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Abstract

Class Incremental Learning (CIL) aims to sequentially
learn new classes while avoiding catastrophic forgetting
of previous knowledge. We propose to use Masked Au-
toencoders (MAEs) as efficient learners for CIL. MAEs
were originally designed to learn useful representations
through reconstructive unsupervised learning, and they can
be easily integrated with a supervised loss for classifica-
tion. Moreover, MAEs can reliably reconstruct original in-
put images from randomly selected patches, which we use
to store exemplars from past tasks more efficiently for CIL.
We also propose a bilateral MAE framework to learn from
image-level and embedding-level fusion, which produces
better-quality reconstructed images and more stable rep-
resentations. Our experiments confirm that our approach
performs better than the state-of-the-art on CIFAR-100,
ImageNet-Subset, and ImageNet-Full. The code is avail-
able at https://github.com/scok30/MAE-CIL.

1. Introduction
Deep learning has had a broad and deep impact on most

computer vision tasks over the last ten years. Given the

way humans learn continually in their lifespan, it is natu-

ral to expect models also to be able to accumulate knowl-

edge and build on past experiences to adapt to new tasks

incrementally. The real world is very dynamic, leading

to varying data distributions over time, while deep models

tend to catastrophically forget old tasks when learning new

ones [26].

Class Incremental Learning (CIL) aims to learn new

classification tasks sequentially while avoiding catastrophic

forgetting [2, 25]. CIL approaches can be roughly di-

vided into three categories [5], i.e., Rehearsal-based meth-
ods [13, 29, 31], Regularization-based methods [15, 17],

and Architecture-based methods [1, 23, 24]. Among them,

Rehearsal-based methods achieve state-of-the-art perfor-

mance by storing exemplars from past tasks or generating

synthetic samples for replay.
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Figure 1. Our proposed bilateral MAE for efficient CIL. The Re-

play Buffer contains random patches selected from past task im-

ages, which is more efficient than storing whole images. Combin-

ing these with masked input data from the current task, the MAE

simultaneously learns to classify and reconstruct images from the

masked input. To further improve the reconstructed image quality

and learned representations, embedding-level and image-level fu-

sion is used to learn more stable representations and more detailed

reconstructions for CIL.

Normally, only a fixed size of memory is allowed during

incremental learning. Therefore, it limits the stored exem-

plars from past tasks. Other works exploit generative net-

works [35, 38, 43] (e.g., GANs) to synthesize samples from

old tasks for replay. Although they can generate replay data

to mitigate forgetting, a typical drawback is the quality of

generated images, and that forgetting can also happen in

generative models. In this work, we introduce Masked Au-

toencoders (MAEs) [11] as a base model to replay. It al-

lows efficient exemplar storage by only requiring a small

subset of patches to reconstruct whole images. Therefore,

we can store more exemplars with the same amount of lim-

ited memory as other exemplar-based approaches. Com-

pared to previous generative methods, replay by MAE is

more stable because it uses partial cues to infer global in-

formation, which is task-agnostic and suffers less forgetting

across tasks. This relieves the unstable generation effect of

GANs across tasks with stationary image patches.

Masked Autoencoders (MAEs) [11] were initially pro-

posed to learn better feature representations in self-

supervised learning scenarios. In this work, we see it as

efficient incremental learners and propose a novel bilat-
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eral transformer architecture for efficient exemplar replay

in CIL. Our main idea is simple: by randomly masking

patches of input images and training models to reconstruct

the masked pixels, MAEs can provide a new form of self-

supervised representation learning for CIL and thus learn

more generalizable representations essential for CIL. In ad-

dition, leveraging a supervised objective with classification

labels benefits unsupervised MAE in training efficiency and

model robustness [18]. Masked inputs can also serve as

strong classification regularization by only providing a ran-

dom subset of data.

When learning new tasks, the MAE can coarsely recon-

struct images from sparsely sampled patches from exem-

plars. This process enables the framework to generate re-

constructed replay data, but two problems remain: (i) the

generated images tend to have less detailed and less real-

istic textures, which reduces data diversity for replay; and

(ii) on the embedding-level, the linear classifier lacks infor-

mation from low-level features. Therefore, we introduce a

bilateral MAE framework with image-level and embedding-

level fusion for CIL (see Fig. 1 for a schematic overview).

Fusing a complementary detailed and reconstructed image

alleviates catastrophic forgetting by enriching the insuffi-

cient replay data with detailed, high-quality data distribu-

tions. Embedding-level fusion from the two branches also

maintains stable and diverse embeddings, and our frame-

work can thus achieve a better trade-off between plasticity

and stability.

The main contributions of our bilateral MAE framework

are threefold:

• We introduce an MAE framework for efficient incre-

mental learning that incorporates benefits from both

self-supervised reconstruction and data generation for

replay.

• To further boost the quality of reconstructed images

and learning efficiency, we design a novel bilateral

MAE with two complementary branches for better-

reconstructed images and regularized representations.

• Our approach achieves state-of-the-art perfor-

mance under different CIL settings on CIFAR-100,

ImageNet-Subset, and ImageNet-Full.

2. Related Work
Incremental learning. Various methods have been pro-

posed for incremental learning in the past few years [2, 5].

Recent works can be coarsely grouped into three categories:

replay-based, regularization-based, and parameter-isolation

methods. Replay-based methods mitigate the task-recency

bias by replaying training samples from previous tasks.

In addition to replaying samples, BiC [36], PODNet [8],

and iCaRL [29] apply a distillation loss to prevent forget-

ting and enhance model stability. GEM [21], AGEM [3],

and MER [30] exploit past-task exemplars by modifying

gradients on current training samples to match old sam-

ples. Rehearsal-based methods may cause models to overfit

stored samples.

Pseudo-replay methods reconstruct the old data for re-

play. MeRGANs [35] use conditional GANs to balance the

generation of old and current samples. Besides, dreaming-

relevant methods like DeepInversion [41] and Always-

BeDreaming [33] exploit backward signals to generate im-

ages similar to the original datasets.

Regularization-based approaches, such as LwF [17],

EWC [15], and DMC [44], offer methods to learn better

representations while leaving enough plasticity for adapta-

tion to new tasks. Parameter-isolation methods [24, 39] use

models with different computational graphs for each task.

With the help of growing models, new model branches mit-

igate catastrophic forgetting at the cost of more parameters

and computational costs.

Self-Supervised Learning. Self-supervised learning [7,

27, 37] has been shown to help models learn generalizable

features, which makes it natural to consider its application

to incremental learning. Early works used pretext tasks like

patch permutation [27] or rotation prediction [10]. Con-

trastive learning approaches model the pairwise similarity

and dissimilarity between samples [4]. By comparison,

MAEs [11] learn feature representations by reconstructing

images from a masked version of inputs.

There are a few works proposing self-supervision for

class incremental learning. PASS [46] incorporates rotation

prediction [10] to learn representations transferable across

tasks. DualNet [28] uses Barlow Twins [42] to introduce

a “slow” task that regularizes the “fast” incremental learn-

ing. In this paper, we explore the framework generates

data for replay while applying semantic and detailed-level

self-supervision, which mitigates forgetting via richer re-

play data and more generalizable features.

3. Continual MAE for CIL
In this section, we first define the class incremental learn-

ing problem and the basic MAE model. Then we introduce

our incremental learning framework and the bilateral MAE

architecture it is based on.

3.1. Preliminaries
The class incremental learning problem. CIL aims to

sequentially learn tasks with new classes while preventing

or alleviating forgetting of old tasks. At a specific phase

of learning task t ∈ {1, 2, ..., T}, model training can ex-

ploit only data from the current task {(xt
i, y

t
i)}, where xt

i

denotes image i in task t and yti its corresponding class la-

bel. A CIL model typically consists of a feature extractor

Fθ and a common classifier Gφ which grows at each new
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Figure 2. Overall framework of our bilateral MAE for CIL. The masked input is passed through two branches with embedding-level fusion

for classification and image-level fusion for reconstruction. Full images can be generated from a small sample of input patches and the

reconstructed images can be used as replay.

task. At task t+ 1, Ct+1 new classes are added to Gφ. The

feature extractor Fθ first maps the input x to a deep feature

vector z = Fθ(x) ∈ R
d, where d is the dimension of the

output feature representation, and then the unified classi-

fier Gφ(z) ∈ R
C1:t produces a probability distribution over

classes C1:t which is used to make predictions on input x.

When training task t, the model aims to minimize losses

on the current task without degrading performance on pre-

vious tasks. A common technique for mitigating forgetting

is to retain a small buffer of training samples from previous

tasks. Let ε be this buffer of previous task samples. One

essential problem for CIL is the limited amount of replay

data. Compared to the full data of current task t, only a

few samples of old task classes are available (20 samples

per class is a common setting), which causes imbalanced

training between new and old tasks.

An MAE framework for classification. An MAE first

crops input image x into non-overlapping patches, and we

denote the number of patches in the full image x as Nf .

After patchification, the MAE randomly masks a propor-

tion r ∈ [0, 1] of the Nf patches, leaving only N =
�Nf × (1− r)� patches. Then these sampled K ×K pixel

patches are mapped to a visual embedding of dimension D
using an MLP. After concatenating with a class token, the

result is a tensor of size R
(N+1)×D. After positionally en-

coding the original patch locations, this input is passed to

the MAE transformer encoder. This operation maintains the

same shape of embedding. The output class token embed-

ding can be used for classification with a cross-entropy loss

Lcls
t , as shown in Fig. 2.

For the MAE Decoder, learnable mask tokens are in-

serted into the embeddings in place of the masked patches,

and the shape of output from the MAE Encoder changes

from R
(N+1)×D to R

(Nf+1)×D. Although the decoder

is not used for classification, it helps the network back-

propagate image-level reconstruction supervision to the

embedding-level. This stabilizes the image embedding and

helps the optimization process. Also, the reconstructed im-

ages after decoding provide richer, higher-quality replay

data. To limit computation, we use a single-layer trans-

former block for the decoder. The additional classification

loss after the encoder speeds up convergence and improves

reconstruction efficiency during training. The mean squared

error between the input image x and reconstructed image x̂
is used as the reconstruction loss function Lrec

t (x, x̂).

3.2. Efficient Exemplar Storage with MAEs

After training each task, we save small sample images

and apply random masking. Keeping the same storage size

can save more replay data per class since each sample occu-

pies less space. For example, a masking ratio of 0.75 allows

us to save 4× the number of (reconstructible) samples com-

pared to conventional replay methods.

Let S and P denote the size of the image and patch,

respectively. Our encoder patchifies the input image into
S
P × S

P patches. We save the 2D index (i, j) for each patch

that is not masked. We need only one byte to save these in-

dexes since their range is less than 255. The two additional

bytes for saving this 2D index are negligible compared to

the saved image patches. A masking ratio 0.75 on a 224 ×
224 image requires only 36.75KB of storage. For P = 16,

the number of saved patches is (1 − 0.75) × ( 22416 )2 = 49,

and the storage of indexes is only 98B.

3.3. Bilateral MAE Fusion

To further boost reconstruction quality and embedding

diversity, we propose a two-branches MAE to learn global

19106



Mask ratio=40% Mask ratio=75% Difference High-frequency

x̂1 (Eq. 9) x̂2 (Eq. 10) x̂1 − x̂2 (Eq. 11) x′′ (Eq. 6)
Figure 3. An example of extracting detailed images with recon-

structed results from different masking ratios r1 and r2. The third

image comes from the difference between the previous two, and

the last image is the extracted high-frequency component from the

third image.

Algorithm 1 Pseudocode of our Bilateral MAE.

Input: The number of task T , training samples Dt =
{(xi, yi)}t of task t, model Θ0, replay buffer ε, and

masking ratios r, r1, r2.

Output: model ΘT

1: for t ∈ {1, 2, ..., T} do
2: Θt ← Θt−1

3: Rt ← ReconstructOldSamples (εt, r)

4: while not converged do
5: (x, y) ← Sample (Rt, Dt)

6: (Lcls
t , Lrec

t ) ← BilateralMAE (x, y)

7: (x̂1, x̂2) ← MaskAndReconstruct (x, r1, r2)

8: Ldet
t ← ComputeDetailLoss (x̂1, x̂2)

9: train Θt by minimizing Lt from Eq. 12

10: end while
11: end for

and detailed classification and image reconstruction knowl-

edge. We illustrate the overall framework in Fig. 2.

Bilateral fusion at the embedding-level aims to improve

representations diversity. Reconstruction learning at the

image-level yields high-quality replay data and stable self-

supervision for CIL.

Embedding fusion. In the following we use Fθ[:1] and

Fθ[1:] to denote our transformer encoder’s first and follow-

ing blocks. Let Hθ and Eθ represent the detailed block

and embedding fusion module in Fig. 2, which are standard

MLP layers and attention blocks, respectively. The classifi-

cation loss is computed as:

f = Fθ[:1](mask(x, r)) (1)

z = Eθ(Fθ[1:](f), Hθ(f)) (2)

Lcls
t (x, y) = Lce(Gφ(z), y), (3)

where mask(x, r) denotes applying random masking with

ratio r on image x, f is the embedding extracted by the first

encoder block, which is the input to the two branches of our

Bilateral MAE, and Gφ(z) is the estimated class distribu-

tion used for in the cross entropy loss.

Image fusion with detailed loss. For the detailed head

and corresponding loss, we discovered that working in the

frequency domain makes it easier for the network to at-

tend to high-frequency details, which is exactly what the

detailed branch should reconstruct. We define a frequency-

masking function M(·) that converts its argument (an image

patch) to the frequency domain, then masks out low fre-

quencies using a circular mask around the origin. As shown

in Fig. 2, the MAE decoder is shared by the two branches

of our model since they have similar reconstruction tasks,

as well as input and output shapes. Let Dθ be this shared

decoder, then the image-level outputs of the two branches

and the reconstruction loss Lrec
t are:

f = Fθ[:1](mask(x, r)) (4)

x′ = Dθ(Fθ[1:](f)) (5)

x′′ = ifft2(M(Dθ(Hθ(f)))) (6)

x̂ = x′ + x′′ (7)

Lrec
t = Lmse(x, x̂), (8)

where x′ and x′′ are the main and residual detailed outputs,

respectively, and ifft2 is the inverse Fast Fourier Transform.

The detailed loss Ldet
t also makes use of the frequency-

masking function M to compare the output of the detailed

branch and the difference between two MAE reconstruc-

tions of the input image:

x̂1 = Dθ(Fθ(mask(x, r1))) (9)

x̂2 = Dθ(Fθ(mask(x, r2))) (10)

Ldet
t = ||M(Dθ(Hθ(f)))−M(x̂2 − x̂1)||1, (11)

where x̂1 and x̂2 are two reconstructed images (detatched

from the gradient computation graph) using different mask-

ing ratios r1 and r2, respectively. The residual difference

x̂2 − x̂1 is used as supervision in the frequency domain

for the detailed branch in loss Ldet
t . An illustration can be

found in Fig. 3.

A weighted sum of classification loss Lcls
t , reconstruction

loss Lrec
t , and detail loss Ldet

t is used as the overall loss for

training:

Lt = λclsLcls
t + λrecLrec

t + λdetLdet
t . (12)

Pseudocode for our method is given in Algorithm 1.

4. Experimental Results
4.1. Benchmarks and Implementation
Datasets and settings. We experiment on three datasets:

CIFAR-100 [16], ImageNet-Subset, and ImageNet-Full [6]

to evaluate the performance of our approach. For CIFAR-

100 and ImageNet-Subset, we test on 10-, 20- and 50-task

scenarios, all with equal numbers of classes per task. We
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Figure 4. Performance evolution over incremental tasks on CIFAR-100 on 10-, 20- and 50-task scenarios.

Method
N=10 N=20 N=50

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓
iCaRL [29] 65.27 50.74 31.23 61.20 43.75 32.40 56.08 36.62 36.59

UCIR [12] 58.66 43.39 35.67 58.17 40.63 37.75 56.86 37.09 38.13

BiC [36] 68.80 53.54 28.44 66.48 47.02 29.30 62.09 41.04 34.27

PODNet [8] 58.03 41.05 41.47 53.97 35.02 36.70 51.19 32.99 40.42

DER w/o P [40] 75.36 65.22 15.02 74.09 62.48 23.55 72.41 59.08 26.73

DER [40] 74.64 64.35 15.78 73.98 62.55 23.47 72.05 59.76 26.59

DyTox [9] 75.47 62.10 15.43 75.10 59.41 21.60 73.89 57.21 24.22

Ours 79.12 68.40 12.17 78.76 65.22 14.39 76.95 63.12 18.34
Table 1. Results on CIFAR-100 in average accuracy (%), last phase accuracy (%), and forgetting F (%) on 10-, 20- and 50-task scenarios.

evaluate the 10-task setting for ImageNet-Full in which 100

new classes are included in each task. To measure the over-

all accuracy after all tasks during training, we report the

average accuracy of learned tasks after each task and the

accuracy of all tasks at the end of incremental learning.

Implementation details. We use the same network for all

datasets. Models are trained from scratch to prevent data

leakage with batch size of 1024 using Adam [14] with initial

learning rate 1e-4 and cosine decay. The loss weights from

Eq. 12 are set to λcls = 0.01, λrec = 1.0 and λdet = 1.0.

The masking ratios are set to r = 0.75, r1 = 0.75, and r2 =
0.4. Each task is trained for 400 epochs. For exemplar-

based methods from the literature, we store 20 samples for

each classes (as is common practice).

We use 5 transformer blocks for the encoder and 1 for the

decoder. All transformer blocks have an embedding dimen-

sion of 384 and 12 self-attention heads. This design differs

from the original MAE as it is much more lightweight. We

save image patches occupying the same amount of mem-

ory as other methods which store 20 full images per class.

For example, we select 80 images and randomly save only

25% patches from each using a masking ratio of 0.75 (thus

only occupying the same space as 20 whole images). The

detailed block is implemented with a 3-layer MLP keeping

the dimension at 384. Further details about network archi-

tecture are given in the Supplementary Material.

4.2. Comparison with the state-of-the-art

In this section we compare our approach with the state-

of-the-art, including DER [40] and DyTox [9]. In all

plots and tables, “DER w/o P” denotes DER [40] without

pruning, therefore leading to more parameters being added

across tasks. DyTox [9] also uses a transformer architecture

and we use the official codebase to reproduce its results.

CIFAR-100. We report results in average accuracy (Avg),

the accuracy after the last task (Last), and average forgetting

(F) in Table 1. It is clear that under each setting our method

outperforms others by a large margin. For longer task se-

quences, our bilateral MAE benefits from self-supervised

reconstruction and richer replay data and it forgets much

less compared to other methods. An overall accuracy curve

is given in Fig. 4. Using the same amount of replay storage,

our method outperforms DyTox by about 6% in accuracy

after the last task in all three scenarios.

ImageNet-Subset and ImageNet-Full. We report per-

formance on ImageNet-Subset and ImageNet-Full in Ta-

bles 2 and 3, respectively. Our method outperforms Dy-

Tox [9] by 1.19%, 2.53%, and 2.85% absolute gain in ac-

curacy after the last task on the 10-, 20- and 50-task set-

tings, respectively. The higher average accuracy during

each phase and lower forgetting also demonstrates the ef-

fectiveness of our method in alleviating forgetting. We also
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Figure 5. Performance evolution over incremental tasks on ImageNet-Subset.

Method
N=10 N=20 N=50

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓
BiC [36] 64.96 55.07 31.32 59.40 49.35 34.70 53.75 44.56 40.23

PODNet [8] 63.44 51.75 35.63 55.11 45.37 41.70 51.72 42.94 44.65

DER w/o P [40] 77.18 66.70 14.86 72.70 61.74 20.76 70.44 58.87 24.20

DER [40] 76.12 66.06 15.09 72.56 61.51 20.46 69.77 58.19 25.35

DyTox [9] 77.15 69.10 14.66 73.13 61.87 17.32 71.51 60.02 20.54

Ours 79.54 70.29 12.04 75.20 64.40 14.89 74.42 62.87 17.22
Table 2. Results on ImageNet-Subset in average and last phase accuracy (%) and forgetting rate F (%) on 10-, 20- and 50-task scenarios.

Method
top-1 top-5

Avg ↑ Last ↑ Avg ↑ Last ↑
iCaRL [29] 38.40 22.70 63.70 44.00

Simple-DER 66.63 59.24 85.62 80.76

DER w/o P [40] 68.84 60.16 88.17 82.86

DER [40] 66.73 58.62 87.08 81.89

DyTox [9] 71.29 63.34 88.59 84.49

Ours 74.76 66.15 91.43 87.13
Table 3. Results on ImageNet-Full for 10 incremental tasks.

illustrate the performance evolution on ImageNet-Subset

in Fig. 5. Our method has accuracy similar to DyTox in

the first task, but in later tasks our method surpasses all

others, especially for long task sequences. On the larger-

scale ImageNet-Full, our Bilateral MAE significantly out-

performs other methods by about 3% in all metrics.

4.3. Ablation Study
Ablations on different components. Our bilateral MAE

consists of a self-supervised reconstruction task, generated

data for replay, and a bilateral MAE branch for image- and

embedding-level fusion. We ablate on these three factors in

Table 4. These three major components in our method have

different functions and they cooperate to boost performance

compared with the baseline by about 6%. We observe that:

(a) More high-quality replay data has a direct contribution

to the performance and masking ration of r = 0.75 mask-

ing ratio yields 4× replay for the same storage cost as the

Method Replay Reconstruction Bilateral Avg Last

Baseline 73.40 62.31

Variants � 75.88 64.35

� � 77.48 66.54

� � � 79.12 68.40

Table 4. Ablative experiments on each component of our proposed

method in the 10-task setting on CIFAR-100. Replay denotes us-

ing generated data from MAE for replay, Reconstruction means

applying the self-supervised reconstruction loss, and Bilateral in-

dicates introduction the detailed branch of the MAE.

r Data Source Avg Last

0.60 Generated 77.50 67.37

0.75 Generated 79.12 68.40

0.90 Generated 77.12 67.02

N/A Real 79.57 68.87

Table 5. Ablation on the masking ratio and quality of generated

data. Experiments are on CIFAR-100 in the 10-task setting and

we report top-1 accuracy in %. Data Source indicates whether

replay is generated or real. In the last row we replay a selection of

of real images equivalent in storage size to using r1 = 0.75.

baseline. (b) The reconstruction loss serves as effective self-

supervision and improves performance by about 2% in av-

erage accuracy. (c) The bilateral architecture works well by

improving replay data generation quality and introducing

image and embedding-level supervision.
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Domain Avg Last

Spatial 77.45 65.93

Frequency 79.12 68.40

Table 6. Ablative experiments on the detailed head. Experiments

are on CIFAR-100 in the 10-task setting and we report the top-

1 accuracy in %. Domain denotes to which domain our loss is

applied.

Figure 6. Ablation on masking ratio r2 in Ldet
t . The other masking

ratio r1 is set to 75% as the reference.

Masking ratio. A key parameter of MAE [11] is the

masking ratio r. There is trade-off on r: too large r (e.g.

0.95) leads to poor reconstruction, which influences the

quality of replay data and causes more serious forgetting.

However, too small r yields a limited extra amount of replay

data (e.g. we can afford only about 11% extra replay data

when r is 0.10). The results in Table 5 show that r = 0.75 is

a good trade-off for our bilateral MAE. To verify the quality

of generated data for replay, also include results using orig-

inal images for replay in place of generated ones. Results

in rows 2 and 4 of Table 5 show that our method achieves

good quality images with less than 0.5% accuracy differ-

ence compared to replaying real images.

Frequency domain for the detailed loss. We imple-

mented the detailed loss by converting embeddings from

the spatial domain to the frequency domain. This aims to

allow concentration on high-frequency information which

matches the learning objective of the detailed MAE branch.

As shown in Table 6, it is beneficial to make this conversion

as it leads to a more than 2% gain at the last task.

Ablation on r1 and r2 in the detailed loss. We set r1 to

0.75 for all these experiments as a reference and we vary

r2 used for computing the ground truth of the detailed loss.

The trade-off on r2 is that large r2 results in small differ-

ences between the reconstructed results from mask ratios

r1 and r2 and therefore there is little information in the su-

pervisory signal for the detailed loss and the impact of the

detailed branch is reduced. On the other hand, too small

Method Parameters (M) Avg ↑ Last ↑ F ↓
DER w/o P 112.27 75.36 65.22 15.02

DyTox 10.73 75.47 62.10 15.43

Ours (MLP size = 1536) 12.89 79.12 68.40 12.17

Ours (MLP size = 768) 9.35 78.36 67.52 12.90

Table 7. Comparison of model sizes. We compare two versions

of our Bilateral MAE and competing models. Experiments were

conducted on CIFAR-100 with 10 tasks.

r2 (e.g. 0.10) maintains most of the residual part of re-

constructed images from the main branch, which may bring

weak supervision for the main branch and slow its training.

We show results for a range of r2 values in Fig. 6. These

results show that an r2 of about 0.40 is good for providing

supervision to the detailed branch of our MAE.

Model and exemplar sizes. To compare the effectiveness

of different methods, normally models with the same or

similar number of parameters are used with an equal num-

ber of exemplars. In our approach, we adapt the original

MAE to be more lightweight and the number of parame-

ters is comparable to or even smaller than DyTox, as shown

in Table 7 (last row). We set the masking ratio to 75% by

default and save 80 exemplars per class, and therefore the

storage size for both models and exemplars is similar since

our stored image patches require exactly the same as base-

lines using only 20 exemplars.

Ablation on effective buffer size. In Table 8 we com-

pare our method with Dytox using the same buffer size by

masking input image patches in input to DyTox. All three

rows use the same memory size for storing exemplars. Us-

ing 80 exemplars with masking ratio of 75%, DyTox (last

row) achieves better performance than when using 20 full-

image exemplars. It still performs worse than our approach,

which shows that our performance gain does not simply

come from the additional exemplars, but also from the inte-

gration of the MAE into our bilateral architecture with the

Detailed Branch.

Reconstruction analysis. We illustrate results of image

reconstruction in the 10-task setting on ImageNet-Subset in

Fig. 7. Randomly selected images from tasks 1, 4, 7, and 10

are shown in the left column. Our bilateral MAE learns to

reconstruct images in a task-agnostic way, which helps gen-

erate reasonable results for future tasks even before learning

them. The detailed branch of our MAE learns to reconstruct

high-frequency details complemetary to the main branch.

The results from the main branch sometimes lack sample-

specific characteristics, but with the help of our proposed

detailed branch the reconstructions are more accurate and

provide better generated replay data.
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Figure 7. Reconstructions of images from ImageNet-Subset in the 10-task setting. Four original images were selected from tasks 1, 4, 6,

and 10 and are shown on the left. In the remaining columns we show reconstructed images using our combined Bilateral MAE (left), only

the detailed branch of our MAE (middle), and only the main branch of our MAE (right).

Method Buffer Memory size 25% Patches Images Acc(%)

Ours 80 1x � 68.40

DyTox 20 1x � 62.10

DyTox† 80 1x � 65.46

Table 8. Ablation on effective buffer size with equal memory us-

age. Dytox† represents applying a mask ratio r = 75% directly

to stored image exemplars in order to have the same number of

exemplars and storage size for DyTox as in our setting.

Figure 8. Comparison of feature space density π.

More generalizable representations help CIL. We cal-

culated the feature space density metric [32] for different

methods following PASS [46]: π = πintra/πinter, where

πintra denotes the average cosine similarity within the same

class and πinter denotes the one within different classes.

Increased feature space density is associated with stronger

generalization under data shift [46]. We then compared fea-

ture space density after training all tasks, as shown in Fig-

ure 8 above. It is clear that Ours yields significantly higher

density than other methods.

Ablation with other efficient replay methods. We com-

pared the replay samples generated by MAE in our frame-

work with a variety of memory-efficient methods based

on latent replay [19], synthesized exemplars [20], down-

Metric Memory Avg↑ Last↑
Latent replay (CVPRW’20) [19] - 62.44 51.30

MCIL (CVPR’20) [20] 60 63.25 53.12

Down-scaled (TNNLS’21) [45] 60 67.04 55.40

JPEG compression (ICLR’22) [34] 60 72.34 61.32

CIM (CVPR’23) [22] 60 75.30 63.05

Ours 60 79.12 68.40

Table 9. Comparison of our bilateral MAE framework with other

memory-efficient methods on the CIFAR-100 10-task setting.

Memory indicates the required storage space per class (in KB).

scaling [45], JPEG image compression [34], and CIM [22]

(foreground extraction and background compression). All

these methods use the same amount of storage (except La-

tent Replay uses a GAN with 4.5M parameters), while our

approach achieves consistently higher performance.

5. Conclusions

In this work, we demonstrate that Masked Autoencoders

are efficient incremental learners. Our approach stores ran-

dom image patches as exemplars and it can reconstruct

high-quality images from only partial information for re-

play. Furthermore, we propose a novel bilateral MAE ar-

chitecture which further improves embedding diversity and

reconstruction quality. Our Bilateral MAE approach signifi-

cantly outperforms previous state-of-the-art methods for the

same exemplar storage cost.
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and Matthieu Cord. Dytox: Transformers for continual learn-

ing with dynamic token expansion. In IEEE Conf. Comput.
Vis. Pattern Recog., 2022. 5, 6

[10] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In Int. Conf. Learn. Represent., 2018. 2

[11] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable

vision learners. In IEEE Conf. Comput. Vis. Pattern Recog.,
2022. 1, 2, 7

[12] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and

Dahua Lin. Learning a unified classifier incrementally via re-

balancing. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.

5

[13] David Isele and Akansel Cosgun. Selective experience re-

play for lifelong learning. In AAAI, 2018. 1

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Int. Conf. Learn. Represent.,
2015. 5

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sci-
ences, 2017. 1, 2

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images, 2009. 4

[17] Zhizhong Li and Derek Hoiem. Learning without forgetting.

In Eur. Conf. Comput. Vis., 2016. 1, 2

[18] Feng Liang, Yangguang Li, and Diana Marculescu. Supmae:

Supervised masked autoencoders are efficient vision learn-

ers. arXiv preprint arXiv:2205.14540, 2022. 2

[19] Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bog-

dan Raducanu, Andrew D Bagdanov, Shangling Jui, and

Joost van de Weijer. Generative feature replay for class-

incremental learning. In IEEE Conf. Comput. Vis. Pattern
Recog. Worksh., 2020. 8

[20] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and

Qianru Sun. Mnemonics training: Multi-class incremental

learning without forgetting. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 12245–12254, 2020. 8

[21] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. Adv. Neural Inform.
Process. Syst., 2017. 2

[22] Zilin Luo, Yaoyao Liu, Bernt Schiele, and Qianru

Sun. Class-incremental exemplar compression for class-

incremental learning. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 11371–11380, 2023. 8

[23] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In Eur. Conf. Comput. Vis., 2018. 1

[24] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. In IEEE
Conf. Comput. Vis. Pattern Recog., 2018. 1, 2

[25] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel

Menta, Andrew D. Bagdanov, and Joost van de Weijer.

Class-incremental learning: Survey and performance eval-

uation on image classification. IEEE Trans. Pattern Anal.
Mach. Intell., 2022. 1

[26] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation. Else-

vier, 1989. 1

[27] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In Eur.
Conf. Comput. Vis., 2016. 2

[28] Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Con-

tinual learning, fast and slow. Adv. Neural Inform. Process.
Syst., 2021. 2

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental clas-

sifier and representation learning. In IEEE Conf. Comput.
Vis. Pattern Recog., 2017. 1, 2, 5, 6

[30] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,

Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn

without forgetting by maximizing transfer and minimizing

interference. In Int. Conf. Learn. Represent., 2019. 2

[31] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-

licrap, and Gregory Wayne. Experience replay for continual

learning. Adv. Neural Inform. Process. Syst., 2019. 1

[32] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,

Bjorn Ommer, and Joseph Paul Cohen. Revisiting train-

ing strategies and generalization performance in deep metric

19112



learning. In Int. Mach. Learn., pages 8242–8252. PMLR,

2020. 8

[33] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen,

Hongxia Jin, and Zsolt Kira. Always be dreaming: A new ap-

proach for data-free class-incremental learning. In Int. Conf.
Comput. Vis., 2021. 2

[34] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu,

Chongxuan Li, Lanqing Hong, Shifeng Zhang, Zhenguo Li,

Yi Zhong, and Jun Zhu. Memory replay with data compres-

sion for continual learning. In Int. Conf. Learn. Represent.,
2022. 8

[35] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer,

Bogdan Raducanu, et al. Memory replay gans: Learning

to generate new categories without forgetting. Adv. Neural
Inform. Process. Syst., 2018. 1, 2

[36] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incre-

mental learning. In IEEE Conf. Comput. Vis. Pattern Recog.,
2019. 2, 5, 6

[37] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In IEEE Conf. Comput. Vis. Pattern Recog.,
2018. 2

[38] Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremental

learning using conditional adversarial networks. In Int. Conf.
Comput. Vis., 2019. 1

[39] Ju Xu and Zhanxing Zhu. Reinforced continual learning.

Adv. Neural Inform. Process. Syst., 2018. 2

[40] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-

ically expandable representation for class incremental learn-

ing. In IEEE Conf. Comput. Vis. Pattern Recog., 2021. 5,

6

[41] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong

Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz.

Dreaming to distill: Data-free knowledge transfer via deep-

inversion. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

2

[42] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
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