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Abstract

Estimating the depths of equirectangular (i.e., 360◦) im-
ages (EIs) is challenging given the distorted 180◦ × 360◦

field-of-view, which is hard to be addressed via convolu-
tional neural network (CNN). Although a transformer with
global attention achieves significant improvements over
CNN for EI depth estimation task, it is computationally
inefficient, which raises the need for transformer with lo-
cal attention. However, to apply local attention success-
fully for EIs, a specific strategy, which addresses distorted
equirectangular geometry and limited receptive field simul-
taneously, is required. Prior works have only cared either
of them, resulting in unsatisfactory depths occasionally.
In this paper, we propose an equirectangular geometry-
biased transformer termed EGformer. While limiting the
computational cost and the number of network parame-
ters, EGformer enables the extraction of the equirectangu-
lar geometry-aware local attention with a large receptive
field. To achieve this, we actively utilize the equirectangular
geometry as the bias for the local attention instead of strug-
gling to reduce the distortion of EIs. As compared to the
most recent EI depth estimation studies, the proposed ap-
proach yields the best depth outcomes overall with the low-
est computational cost and the fewest parameters, demon-
strating the effectiveness of the proposed methods.

1. Introduction

Estimating the depths of equirectangular (i.e., 360◦) im-

ages (EIs) can be challenging because such images have a

180◦ × 360◦ wide field-of-view (FoV) with distortion. Im-

ages with distorted wide FoV often requires a global view

for proper image processing [20, 26, 53]. Such circum-

stances strongly require a large receptive field for accurate

depth estimations of EIs, which is hard to be achieved via

(a) Input [55] (b) Ground truth [55]

(c) Panoformer [32]

(77.7GFlops, 20.4M params)

(d) EGformer

(73.9GFlops,15.4M params)

Figure 1: By utilizing the equirectangular geometry as the

bias, EGformer efficiently enables the extraction of the

equirectangular geometry-aware local attention with a large

receptive field, yielding much more accurate depths with

the lowest computational cost and the fewest parameters as

compared to the results in the most recent studies.

convolutional neural network (CNN).

Considering the receptive field, the vision transformer

(ViT) [14] may be the best option for equirectangular depth

estimations. ViT has advantages over a CNN in that the at-

tention is extracted in a global manner. A wide FoV can

be addressed through global attention, and the effective-

ness of this approach has been demonstrated [53]. However,

in terms of the computational cost, this global mechanism

makes ViT inappropriate for application to EIs. The com-

putational cost of global attention is quadratic with respect

to the input resolutions [23] which raises the need for local

attention [23, 22, 13, 18, 19].

Unfortunately, applying local attention to EIs is a non-

trivial problem because the distorted geometry and local re-

ceptive field should be addressed at the same time. Due

to the non-uniform geometry of EIs, each local atten-

tion should be extracted differently while considering the

equirectangular geometry. Therefore, local attention for

general vision tasks cannot yield satisfactory performance
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outcomes for EIs, which demands specific strategies. How-

ever, even if the distortion of EIs can be addressed via

proper strategies as proposed recently by Panoformer [32],

there still remains a fundamental limitation of local atten-

tion: the limited receptive field. To enlarge the receptive

field, various hand-crafted or data-adaptive sparse patterns

have been proposed for local windows with a hierarchical

type of network architecture [42, 43, 23, 13, 45, 32]. How-

ever, such repeated local operations cannot fundamentally

substitute for a global operator [44], increasing both the

computational cost and the number of network parameters

required for a plausible quality of the depth.

As described above, dealing efficiently with equirectan-

gular geometry and a limited receptive field via local atten-

tion appears to be challenging, yet one important fact has

been overlooked: the equirectangular geometry is known
beforehand. For various vision tasks, it has been shown

that a structural prior can boost the performances efficiently

[20, 46, 9, 16, 50, 48]. For example, based on the prior

knowledge that cars cannot fly up in the sky in urban scenes,

HA-Net [9] improves segmentation performance outcomes

at a negligible computational overhead by imposing differ-

ent importance levels on the encoded features according to

their vertical positions. Inspired by those studies, we come

up with the idea of offsetting the limitations of local atten-

tion via a structural prior of EIs.

In this paper, we propose an equirectangular geometry-

biased transformer, termed EGformer, which actively uti-

lizes the equirectangular geometry as the bias for inter-

and intra-local windows. Through this, while limiting the

computational cost and the number of network parame-

ters, EGformer enables the extraction of the equirectangular

geometry-aware local attention with a large receptive field.

EGformer consists of three main proposals: equirectangu-

lar relative position embedding (ERPE), distance-based at-

tention score (DAS) and equirectangular-aware attention re-

arrangement (EaAR). Specifically, ERPE and DAS impose

geometry bias onto the elements within the local window,

allowing for consideration of the equirectangular geometry

when extracting the local attention. Meanwhile, EaAR im-

poses the geometry bias on the local window. This enables

each local window to interact with other local windows in-

directly, thereby enlarging the receptive field. Compared to

the most recent studies of EI depth estimations, EGformer

yields the best depth outcomes overall with the lowest com-

putational cost and the fewest parameters, demonstrating

the effectiveness of the proposed method.

2. Background and related work

2.1. Equirectangular geometry

As shown in Figure 2, EIs are constructed by projecting

a sphere image onto two-dimensional (2D) plane, and vice

versa. Therefore, spherical coordinates are used for EIs, and

each pixel location is represented through (ρ, θ, φ), where

θ ∈ (0, 2π), φ ∈ (0, π). Spherical coordinates can be con-

verted to Cartesian coordinates (X,Y, Z) via Eq.(1).

⎧⎪⎨
⎪⎩

X = ρ · sin(φ) · cos(θ)
Y = ρ · sin(φ) · sin(θ)
Z = ρ · cos(φ)

(1)

Equirectangular image Sphere image

L R L,R

Figure 2: Conversion between EI and sphere image

Structural prior Due to the equirectangular geometry,

EIs have some distinct characteristics which should be fur-

ther considered for proper image processing. Below are sev-

eral examples. First, the information density of EIs differ

according to the locations. The information density is low

around near φ = 0, π, while it is high at φ = π
2 . The red

and blue lines in Figure 2 represent the differences in the in-

formation density. Despite having the same number of pix-

els, the red and blue lines in EIs contain different amount

of information, as shown in the sphere image of Figure 2.

Therefore, even with equal local window sizes, there exist

differences in information quantity according to the loca-

tions of local window. Second, EIs are cyclic. In other

words, the left and right ends of EIs are actually connected

although they appear to be separated in EIs. The L and R

points in Figure 2 visualize this characteristic. As the worst

case, a single object is often split into left and right ends of

EIs, requiring specific strategy [25].

2.2. Transformer for vision tasks

Compared to a CNN, ViT [14] possesses a global re-

ceptive field, which is highly beneficial for various vision

tasks [6, 17, 52, 47, 28, 21]. However, due to the high com-

putational cost of global attention, several studies have fo-

cused on utilizing the local attention based on hierarchical

architecture [42, 43]. The Swin Transformer (SwinT) [23]

proposes square-shaped local attention and the associated

shifting mechanism, and Deformable attention transformer

[45] further improves SwinT through deformable attention

inspired by the deformable convolution [11, 56]. However,

square-shaped local attention with a hierarchical architec-

ture enlarges the receptive field too slowly. To alleviate this,
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Figure 3: The network architecture of EGformer variants (left) and EGformer transformer block (right). Stage n and Stage

n′ indicates encoder and decoder, respectively. For better visualization, skip connection[31] between encoder and decoder is

omitted here, and more details are included in Technical Appendix. HorizontalE and V erticalE represents the proposed

transformer block of EGformer (Section 3.2), which comprise equirectangular-aware vertical and horizontal multi-head self-

attention (i.e., EH-MSA,EV-MSA) (Section 3.3).

the CSwin transformer (CSwinT) [13] proposes the use of

horizontal and vertical local attention in parallel, and Di-

lateformer [19] proposes dilated attention inspired by di-

lated convolution [51]. Nevertheless, both remain limited

in that the receptive field is bounded to the sizes of the local

windows.

2.3. 360 monocular depth estimation

The topics of equirectangular depth estimation studies

mostly fall into two categories: Dealing with equirectan-

gular geometry or dealing with insufficeint data. To ad-

dress the distortion of EIs, several studies [39, 40] uti-

lize cubemap projections with certain padding schemes [8].

Convolution kernels considering equirectangular geometry

[10, 33] have also been studied. Instead of addressing the

distortion directly, some studies utilize the equirectangular

geometry to improve the performance. Based on the find-

ing that the geometric structures of EIs are embedded along

the vertical direction [12], Hohonet [35] and SliceNet [26]

propose to process EIs in a vertical direction. Jin et al. [20]

and Zeng et al. [54] show that some prior knowledge of

geometric structure of EIs can boost the performances fur-

ther. Meanwhile, due to the distorted and wide FoV, ac-

quiring ground truth equirectangular depths is extremely

difficult, resulting in lack of data [24, 58, 53]. Therefore,

some studies have attempted to address data insufficiency

through self-supervised learning [38, 57, 25, 41] or transfer

learning [53]. Recently, inspired by the success of ViT [14],

there have been several attempts to apply a transformer to

equirectangular depth estimations. Yun et al. [53] demon-

strated that global attention can effectively handle the wide

FoV of EIs. However, global attention is computationally

inefficient and requires pre-training on a large-scale dataset

to perform at its best. To address this issue, Panoformer

[32] proposed pixel-based local attention for which the cal-

culations are done by sampling nearby pixels according to

the equirectangular geometry. To manage the small recep-

tive field of local attention, Panoformer adaptively adjusts

local window sizes via a learnable offset, similar to that of

a deformable mechanism [11]. However, because training

accurate and large offsets for a deformable mechanism is

extremely difficult in practice [56, 45], Panoformer is also

associated with a limited receptive field.

3. EGformer
3.1. Overview

Figure 3 illustrates the architecture of an EGformer

variant (refer to Section 4.2 for more variants). Each

HorizontalE (green block) and V erticalE (blue block)

represents the proposed horizontal and vertical trans-

former blocks of EGformer (Section 3.2), which comprises

equirectangular-aware horizontal and vertical multi-head

self-attention (EH-MSA,EV-MSA), as illustrated on the

right side of Figure 3 (Section 3.3). The yellow blocks (e.g.,

Patch embedding, Down sample) in Figure 3 are based on a

CNN. Details are included in the Technical Appendix.

3.2. Horizontal and vertical transformer block of
EGformer

As discussed in Section 2.3, EIs have distinct natures

along the vertical and horizontal directions [12]. The ge-

ometric structure (e.g., layout) is embedded along the verti-

cal direction [53, 49, 34], while the cyclic structure of EIs

can be addressed implicitly along the horizontal direction.

For these reasons, prior studies on EIs have leveraged these

natures to enhance their performance [35, 26]. Drawing in-

sights from these work, we adopt vertical and horizontal
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Size of local window (W)

# of 
local window

(H)
Channel (C)

(a) horizontal local window

# of local window (W)

Size of 
local window

(H)
Channel (C)

(b) vertical local window

Figure 4: Local window shapes of EGformer

shaped local window for EGformer.

Let us define zn−1 ∈ R
H×W×(dj×J) as the output of

(n-1)-th transformer block or precedent convolutional layer,

which are input to the n-th transformer block. Here, H and

W is the height and width, where J represents the number

of heads in multi-head self-attention (MSA) and dj indi-

cates the number of hidden layers of each head. In total, the

channel dimension of zn−1 is calculated via C = dj × J .

When zn−1 inputs to the HorizontalE , zn−1 is di-

vided along the horizontal direction with stripe width

(sw) as 1 (Figure 4 (a)), constructing the group

of horizontal local window features as formulated by

[zn−1
1 , zn−1

2 , · · · , zn−1
H ∈ R

1×W×C ] in Eq.(2). Through

layer normalization (LN ), the normalized features of i-
th horizontal local window for j-th head (i.e., F j

i ∈
R

1×W×dj ,) is extracted via Eq.(3). Then, query, key,

value (i.e., Qj
i ,K

j
i , V

j
i ∈ R

1×W×dj ) are obtained by

linearly projecting the F j
i as described in Eq.(4). Af-

terwards, through proposed EH-MSA, the local attention

for i-th horizontal local window Lj
i ∈ R

1×W×dj is ex-

tracted. By accumulating Lj
i along the height and head

dimension, equirectangular-aware horizontal attention L ∈
R

H×W×C is constructed as shown in Eq.(5). Finally, fol-

lowing the previous works [23, 13, 45], the output of n-th

HorizontalE (zn) is defined by Eq.(6).

[zn−1
1 , zn−1

2 , · · · , zn−1
H ] = zn−1 (2)

[F j
i ]

j=1,··· ,J = LN(zn−1
i ) (3)

Qj
i ,K

j
i , V

j
i = Linear(F j

i ) (4)

Lj
i = EH-MSA(Qj

i ,K
j
i , V

j
i )

L = [Lj
1, L

j
2, · · · , Lj

H ]j=1,··· ,J (5)

ẑn = L+ zn−1

zn = MLP (LN(ẑn)) + ẑn
(6)

In the same vein, the final output of n-th V erticalE is

extracted equally through EV-MSA with the only difference

being that the group of vertical local window features (i.e.,

[zn−1
1 , zn−1

2 , · · · , zn−1
W ∈ R

1×H×C ]) is made by dividing

zn−1 along vertical direction (Figure 4 (b)).

3.3. Equirectangular-aware horizontal and vertical
self-attention

The overall process of EH-MSA is illustrated in Figure

5. When calculating the attention score (QKT + E(φ)),
ERPE (E(φ)) is added to QKT similar to relative position

embedding [23]. Then, the Das (blue block) is calculated

from attention score, which produces the attention for the

current block. Additionally, the importance level of each

local window (Mh) is obtained from the attention score.

Finally, through EaAR, the final attention of EH-MSA (L)

is provided. The following subsections describe each com-

ponent of E(V)H-MSA in detail.

EH-MSA

Figure 5: Overall process of EH-MSA. The components in

yellow (ERPE), blue (Das) and gray block (EaAR) denote

our main proposals.

Equirectangular relative position embedding We pro-

pose a non-parameterized ERPE to impose equirectangu-

lar geometry bias on the elements within each vertical and

horizontal local windows. We define E(φi) ∈ R
W×W as

the ERPE for horizontal local windows, where the (m,n)-

th element of E(φi) is expressed via E(φi)m,n ∈ R
1×1.

The calculation process of E(φi)m,n is defined by Eq.(7).

Here, θm,n denotes the positions of the m-th and n-th el-

ements in the horizontal local windows, where φi denotes

the positions of the i-th horizontal local windows. Simi-

larly, the ERPE for the i-th vertical local window is ex-

pressed via E(θi) ∈ R
H×H , where the (m,n)-th ele-

ment of E(θi)m,n ∈ R
1×1 is calculated with Eq.(8)1. The

sign(·) function is used to distinguish between E(φi)m,n

and E(φi)n,m.

E(φi)m,n = sign(θm−θn)·ρ
√

2{1− cos(θm − θn)}·sin(φi)
(7)

1In experiments, we set ρ = 0.1. Refer to Table 5 for more details.

6104



E(θi)m,n = sign(φm − φn) · ρ
√
2{1− cos(φm − φn)}

(8)

ERPE is calculated by measuring the distances between

the m-th and n-th elements in Spherical coordinates as il-

lustrated in Figure 6. The green line in Figure 6 denotes

E(φi) of each local window, while each blue and red line

represents the corresponding horizontal local window. Un-

like position embedding for general vision tasks, ERPE can

enforce the attention score to assign high similarity for the

elements that are close in three-dimensional space. For in-

stance, the ERPE of L and R in Figure 2 is 0 although they

are far apart in EIs. As a result, ERPE induces the trans-

former to assign similar attention score for L and R that

makes transformer to understand the cyclic structure of EIs.

Figure 6: ERPE for horizontal local window. Each red and

blue line represents the horizontal local window. Green line

indicates the ERPE which are calculated through the dis-

tance in Cartesian coordinate.

Distance-based attention score Conventionally, softmax

has been preferred for re-weighting the attention score.

However, softmax is computationally inefficient [3, 30, 4,

36, 27] and lacks relevance to the natural language process-

ing (NLP) or vision tasks. For these reasons, some studies

have attempted to replace softmax with alternative functions

[36, 27]. These studies empirically determined that the es-

sential roles performed by softmax are as follows.

• Ensuring attention score to get non-negative value

• Re-weighting the attention score

Inspired by their findings, we propose a distance-based

attention score for each i-th horizontal (Dashi ∈ R
1×W×W )

and vertical (Dasvi ∈ R
1×H×H ) local window, defined

by Eqs.(10) and (11) respectively. Here, N represents L1

normalization, and (ρb, θb, φb) represents the baseline point

(hyperparameter). Then, the local attention of each i-th lo-

cal window is obtained using Eq.(12)

scorehi = QiK
T
i + E(φi)

scorevi = QiK
T
i + E(θi)

(9)

Dashi = 2ρb
2 ·{1−cos(N{scorehi }·

π

2
)}·sin2(φb) (10)

Dasvi = 2ρb
2 · {1− cos(N{scorevi } ·

π

2
)} (11)

Attentionh
i = Dashi × Vi

Attentionv
i = Dasvi × Vi

(12)

The core idea of Dash,vi is to convert each element

of scoreh,vi into the distances from the baseline point

(ρb, θb, φb) in Spherical coordinates. Simply put, the farther

the element of scoreh,vi is from (ρb, θb, φb), the higher the

distance-based attention score it receives. In this paper, we

set baseline point as (ρb, θb, φb)=(
1√
2
, 0, π

2 ) to make both

Dash and Dasv get equal score range [0, 1]. The calcu-

lation process of Dashi is visualized in Figure 7, which is

performed via the following steps. First, through normal-

ization as denoted by the black arrow in Figure 7, scorehi
is converted to Δθ ∈ (−π

2 ,
π
2 ), as visualized by the green

curve in Figure 7. Second, by calculating the distance

of ( 1√
2
, 0 + Δθ, π

2 ) from ( 1√
2
, 0, π

2 ) in Spherical coordi-

nates,
√
Dashi is obtained, as represented via the purple

line in Figure 7. Finally, as shown in Eq.(10), square of the

distance is calculated for the final distance-based attention

score to focus more on the important region by amplifying

the differences in score value. In the same vein, scorevi
is converted to Δφ ∈ (−π

2 ,
π
2 ) . Then, by calculating the

square of the distance of ( 1√
2
, 0, π

2 +Δφ) from ( 1√
2
, 0, π

2 )

in Spherical coordinates, Dasvi is obtained as described in

Eq.(11).

Re-weighted 

Figure 7: The illustration of the distance-based attention

score for horizontal local window. Each element in scorehi
is re-weighted to the distances from the ( 1√

2
, 0, π

2 ), which

determines the distance-based attention score of each ele-

ment.

Compared to softmax which is biased in posi-

tive values2, Das is more appropriate for ERPE. Be-

cause E(θ, φ)m,n=−E(θ, φ)n,m, softmax forces unbal-

anced score for (m,n)-th and (n,m)-th elements when

2To get high softmax attention score, an element in score should have

higher ’positive’ values than others.
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ERPE is imposed. Unlike the NLP in which the order of

each element matters, it is often not for depth estimation

tasks. Therefore, unbalanced score may confuse a trans-

former, resulting in incorrect score extraction. On the con-

trary, Das is symmetric 3. Therefore, when ERPE is used

with Das, a transformer can get balanced score if required,

which would be more suitable for EI depth estimation.

Equirectangular-aware attention rearrangement Al-

though structural prior of EIs is embedded in Attentioni

via ERPE and Das, structural prior between Attentioni

is not yet imposed. To address this issue, we propose

equirectangular-aware attention rearrangement, defined by

Eq.(13). Lh
i ∈ R

1×W×C and Lv
i ∈ R

1×H×C indicate the

rearranged local attention of the i-th horizontal and verti-

cal local window respectively, with Mh
i ∈ R

1×1×1 and

Mv
i ∈ R

1×1×1 representing the importance level of each

local window. The importance level of each local window

is defined by Eq.(15), where f(x) calculates the mean of all

elements in x. Local windows that are important receive M
values close to 1, while those that are unimportant receive

M values close to 0 4.

Lh
i = Mh

i · (Attentioni) + (1−Mh
i ) · zn−1

i

Lv
i = Mv

i · (Attentioni) + (1−Mv
i ) · zn−1

i

(13)

f(x) =

∑N
p=1 xp

N
(14)

Mh
i =

f(|scorehi |)
max
∀i

(f(|scorehi |))
,Mv

i =
f(|scorevi |)

max
∀i

(f(|scorevi |))
(15)

To approximate Mh,v
i , we utilize scoreh,vi . Because

scoreh,vi is equirectangular geometry-biased, the mean of

|scoreh,vi | implicitly reflects both the information density

and distinctive features of each local window. Specifically,

E(θ, φ) term in scoreh,vi is closely related to the informa-

tion density5 and QKT term is related to the distinctive

characteristics of each local window. Because the infor-

mation density of local window have high relevance with

the level of importance, geometry-biased score values (i.e.,

|scoreh,vi |) are appropriate to estimate Mh,v .

As shown in Eq.(15), the final importance level of i-th lo-

cal window is obtained by comparing the f(|scoreh,vi |) of

all other local windows. Therefore, Mv,h
i ∗ Attentionh,v

i

31-cos(x)=1-cos(−x)
4In experiments, we clamp Mi to have value of 0.5 at its minimum to

ensure certain amount of Attentioni to be used for L
5f(|E(θi, φi)|) gets proportional relationship with the information

density of each i-th local window as shown in Figure 6.

term achieve global-like characteristics by making the lo-

cal attention to interact with each other indirectly. As a re-

sult, the local attention can be extracted more accurately

from a feature map with a high resolution. This enables

the retention of detailed spatial information and ultimately

improves the depth quality. However, in practice, the im-

portance level of each local window can be predicted in-

correctly. This could potentially dilute the important in-

formation of Attentionh,v
i via multiplication with Mv,h

i .

The (1 − Mv,h
i ) ∗ zn−1

i term can prevent such a situation

and enable Li to be extracted by observing various attention

blocks simultaneously, resulting in a more global represen-

tation of Li.

Computational complexity The computational com-

plexity of EH(V)-MSA is as follows:

Ω(EH-MSA) = 4HWC2 + 2HW 2C

Ω(EV-MSA) = 4HWC2 + 2H2WC
(16)

4. Experiments

Due to page limitation, detailed experimental environ-

ment is described in the Technical Appendix.

4.1. Experimental environment

Dataset We evaluate our method using Structured3D [55]

and Pano3D [1] datasets, which are the most recent datasets

with the highest quality. Discussions on other datasets [5,

2, 58, 38] are included in Technical Appendix.

Metrics The scale of the depth differs according to how

the depth is acquired; therefore, an alignment process is

commonly used when evaluating the depths of multiple

dataset simultaneously [15, 7, 37, 29, 28, 53]. Following

earlier work [28], we align the depths in an image-wise

manner before measuring the errors for each dataset as de-

fined by Eq.(17) for all methods. Quantitative results are

extracted by comparing aligned depth (DepthA) with the

ground truth (GT ).

s, t = argmin
s,t

(s ·Depth+ t−GT )

DepthA = s ·Depth+ t
(17)

Common evaluation metrics are used. Lower is better for

the absolute relative error (Abs.rel), squared relative error

(Sq.rel), root mean square linear error (RMS.lin), root mean

square log error (RMSlog). Meanwhile, higher is better

for relative accuracy (δn), where δn represents δ < 1.25n.

FLOPs are calculated using Structured3D testset [55].
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ID Encoder Decoder Abs.rel Sq.rel RMS.lin RMSlog δ1 δ2 δ3 #Param FLOPs

0 HHHH HHHH 0.0421 0.0373 0.2961 0.1007 0.9784 0.9922 0.9960 15.3M 81.5G

1 VVVV VVVV 0.0389 0.0346 0.2983 0.0998 0.9782 0.9920 0.9959 15.3M 70.1G

2 EEEE EEEE 0.0375 0.0320 0.2945 0.0979 0.9782 0.9920 0.9960 15.3M 75.8G

3 MMMM MMMM 0.0366 0.0308 0.2795 0.0959 0.9798 0.9926 0.9963 17.5M 80.1G

4 PPEE EEPP 0.0362 0.0318 0.2874 0.0979 0.9791 0.9921 0.9960 15.6M 77.6G

5 MMEE EEMM 0.0342 0.0279 0.2756 0.0932 0.9810 0.9928 0.9964 15.4M 73.9G

Table 1: Depth estimation results on network variants for Structured3D testset [55]. Bottleneck layer is fixed to E.

Testset Method Backbone Abs.rel Sq.rel RMS.lin RMSlog δ1 δ2 δ3 #Param FLOPs

Structured3D [55]

Bifuse [39] CNN 0.0644 0.0565 0.4099 0.1194 0.9673 0.9892 0.9948 253.0M 723.4G

SliceNet [26] CNN+RNN 0.1103 0.1273 0.6164 0.1811 0.9012 0.9705 0.9867 79.5M 84.3G

Yun et al. [53] Global 0.0505 0.0499 0.3475 0.1150 0.9700 0.9896 0.9947 123.7M 589.4G

Panoformer [32] Local 0.0394 0.0346 0.2960 0.1004 0.9781 0.9918 0.9958 20.4M 77.7G

EGformer Local 0.0342 0.0279 0.2756 0.0932 0.9810 0.9928 0.9964 15.4M 73.9G

Pano3D [1]

Bifuse [39] CNN 0.1704 0.1528 0.7272 0.2466 0.7680 0.9251 0.9731 253.0M 723.4G

SliceNet [26] CNN+RNN 0.1254 0.1035 0.5761 0.1898 0.8575 0.9640 0.9867 79.5M 84.3G

Yun et al. [53] Global 0.0907 0.0658 0.4701 0.1502 0.9131 0.9792 0.9924 123.7M 589.4G

Panoformer [32] Local 0.0699 0.0494 0.4046 0.1282 0.9436 0.9847 0.9939 20.4M 77.7G

EGformer Local 0.0660 0.0428 0.3874 0.1194 0.9503 0.9877 0.9952 15.4M 73.9G

Table 2: Quantitative depth results of each method. Numbers in bold indicate the best results. It is observed that EGformer

achieves the best depth outcomes with the lowest FLOPs and the fewest parameters.

4.2. Model study

Because all methods have their pros and cons, it is of-

ten observed that combining several methods yields bet-

ter outcomes. For this reason, we study various EGformer

variants. Figure 8 shows the various attention module

as denoted by E, M, P, H and V. Here, PST indicates

Panoformer attention block [32]. Based on this annotation,

network architecture can be expressed simply. For example,

network architecture in Figure 3 is expressed via ’EEEE-E-

EEEE’.

(a) Module E (b) Module M (c) Module P

(d) Module H (e) Module V

Figure 8: Various attention module used in Table 1. PST
represents the attention block of Panoformer [32].

Table 1 shows the quantitative results of each network

variant for the Structured3D testset [55]. As shown in Ta-

ble 1, the H or V attention module does not yield plausible

depth results as shown in ID 0 and 1. As discussed in previ-

ous studies [13], the relatively poor performances of H/V
modules can be explained via their narrow stripe widths

(i.e., sw = 1). Although consecutive horizontal and vertical

attention module (E) can alleviate the problem of a narrow

stripe width, as shown in ID 2, this solution falls short. Un-

der the circumstances, the easiest means of improving depth

quality level is to enlarge the stripe width [13]. However,

a wider stripe width also increases the computational cost

significantly. Therefore, instead of using wider stripes, we

attempt to improve the depth quality by mixing various at-

tention modules, as shown in ID 3, 4 and 5. Among these,

we observe that ID 5 is the best fit for our purpose. Based

on these results, we set the network architecture of ID 5

as the default architecture in this paper. Meanwhile, the

performance differences between ID 3,4 and ID 5 clearly

demonstrate the effect of the proposed EH(V)-MSA.

4.3. Comparison with state-of-the-arts

To demonstrate the effectiveness of our proposals, we

compare EGformer with the state-of-the-arts. Table 2

shows the quantitative results of each method. Compared

to CNN or RNN based approaches, it is observed that

transformer-based approaches yield much better depth out-

comes. Among which, EGformer achieves the best depth

outcomes with the lowest computational cost and the fewest

parameters. The reason for low depth qualities of Yun et
al. [53] could be the lack of dataset. Vision transformer,

in which Yun et al. based on, requires large-scale dataset
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(a) Sturctured3D[55] (b) Pano3D[1] (c) Real-world scene[53]

Figure 9: Qualitative results of each method. G.T represents ground truth. Due to page limitations, top-down parts of images

are cropped in this figure. There are no ground truth depths in (c) Real-world scene [53].

[14]. However, under our experimental environment, scarce

equirectangular depth dataset is used only, which may im-

pair the performances. A further analysis is included in

Technical Appendix.

Figure 9 shows the qualitative results of each method.

As similar to Table 2, transformer-based approaches pro-

vide much better results than that of CNN or RNN based

approaches. Slicenet [26] lacks details as reported simi-

larly by [32], and Bifuse [39] provides unsatisfactory re-

sults considering the large computational cost and param-

eters. Out of transformer-based approaches, EGformer

yields the best performance in terms of the details. In par-

ticular, Panoformer fails to reconstruct the depth of a lamp

in Pano3D testset. On the contrary, EGformer reconstructs

the depth of a lamp successfully. This result supports our

argument in that EGformer extracts the attention accurately

even from a feature map with a high resolution, which en-

ables to keep the detailed spatial information. The results

on challenging real-world scenes further demonstrate our

arguments. All methods fail to distinguish chairs from the

background except the EGformer.

4.4. Ablation study

As discussed in Section 3.3, each component of EH(V)-

MSA is engineered to perform at its best when they are used

Data ID ERPE Das EaAR Abs.rel Sq.rel RMSlin RMSlog δ1

S3D

0 � � � 0.0342 0.0279 0.2756 0.0932 0.9810
1 � � 0.0360 0.0307 0.2804 0.0948 0.9799
2 � � 0.0363 0.0301 0.2804 0.0966 0.9805
3 � 0.0374 0.0318 0.2914 0.0984 0.9791
4 0.0371 0.0316 0.2859 0.0971 0.9793

Pano3D

0 � � � 0.0660 0.0428 0.3874 0.1194 0.9503
1 � � 0.0677 0.0443 0.3972 0.1225 0.9479
2 � � 0.0687 0.0449 0.3966 0.1228 0.9479
3 � 0.0689 0.0448 0.3983 0.1227 0.9482
4 0.0700 0.0466 0.4052 0.1248 0.9455

Table 3: Ablation study. ID 4 uses softmax attention score

with locally enhanced position encoding (LePE) [13]. S3D

represents the Structured3D testset [55].

altogether. For example, ERPE requires symmetric char-

acteristics of Das to impose geometry bias naturally, and

EaAR requires a well-biased score to rearrange the atten-

tion properly. Table 3 shows these characteristics. Here,

ID 4 uses softmax attention score with locally enhanced po-

sition encoding (LePE) [13]. Compared to ID 0, a signif-

icant performance drop is observed when each component

of EH(V)-MSA is removed from ID 0 as shown in ID 1,2,3

and 4. Although these dependencies can be seen as a weak-

ness of EH(V)-MSA, they also suggest that EH(V)-MSA

is elaborately designed, which explains why EGformer en-

ables the efficient extraction of the attention for EIs.
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Further study on the effect of EH(V)-MSA Because the

network architecture of EGformer in Table 3 is ’MMEE-E-
EEMM’, PST in M may dilute the effect of EH(V)-MSA.

Therefore, to see the effect of EH(V)-MSA more clearly,

we conduct an additional ablation study. Table 4 and Figure

10 show the depth estimation results of ’EEEE-E-EEEE’

architecture for Structured3D testset. As equal to ID 4 in

Table 3, ’Baseline’ represents the model that uses softmax

attention score with LePE [13] as similar to that of CSwin

transformer [13]. As shown in Table 4, improvements are

observed when EH(V)-MSA is used instead of CSwin at-

tention mechanism. Meanwhile, Figure 10 shows interest-

ing results. As similar to the result of Panoformer in Figure

9 (b), it is shown that Baseline model fails to reconstruct the

depth of a small chair as shown in Figure 10. These results

further support our arguments in that the lack of details in

depths are common limitation of small receptive field re-

gardless of the shape of the local window. On the contrary,

EH(V)-MSA reconstructs the depth of a chair appropriately.

This demonstrates clearly in that EH(V)-MSA acts as a key

role in keeping the detailed spatial information.

Method Abs.rel Sq.rel RMS.lin RMSlog δ1 δ2 δ3

Baseline 0.0399 0.0358 0.3016 0.1014 0.9766 0.9916 0.9958
EH(V)-MSA 0.0375 0.0320 0.2945 0.0979 0.9782 0.9920 0.9960

Table 4: Depth estimation results when different attention

mechanism is used for ’EEEE-E-EEEE’ architecture for

Structured3D testset [55]. Baseline uses softmax attention

score with LePE [13].
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Figure 10: Effect of EH(V)-MSA for ’EEEE-E-EEEE’ net-

work architecture. Baseline uses softmax attention score

with LePE [13].

Ablation study on bias level (ρ) Although it is demon-

strated that equirectangular geometry bias is effective in ex-

tracting accurate local attention, excessive geometry bias

also may dilute the important information in attention. In

EGformer, the influence of equirectangular geometry bias

on attention is controlled by ρ in Eqs.(7) and (8). There-

fore, to find the appropriate bias level (ρ), we conduct an

experiment in Table 5, which shows the depth estimation

results when different bias level is used. Unlike previous

experiments, Pano3D dataset is not used here for training.

As shown in Table 5, the best results are observed when

ρ = 0.1. These results show that appropriate bias level is

important for accurate attention. Meanwhile, based on the

results in Table 5, we used ρ = 0.1 as default in this paper.

ρ Abs.rel Sq.rel RMS.lin RMSlog δ1 δ2 δ3

0.03 0.0347 0.0284 0.2765 0.0941 0.9811 0.9930 0.9963
0.1 0.0338 0.0268 0.2731 0.0933 0.9816 0.9929 0.9963
0.3 0.0352 0.0288 0.2747 0.0942 0.9811 0.9924 0.9964

Table 5: Depth estimation results when different bias level

(ρ) is used for ’MMEE-E-EEMM’ architecture. Each model

is trained and tested with Structured3D dataset [55].

5. Conclusion
In this paper, we propose EGformer for efficient and so-

phisticated equirectangular depth estimation. The core of

EGformer is E(H)V-MSA, which enables to extract local

attention in a global manner by considering the equirect-

angular geometry. To achieve this, we actively utilize the

structural prior of EIs when extracting the local attention.

Through experiments, we demonstrate that EGformer en-

ables to improve the depth quality level while limiting the

computational cost. Considering that EGformer can be gen-

erally applied with other attention block as demonstrated in

experiments, we expect that EGformer will be extremely

beneficial for various 360 vision tasks.
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