (-9.92%)  (-2.25%) - -
: 0.5877 0.7785 0.8461  0.4781 0.8474 2.26%  1081.03
Gradient
g CAGrad [23] (1.41%) (139%)  (473%) (-8.84%)  (-2.20%) - -
GradNorm [4] 0.5881 0.7884 0.8722  0.4462 0.8654 -0.12%  839.57
(1.47%) (-0.13%) (-1.80%) (-1.57%)  (-0.12%) - -
0.5740 0.8080 0.8916  0.4295 0.8743 0.90%  820.15
IMTL-G [24] (-0.95%) (2.35%) (0.39%)  (2.24%) (0.90%) - -
0.5891 0.8005 0.8908  0.4392 0.8757 1.07%  1271.22
IMTL [24] (1.65%) (1.39%) 0.30%)  (0.02%) (1.07%) - -
DTP [13] 0.5853 0.7666 0.8265  0.5025 0.8318 4.19%  705.87
Accuracy (1.00%) (-2.90%) (-6.94%) (-1438%)  (-4.01%) - -
-based AMTL 0.5870 0.8025 0.8903  0.4300 0.8784 1.37%  707.61
(proposed) (1.28%) (1.65%) 0.24%)  (2.11%) (1.37%) - -

Table 7. Comparison to recent multi-task losses on the partially annotated VOC+NYU dataset. m AP, mIoU, 61, Accyrr, and Ay
are better when higher while rmse is better when lower. time denotes the average training time for epoch in seconds. The best and
runner-up results for each metric are highlighted by bold and underline, respectively.

Effectiveness We evaluated the effectiveness of the pro-
posed achievement-base task weights and weighted geomet-
ric mean (Table 4). Compared to DTP that not consider task
potential, the achievement-based weight improved multi-
task accuracy from 0.3660 to 0.3745. The weighted geo-
metric mean further improved accuracy to 0.3847.

We also adopted the proposed weight and weighted geo-
metric mean to compatible benchmark methods to validate
their effectiveness. We applied the proposed achievement-
based weight to PCGrad and CAGrad that did not use task
weights. As described in Table 5, the proposed weights
greatly promoted multi-task accuracy of both losses.

Furthermore, we employed a weighted geometric mean
to RLW, DWA, and DTP that used task weight but not used
task gradients (Table 6). The weighted geometric mean sig-
nificantly improved multi-task accuracy of all of them.

4.2.2 Comparison on the VOC + NYU Dataset

In the following experiments, the multi-task accuracy and
training time of the proposed and benchmark multi-task
losses were evaluated on the large-scale partially annotated
multi-task dataset that consists of task-specific datasets
(PASCAL VOC [9] and NYU depth [33]). The dataset has
abundant training images, compared to the existing fully-
annotated multi-task datasets such as NYU v2 [33] (795
training images), Cityscapes [7] (2,975 training images),
and KITTI [10] (200 training images for multi-task). Its
total number of training images is 39,446, which contains
15,215 (38.57%) for object detection, 10,477 (26.56%) for
semantic segmentation, and 24,231 (64.43%) for depth es-
timation. Some images from PASCAL VOC have labels
for both detection and segmentation. More details for the
partially-annotated dataset were described in Appendix C.
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method Aceyrr, T Aprr T time
Single-Task 0.8665 - -

Uniform 08332  -3.78%  717.28

MuST [11] IMTLG [24]  0.8365  -3.46%  869.29
AMTL 08431  2.60%  728.85

Uniform 08596  -0.68%  939.07
NoisyStudent[39]  1NiTi G24] 08714 0.69%  1081.99
AMTL 08726  0.83%  940.03

Uniform 08673  022%  946.63
KD-MTLU9T TG [24] 08736  094%  1055.44
AMTL 08742  1.02%  940.03

o Teachers Uniform 08642  025%  713.65
(partially annotated) IMTL-G [24]  0.8743  0.90%  820.15
AMTL 08784  137%  707.61

Table 8. Comparison to methods leveraging single-task teachers.

In previous works using VOC [43, 44, 27], mAP@50
was used to evaluate detection accuracy. However, it
is loose to catch the improvement of regression quality,
achieved by recent regression losses such as cloU and gloU
losses [28, 42]. Hence, we adopted m A P@50:95, the stan-
dard MS COCO metric, instead of mAPQ50.

We used EfficientDet [35] as the baseline architecture to
address object detection, and EfficientNet-V2-small [34] as
a feature extractor. More description for network architec-
ture and training details is presented in Appendix C.

The accuracy of the benchmark and proposed losses on
the partially annotated dataset is presented in Table 7. When
using the partially annotated dataset, the task loss was only
produced for existing labels. Hence, the gradient of each
task was heavily influenced by the number of labels present
in each batch, which seriously degraded accuracy of meth-
ods that directly use task gradients (MGDA, PCGrad, and
CAGrad). However, IMTL and IMTL-G performed well
on the partially annotated dataset also because they can
compensate for the absence of task labels while balancing
the effective task gradients at the last shared layer. Re-
markably, despite its simplicity, GLS demonstrated supe-
rior multi-task accuracy. Employing the achievement-based
task weights in addition, the proposed multi-task loss fur-
ther improved and achieved the best multi-task accuracy,
without task gradients requiring additional computations.

Finally, to verify the effectiveness of multi-task learn-
ing on partially annotated datasets, we compared multi-task
accuracy using various methods that leverage single-task
models: hard pseudo labels (MuST [11]), soft-pseudo labels
(NoisyStudent [39]), and knowledge distillation (KD-MTL
[19]) (Table 8).

Multi-task self-training (MuST) [11] constructs a com-
plete multi-task dataset by producing hard-pseudo labels for
label-absent tasks before conducting multi-task learning.
However, this method suffers from out-of-distribution and
false-positive issues, and as a result, demonstrated lower ac-

curacy when compared to the partially annotated dataset.

NoisyStudent [39] encourages a student model to learn
beyond its teacher. The teacher produces predictions on im-
ages without augmentation, and then the student is trained
to generate identical predictions to its teacher’s on diffi-
cult images (augmented images). Using soft-pseudo la-
bels, NoisyStudent successfully relieved accuracy degrada-
tion caused by unreliable teacher predictions. As a result,
NoisyStudent greatly improved multi-task accuracy than
MusST, but still lower than using the partially annotated one.

KD-MTL [19] minimizes the difference between the
shared features of the multi-task model and the projected
features of single-task teachers. By learning from features
instead of pseudo labels, KD-MTL does not suffer from out-
of-distribution or false-positive issues. However, KD-MTL
showed lower multi-task accuracy than using the partially
annotated dataset. As trained for multiple tasks, a multi-task
model learned more general and powerful representations
than its single-task counterparts. Hence, imitating single-
task teachers rather hindered multi-task learning.

5. Conclusion

In this paper, we proposed a novel achievement-based
multi-task loss (AMTL) to balance the training progress
of various tasks with different natures. To focus on how
much accuracy can be improved further, we assessed the
potential of task accuracy using the single-task model in ad-
vance. Then, we estimated the training progress as the ratio
of current accuracy to its potential. Furthermore, to prevent
any task from dominating the loss, we formulated the pro-
posed multi-task loss as the weighted geometric mean of
task losses instead of the conventional weight sum.

In experiments, we conducted comprehensive evalua-
tions for the proposed loss with various recent benchmark
multi-task losses. We demonstrated that the proposed loss
achieved excellent multi-task accuracy regardless of back-
bones and prediction heads. Moreover, to validate the ef-
fectiveness of the proposed achievement-base task weights
and the weighted geometric mean, we applied them to com-
patible benchmark methods, respectively, and observed sig-
nificant improvements in accuracy for each.

Further, we constructed a large-scale partially annotated
multi-task dataset composed of task-specific datasets and
performed an accuracy comparison. Not using task gradi-
ents, the proposed loss outperformed benchmark losses, in-
cluding sophisticated gradient-based losses, on the partially
annotated dataset without incurring training time overheads.

Finally, as learning more general representations, multi-
task learning on the partially annotated dataset can produce
higher accuracy than methods leveraging single-task teach-
ers. We hope that experiments using such large-scale par-
tially annotated datasets become a new experimental base-
line for further multi-task learning research.
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