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Abstract

Learning fine-grained interplay between vision and lan-
guage contributes to a more accurate understanding for
Vision-Language tasks. However, it remains challenging to
extract key image regions according to the texts for semantic
alignments. Most existing works are either limited by text-
agnostic and redundant regions obtained with the frozen re-
gion proposal module, or failing to scale further due to their
heavy reliance on scarce grounding (gold) data to pre-train
detectors. To solve these problems, we propose Self-Locator
Aided Network (SLAN) for vision-language understanding
tasks without any extra gold data. SLAN consists of a re-
gion filter and a region adaptor to localize regions of in-
terest conditioned on different texts. By aggregating vision-
language information, the region filter selects key regions
and the region adaptor updates their coordinates with text
guidance. With detailed region-word alignments, SLAN can
be easily generalized to many downstream tasks. It achieves
fairly competitive results on five vision-language under-
standing tasks (e.g., 85.7% and 69.2% on COCO image-to-
text and text-to-image retrieval, surpassing previous SOTA
methods). SLAN also demonstrates strong zero-shot and
fine-tuned transferability to two localization tasks. The
code is available at https://github.com/scok30/
SLAN .

1. Introduction
Recent years have witnessed growing interest in ex-

ploring relationships between vision and language modal-
ities. A wide range of applications have been boosted
by its rapid development, such as multi-modal search en-
gines [3,7,12] and recommender systems [6,34,35]. It mo-
tivates researchers to find semantic correspondence between
two modalities and bridging their visual-semantic discrep-
ancy. Some earlier works [14,16,24,31] focused on learning
joint embeddings for the two modalities, while more recent
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A person is flying in the air. A teddy bear
on top of a
phone.

(a) Image-text Retrieval (b) Image Caption

A person in green cloth is on a
bike.

(c) Object Detection (d) Phrase Grounding
Figure 1. Visualization on four different tasks. We visualize the
activation map for text-to-image retrieval task in (a). As for the
caption task in (b), we visualize regions selected by our model.
Besides vision-language understanding task, SLAN can transfer to
localization tasks, shown in (c) and (d), and we list the confidence
score for each region.

ones [17,25,47,48] have turned to considering latent vision-
language alignments at the level of regions and words.

In order to achieve fine-grained vision-language align-
ments, some works [20, 21, 26] use object detectors to ex-
tract key regions in images. Treated as black boxes, the de-
tectors only support for fixed vocabulary object detection.
Meanwhile, the extracted regions cannot adapt to different
text information due to the freezing parameters of the de-
tectors. To alleviates the problem, VinVL [47] applies a
pre-trained object detector with more than 2000 classes and
attributes to enrich local visual representations. However,
the extended label set still limits the perceptive capability
of object detectors for vision-language understanding com-
pared to free-form text from real-world scenes.

Recently, more works have attempted to apply learn-
able region locators for vision-language tasks, which ex-
tract regions of interest conditioned on different texts.
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Unlike previous methods using frozen object detectors,
MDETR [17] builds an end-to-end framework on datasets
with region-to-word annotations. GLIP [25] directly pro-
poses grounded language-image pre-training for learning
object-level, language-aware, and semantic-rich visual rep-
resentations. These methods demonstrate their effective-
ness in vision-language reasoning by introducing trainable
locators. However, in order to supervise the training of lo-
cators, these methods require a certain amount of region-to-
word grounding annotations (gold data), which are based
on burdensome and expensive annotation efforts. It limits
their applications on existing larger scale of vision-language
datasets which have abundant but coarse-grained image and
text pairs.

To address the problems above, we propose Self-Locator
Aided Network (SLAN) for vision-language understand-
ing. The designed self-locator is capable of accurately lo-
cating regions of interest based on different texts. Specifi-
cally, the self-locator consists of a region filter to select im-
portant regions and a region adaptor to update coordinates
of regions with text guidance. By incorporating the self-
locator into our framework, SLAN performs context-aware
region extraction and vision-language feature fusion. More-
over, SLAN is trained solely on datasets with paired images
and texts, making it scalable to larger pre-training settings
for further performance improvements. With fine-grained
region-word alignments, SLAN has a more detailed under-
standing of interactions in vision and language modalities.

To sum up, our contributions have three aspects:

• We propose a framework termed SLAN to capture
fine-grained interplay between vision and language
modalities. A self-locator is introduced to per-
form text-guided region adaptation, enabling dynamic
region-word alignments for vision-language under-
standing tasks, as shown in Fig. 1.

• We demonstrate that SLAN can be easily applied to
large-scale pre-training on vision-language datasets for
being free from training with gold data. SLAN can
also be naturally generalized to typical localization
tasks, such as object detection and phrase grounding,
due to its ability to locate key regions in images.

• Experiments on five vision-language understanding
and two localization tasks demonstrate the effective-
ness of our method. For example, SLAN achieves
state-of-the-art performance on COCO image-text re-
trieval.

2. Related Work
2.1. Vision-language Task

Previous research has explored the relationship between
visual and textual modalities and applied this knowledge

to various downstream multi-modal tasks. Methods such
as DeViSE [13], TBNN [36], and [49] have proposed loss
functions and network structures to learn semantic visual-
language alignments. Other approaches like SGG [41] and
ViSTA [8] leverage prior tools or knowledge for image-text
matching analysis.

Recently, leveraging visual backbone networks [11,
15, 40] and language encoders [18], vision-language pre-
training on larger datasets has become increasingly pop-
ular. CLIP [31] pre-trains using 400M image-text pairs
from the web, establishing global relations between images
and texts. BLIP [23] benefits from extensive web data for
vision-language understanding and generation tasks. Beit-
3 [37] adopts mask-then-predict self-supervised training on
large-scale monomodal and multi-modal data to learn inter-
nal vision-language dependencies.

However, these methods are constrained by the expense
of fine-grained region-word datasets, making it challeng-
ing to directly provide local matching signals during pre-
training for more accurate cross-modal knowledge. This
knowledge enables models to precisely localize objects ac-
cording to corresponding words, providing cues for down-
stream tasks.

2.2. Localization for Vision-language Task

Localization of image regions and words in sentences
helps models learn local alignment. There are two kinds
of methods based on whether the region proposal module is
frozen or trained for vision-language tasks.

The first kind uses a frozen object detector (e.g., Faster
R-CNN) pre-trained on Visual Genomes to extract detailed
visual representations. Some later works (e.g., VinVL [47],
Oscar [26]) increase the number of detection labels and
introduce attribute information to complement visual con-
cepts.

The other kind relies on fine-grained annotations of the
vision-language dataset for pre-training. MDETR [17] in-
troduces a modulated detector with multi-modal datasets
that have precise alignments between phrases in text and
objects in images. GLIP [25] applies grounded pre-training
to learn object-level, language-aware, and semantic-rich
visual representations. However, these methods require
vision-language data with fine-grained annotations, limiting
their application on larger-scale pre-training settings.

3. Self-Locator Aided Network (SLAN)

The framework of SLAN is shown in Fig. 2. We first
briefly introduce the two unimodel encoders and then the
detailed structures of other components. SLAN adaptively
proposes and selects informative regions with text guidance,
as described in Fig. 3. Finally, we list our pre-training ob-
jectives. The relevant symbols are described in Tab. 1.
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Figure 2. The SLAN framework. Two unimodal encoders extract
textual and visual representations, respectively. The self-locator
automatically generates, filter, and then iteratively adapts the im-
age regions for fine-grained region-word alignments. The learned
vision and language features can be used for downstream tasks.

(a) Input image (b) Region proposal (c) Region filter

(d) Results after the 1st, 2nd, and 3rd region adaptors
Figure 3. Sample intermediate results of the self-locator.

3.1. Unimodal Encoding

Two unimodal encoders learn textual and visual repre-
sentations with D dimensions. We use BERT [18] as our
text encoder, encoding words into a shared semantic space.
The encoded embeddings ET ∈ RNT×D summarize the
whole sentence, including a textual token Tt ∈ RD from
BERT’s classification token and NT − 1 word embeddings.

For image feature extraction, we encode images with
classic vision backbone(e.g., ResNet50 [15], ViT-Base [11],
ViT-Large, and ViT-Huge) to obtain the vision feature map
V with high-level semantics.

3.2. Self-locator for Vision-language Understanding

Since fine-grained region-word alignments are important
for vision-language relation exploration, our self-locator
follows the region proposal network [32] to output regions,
where each region i contains spatial coordinates (x, y, w, h)
and corresponding region embedding EG

i ∈ RD. The
text-relevant local features EG

i is extracted from V using
RoIAlign. A vision token Tv is then obtained from global
average pooling of V as a global summary of this image.

Symbol Dimensions Meaning
D 1× 1 token dimension
L 1× 1 number of layers/stages
K 1× 1 number of grids per axis

Nh
i , N

w
i 1× 1 grid size of neighbour

Si 1× 1 saliency score of region
pwi , phi 1× 1 scaling parameter
ET NT ×D text embedding
EG NG ×D region embedding
Fi Hi ×Wi ×D pyramid feature map
Gi NG × 4 region coordinates

Tv,Tt 1×D global visual/textual token
Ai NG ×NT cross attention map

Table 1. Table of symbols, their dimensions, and meaning.

Different from most traditional object detection tasks
that use the pre-defined label set, vision-language tasks usu-
ally have a wider vocabulary and free-form textual expres-
sions. Therefore, our self-locator introduces a region fil-
ter for region importance prediction and a region adaptor
for progressive region regression. By replacing fixed vo-
cabulary prediction with region importance prediction, our
self-locator assigns each region a saliency score Si to esti-
mate the probability that the region is useful for the align-
ment process. For traditional detection settings, the regres-
sion targets are annotated region coordinates. Since there
is no grounding (gold) annotations in our setting, we pro-
pose progressive region regression in the multi-stage region
adaptor, producing intermediate updated regions in each
level. These updated regions are then used for supervising
the internal region proposal module. As shown in Fig. 3,
SLAN dynamically adapts region embeddings in L = 3
levels, yielding more flexible and accurate visual represen-
tations than the global visual feature maps, or patch embed-
dings from the vision transformer.

3.2.1 Vision Decoder: Pyramid Feature Extraction

Our proposed self-locator is designed for regression in a
coarse-to-fine manner, requiring visual features of multi-
scale. Considering these characteristics, we adopt a vision
decoder after the global visual feature to extract multi-scale
feature maps {Fi}, where i ∈ {1, 2, ..., L}. Fi denotes the
i-th level of decoder features, and L = 3 is the default num-
ber of layers of the self-locators. Fi is then fed to the i-th
level of region adaptor. The structure of vision encoder and
decoder follows the feature pyramid network [27].

3.2.2 Region Filter: Region Importance Prediction

When describing images, people usually focus on limited
salient regions in the images [9, 10]. However, region pro-
posal module [32] typically outputs a large number of re-
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Figure 4. The i-th stage of the region adaptor. The region adaptor
update each region’s coordinate with text guidance. We use the
feature map from vision decoder to extract region embeddings and
explore latent region-word alignments.

gion proposals (e.g., 100) for an image. Directly selecting
all regions will lead to unnecessary computational cost and
may also cause the model to learn from some meaningless
region-to-word pairs. The strategy to control the maximum
number of selected regions has three steps. (a) Normalize
all saliency scores of the regions. After this process, the
scores are represented as S = {S1, ..., Sk}, Si ∈ [0, 1].
(b) Sort these regions in descending order according to
their saliency scores. (c) We pick no more than top T re-
gions with saliency scores above a threshold h. Finally,
we weight region embeddings by the scores. The saliency
score of each proposed region is updated with gradients
from downstream vision-language supervision, which will
be described in Sec. 3.3.

3.2.3 Region Adaptor: Progressive Region Regression

The region adaptor aims at adjusting the coordinates of
proposed regions to align with words with the same se-
mantics. The difficulty comes from no annotated text-
referenced regions as ground truths. We turn this problem
into a L-level cascaded coarse-to-fine progressive regres-
sion progress, with L = 3 by default. As shown in Fig. 4,
the i-th level of the region regression process receives three
inputs: word embeddings ET

i ∈ RNT×D, region embed-
dings EG

i ∈ RNG×D with their coordinates Gi ∈ RNG×4,
and a global decoder feature map Fi ∈ RHi×Wi×D, where
NT and NG denotes the number of words and selected re-
gions, respectively. D denotes the dimension of embed-
dings.

The detailed procedure of progressive region regression
is described in Algorithm 1. The vision-language multi-
head attention layers fuse region and word embeddings and
model their interactions as follows:

Ai =
EG

i E
T⊤
i√
D

,

EG
i+1 = Softmax(Ai)E

T
i ,

ET
i+1 = Softmax(A⊤

i )E
G
i .

(1)

With vision-language semantics, the updated vision-
aware word embeddings ET

i are able to guide region co-

Algorithm 1 Self-localization

Input: Image I , region embeddings EG
i , text embed-

dings ET
i , pyramid feature map Fi, neighbour size

(Nh
i , N

w
i ), total region regression layers L.

1: pwi , phi are learnable parameters independent for every
region in each levels.

Output: Updated regions Gout, region supervision on the
region proposal module G, visual token Tv , textual to-
ken Tt.

2: G1,E
G
1 ← RegionProposal (I)

3: G1, S,E
G
1 ← RegionImportancePrediction (G1,E

G
1 )

4: for i ∈ {1, 2, ..., L} do
5: EG

i+1,E
T
i+1 ← CrossAttention(EG

i ,E
T
i )

6: EN
i ← NeighbourEmbedding(Nh

i , N
w
i ,Gi)

7: ∆xi,∆yi ← Offset(Similarity(EN
i ,ET

i+1))
8: Gi+1 ← Update(Gi,∆xi,∆yi,pwi

, phi
)

9: EG
i+1 ← Embedding(Gi+1,Fi)

10: end for
11: Tv,Tt ← ExtractCLS(EG

L+1,E
T
L+1)

12: Gout ← GL+1

13: G ← (
∑L+1

i=2 Gi)/L

ordinate updates by searching for highly correlated regions
around the original one. Specifically, the neighborhood
of region g = (x, y, w, h) is defined as a region of size
(Nh

i , N
w
i ) centered on it, where Nh

i and Nw
i are pre-

defined parameters for the i-th level region regression pro-
cess. The neighborhood is split to K ×K regions to com-
pute region-word similarities. As shown in Fig. 4, each re-
gion embedding is extracted with RoIAlign and then aver-
age pooling from Fi.

With different response scores to words, neighbor re-
gions aggregate context information to the central one. The
coordinate update for the central region is in the form of
weighted summation of coordinates of its neighbor center
points, as shown in Equ. (2):

∆x =

K2−1∑
j=0

MjN
h
j (⌊

j

K
⌋ − ⌊K

2
⌋),

∆y =

K2−1∑
j=0

MjN
w
j (j mod K − ⌊K

2
⌋),

x′ = x+∆x, y′ = y +∆y,

w′ = pww, h′ = phh,

(2)

where ⌊·⌋ is the round down operation. Every region in
all levels of the region adaptor has its own pw and ph,
which are set as learnable parameters. Mj is the maxi-
mum cosine similarity between the embedding of the j-
th neighbor region and all word embeddings. The pur-
pose of the last term in the first two lines of Equ. (2) is

21952



to map the 1D index to a 2D index (e.g., from {0, 1, .., 8} to
{(0, 0), (0, 1), ..., (2, 2)}).

For each original region g, let gi denotes its updated ver-
sion after the i-th layer in region regression. We take the
average of them as the ground truth and apply the L1 and
GIoU regression loss:

g =

∑L+1
i=2 gi
L

,

Lreg(g) = LL1(g, g) + LGIoU (g, g).

(3)

3.3. Pre-training Objectives with SLAN

SLAN is pre-trained on image-text pairs and learns fine-
grained region-word alignments with the supervision from
three common losses.

Image-Text Matching Loss (ITM) predicts whether a
given image-text pair is positive or not, which can be viewed
as a binary classification problem. The visual and textual to-
kens (Tv,Tt) are concatenated and sent to a linear layer fc.
The ITM loss is formalized as follows:

Litm(I,T) = H(fc(cat(Tv,Tt)), yv,t), (4)

where yv,t denotes the matching relation (1 for matched and
0 for unmatched), and H is the cross-entropy loss for clas-
sification. We directly select positive pairs from the dataset
and build hard negative samples with batch sampling, fol-
lowing ALBEF [24].

Image-Text Contrastive Loss (ITC) ensures that visual
and textual embeddings share the same semantic space and
the positive (matched) image-text pairs are pulling closer
than negative (unmatched) ones. We use two queues Iq, Tq

to save the latest visited image and text samples. For
each image-text pair (I,T), the softmax-normalized vision-
language similarity is computed as as:

pi2t(I,T, Tq) =
exp(sim(Tv,Tt)/τ)∑

T′∈Tq
exp(sim(Tv,T′

t)/τ)

pt2i(T, I, Iq) =
exp(sim(Tt,Tv)/τ)∑

T′
v∈Iq

exp(sim(Tt,T′
v)/τ)

, (5)

where τ is a temperature parameter and sim(·) measures
vision-language similarity, which is implemented by the dot
product between the image and text embeddings. Following
ALBEF [24], we compute ITC loss as:

Litc(I,T) = −log(pi2t(I,T, Tq))− log(pt2i(T, I, Iq)).
(6)

Language Modeling Loss (LM) encourages the model to
predict masked words with context information. We ran-
domly mask 15% text tokens and apply the masked lan-
guage modeling loss as follows:

Llm(I,T) = H(pmask(Tv,Tt), ymask), (7)

where ymask denotes the masked word to predict and
pmask(I,T) is its predicted probability. Lds is the down-
stream loss, which is computed by the sum of previous three
losses.

Lds(I,T) = Litm(I,T) + Litc(I,T) + Llm(I,T).
(8)

The full pre-training objective is the combination of the
downstream loss and our constraint on progressive region
regression, computed as follows:

L = Lds + Lreg. (9)

Lreg denotes the summation of the regression loss in
Equ. (3) for all regions. The model is supervised by L dur-
ing training.

4. Experiments

SLAN is first pre-trained on a combined dataset of 14M
image-text pairs from five datasets: COCO [28], Visual
Genome [19] (excluding COCO images), Conceptual Cap-
tions [5], Conceptual [5], and SBU Captions [29]. We eval-
uate SLAN by comparing it to other state-of-the-art cross-
modal methods on several downstream tasks. We also con-
duct extensive ablation studies to investigate how each com-
ponent of SLAN influences the performance.

4.1. Implementation Details

We choose BERTbase [18] as our text encoder, which
is initialized from HuggingFace [39]. For the vision en-
coder, we explore four design choices: one CNN-based
model (i.e., ResNet50) and three transformer-based mod-
els (i.e., ViT-Base, ViT-Large and ViT-Huge), which are all
random initialized. As for the neighbour size for each re-
gion adaptor, we use a ratio ri to denote them: (Nh

i , Nw
i ) =

(riHi, riWi), where r1, r2, r3 = 1, 0.5, 0.25, respectively.
We pre-train SLAN for 20 epochs. For different choices of
the vision encoder, the batch size is set to 1280, 960, 640,
640 for ResNet50, ViT-Base, ViT-Large and ViT-Huge, re-
spectively. The AdamW optimizer is adopted with an initial
learning rate of 3e-4, and the learning rate is linearly de-
cayed to 0. We resize the input images to 224×224.

4.2. Comparison on Downstream Tasks

We compare SLAN with other state-of-the-art methods
on five challenging vision-language understanding tasks, in-
cluding image-text retrieval, image captioning, visual ques-
tion answering, natural language visual reasoning, zero-
shot video-text retrieval. We also generalize SLAN to two
localization tasks: object detection and phrase grounding.
The default vision encoder is ViT-Huge, if not specified.
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Method Backbone
Pre-training

Data

Zero-shot Fine-tune
Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
ALIGN [16] EfficientNet 1.8B 88.6 98.7 99.7 75.7 93.8 96.8 95.3 99.8 100.0 84.9 97.4 98.6
FILIP [44] ViT-Large 300M 89.8 99.2 99.8 75.0 93.4 96.3 96.6 100.0 100.0 87.1 97.7 99.1
BLIP [23] ViT-Large 14M 94.8 99.7 100.0 84.9 96.7 98.3 96.6 99.8 100.0 87.2 97.5 98.8
Beit-3 [37] ViT-Giant 21M 94.9 99.9 100.0 81.5 95.6 97.8 98.0 100.0 100.0 90.3 98.7 99.5

Ours ViT-Huge 14M 96.0 100.0 100.0 86.1 97.0 98.5 98.1 100.0 100.0 90.2 99.0 99.6

Table 2. Comparison with state-of-the-art image-text retrieval methods on Flickr30k. We use Recall@k scores as the evaluation metrics
under both zero-shot and fine-tuning settings.

Method Backbone
Pre-training Retrieval (COCO) Caption (COCO) VQA (VQAv2) NLVR (NLVR2)

Data I2T R@1 T2I R@1 B@4 M C S test-dev test-std dev test-P
Oscar [26] ResNet101 6.5M 73.5 57.5 37.4 30.7 127.8 23.5 73.6 73.8 79.1 80.3
VinVL [47] ResNeXt152-C4 8.9M 75.4 58.8 38.5 30.4 130.8 23.4 76.5 76.6 82.6 83.9

SimVLM [38] ViT-Huge 1.8B - - 40.6 33.7 143.3 25.4 80.0 80.3 84.5 85.1
GLIPv2-H [46] Swin-Huge 16M - - - - 131.0 - 74.6 74.8 - -

CoCa [45] ViT-Giant 4.8B - - 40.9 33.9 143.6 24.7 82.3 82.3 86.1 87.0
BLIP [23] ViT-Large 14M 82.4 65.1 40.4 - 136.7 - 78.2 78.3 82.1 82.2
Beit-3 [37] ViT-Giant 21M 84.8 67.2 44.1 32.4 147.6 25.4 84.2 84.0 91.5 92.5

Ours ViT-Huge 14M 85.7 69.2 44.2 34.3 147.8 25.8 84.5 84.7 91.0 91.7

Table 3. Comparison on more downstream tasks. For COCO retrieval, I2T and T2I represent image to text and text to image retrieval task,
respectively. For COCO image captioning, we report BLEU@4 (B@4), METEOR (M), CIDEr (C), and SPICE (S) scores on the Karpathy
test split. For VQA, we evaluate the vqa-score on the VQAv2 test-dev and test-standard (test-std) splits. For NLVR, we report accuracy on
the NLVR2 development set (dev) and public test set (test-P).

4.2.1 Image-Text Retrieval

Given an image, the retrieval task expects to retrieve the
corresponding text from the text gallery through the in-
put image, and vice versa. We evaluate our method on
Flickr30k [30] under zero-shot and fine-tune settings with
Karpathy split and the performance is evaluated in terms
of Recall@k. The comparative results are shown in Tab. 2.
Specifically, on the same pre-training setting, SLAN outper-
forms BLIP [23] by 3.3% in average recall@1 on COCO.

4.2.2 Image Captioning

Given an input image, the captioning task generates a sen-
tence description to describe the image in detail. We use
COCO Karpathy split to fine-tune and evaluate. SLAN out-
performs most existing methods under this efficient setting,
as shown in Tab. 3.

4.2.3 Visual Question Answering

Visual Question Answering (VQA) [1] requires the model
to predict an answer from an image-question pair. We
follow [23] and treat VQA as an open-ended question-
generation task. We fuse the image embedding with the
question embedding and send them to the question decoder
to get the result. As shown in Tab. 3, SLAN achieves higher

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
ClipBERT [22] 22.0 46.8 59.9 6
VideoCLIP [42] 30.9 55.4 66.8 -

FiT† [2] 43.3 65.6 74.7 2
BLIP† [23] 43.3 65.6 74.7 2

Ours† 46.8 70.5 83.6 1.5

Table 4. Comparison on the text-video retrieval task on the 1k test
split of the MSRVTT [43] dataset. † denotes the zero-shot set-
tings, while the others are fine-tuned.

performance than Beit-3 on the VQAv2 test-dev and test-
std sets, which adopts a larger vision backbone and requires
more pre-training data.

4.2.4 Natural Language Visual Reasoning

Natural Language Visual Reasoning (NLVR2) [33] mea-
sures whether a sentence describes a pair of images. We
extract the image and text embeddings from the image-text
input, which are then fused with a cross-attention layer. We
use a binary classification module to predict their relations.
SLAN surpasses most existing methods by a large margin,
and achieves comparable performance with Beit-3, show-
ing the importance of learning fine-grained vision-language
alignments.

21954



Method Backbone
Pretrain Data (M) Object Detection (COCO) Phrase Grounding (Flickr30k)

Image-Text Region-Word Zero-shot Fine-tune R@1 R@5 R@10
DETR [4]ECCV’20 ResNet50 0 0 - 42.0 - - -

MDETR [17]ICCV’21 ResNet101 0 0.2 - - 84.3 93.9 95.8
GLIP [25]CVPR’22 Swin-Large 24 3 49.8 60.8 87.1 96.9 98.1

GLIPv2 [46]NeurIPS’22 Swin-Huge 16 3 - 60.2 87.7 97.3 98.5
Beit-3 [37]CVPR’23 ViT-Giant 21 0 - 63.7 - - -

Ours

ResNet50 14 0 46.9 59.2 86.8 96.6 97.4
ViT-Base 14 0 47 59.6 87.4 96.9 98.2
ViT-Large 14 0 48.5 60.5 89.1 98.0 98.9
ViT-Huge 14 0 50.1 63.5 90.6 98.6 99.3

Table 5. Comparison on two localization tasks: object detection on COCO and phrase grounding on Flickr30k. The pre-training data
includes image-text pairs and word-specific region annotations. We evaluate both the zero-shot and fine-tune settings on object detection.
We use Recall@k scores to evaluate the phrase grounding task.

Trainable Adaptor COCO Flickr30k
Region Proposal Number TR@1 IR@1 TR@1 IR@1

✘ 0 68.5 53.5 85.0 74.1
✔ 0 69.1 53.8 86.7 76.2
✔ 1 70.0 57.2 88.3 77.4
✔ 2 70.8 57.5 88.7 78.1
✔ 3 72.1 58.3 90.3 78.9

Table 6. Ablations on the trainable region proposal module and
region adaptor in SLAN. ✘ in the first column denotes applying
a frozen region proposal module and no self-locator. TR@1 and
IR@1 denote recall@1 of image to text and text to image retrieval,
respectively. To evaluate the effect of the self-locator against a
frozen region proposal module, we load the weights pre-trained
on COCO detection task and compare it with our method (Row 1
vs. 2). The remaining experiments are trained from scratch. ViT-
Base is used as the vision encoder.

4.2.5 Zero-shot Video-Text Retrieval

Besides the image-text tasks mentioned above, SLAN can
generalize to the video-text retrieval task. We randomly se-
lect m frames from the video input and concatenate them
to get an image-text sequence, which are then directly fed
into our image-text retrieval model. As shown in Tab. 4,
SLAN achieves comparable performance to the other meth-
ods, demonstrating the vision-language knowledge learned
in SLAN is semantic-rich.

4.2.6 Localization Tasks

We conduct experiments on two localization tasks: object
detection on COCO, and phrase grounding on Flickr30k.
For the text input in the object detection task, we use
a prompt composed of concatenated labels from COCO
(e.g., “detect: person, bicycle, car, ... , toothbrush”). We
adopt the output from the last layer of the region adaptor.
Tab. 5 shows exciting performance of SLAN on localiza-

Top K Threshold
COCO Flickr30k

TR@1 IR@1 TR@1 IR@1
- - 69.4 54.1 85.9 74.7

10 - 70.6 56.8 87.5 77.3
10 0.3 71.2 57.6 89.1 78.2
10 0.5 72.1 58.3 90.3 78.9

Table 7. Ablations on different settings of the region filter.

tion tasks. For example, in the task of object detection
with ViT-Base as the backbone, SLAN achieves compara-
ble results to GLIP requiring a larger backbone and 3M gold
data. Though not designed for localization tasks, SLAN
with ViT-Huge as backbone outperforms almost all com-
parative methods.

4.3. Ablation Study

4.3.1 Effectiveness of Self-locator
Importance of learnable region proposal module. As
shown in Tab. 6, the 1st row represents replacing self-
locator with a frozen detector pre-trained on the COCO de-
tection task, and the 2nd row is our learnable region pro-
posal module. We do not initialize the region proposal mod-
ule with pre-trained weights, but only fine-tune them on the
downstream task’s datasets. Our method improves on aver-
age about 0.5% and 2% on COCO and Flickr30k’s image-
to-text and text-to-image retrieval tasks, respectively.

Number of region adaptors for region regression. The
region adaptor performs progressive regression on the re-
gions outputted by the region proposal module to provide
more accurate region localization for vision-language un-
derstanding tasks. As shown in Tab. 6, when the number of
region adaptors increases from 0 to 3, the retrieval perfor-
mance can be significantly improved by an average of more
than 3%.
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Method Backbone Params(M) FLOPs(G)
COCO

TR@1 IR@1
BLIP ViT-Base 370 558 81.9 64.3
BLIP ViT-Large 810 1594 82.4 65.1
Coca ViT-Giant 2100 4103 83.0 65.5
Beit-3 ViT-Giant 1900 - 84.8 67.2
Ours ResNet50 322 324 85.1 68.9

Table 8. Comparison on number of parameters and FLOPs on the
vision-language retrieval task. The FLOPs is calculated with an
input image resolution of 384x384. “Backbone” denotes the vision
encoder.

Region filter for saliency prediction. Tab. 7 illustrates
how the region filter affects the performance on COCO and
Flickr30k retrieval tasks. Learnable region proposal mod-
ule is trained from scratch and the number of region adap-
tors is set to 3. The first two rows show that when the re-
gions are sorted by their saliency scores and only selected
a certain number (top K), we can achieve an performance
gain of ∼ 2% on each dataset. When using in combina-
tion with saliency score threshold, our region filter is able
to remove redundant regions that negatively affect vision-
language adaptation and achieves even higher performance.

4.3.2 Computational Cost

Tab. 8 shows the comparison on computational cost of
SLAN and other state-of-the-art methods. As can be seen,
SLAN has the smallest amount of parameters and FLOPs
for that in this experiments our vision backbone is a rela-
tively lightweight ResNet50. However, our retrieval perfor-
mance significantly outperforms other methods. We believe
that the above phenomena demonstrate the efficiency and
effectiveness of our proposed SLAN.

4.4. Visualization Analysis

4.4.1 Text-guided Region Adaptation

As shown in Fig. 5, our region adaptor produces text-
specific results with relatively high confidence. When we
change the detailed description of the sentence, e.g., “a man
in a red coat” to “a man in black pants”, the interesting phe-
nomenon is that the attention regions of our self-locator are
also shifted accordingly with relatively high confidence.

4.4.2 Coarse-to-fine Region Adaptation

To verify the calibration effect of region adaptation, we vi-
sualize an image with its text in Fig. 6. Model locates more
accurate regions of interest with higher similarity scores af-
ter three levels of region adaptor. It shows that our self-
locator can hierarchically refine the relevant regions corre-
sponding to the provided words.

A man in a red coat skiing. A man in black pants goes
down a snow slope.

Figure 5. Illustration of text-specific region adaptation. We col-
orize three words per sentence and use the corresponding colors to
mark the regions with the highest matching scores. This highlights
SLAN’s ability to suggest adaptive text-relevant regions.

A man is sitting at the beach reading his newspaper.

Figure 6. Illustration of the coarse-to-fine process of region adap-
tation. We also show the matching score between the regions and
counterpart words. Note that each region at different levels in the
region adaptor has independent scaling and moving behavior in
our implementation.

5. Conclusions and Future Work

In this paper, we introduce the Self-Locator Aided Net-
work (SLAN), which leverages a self-locator to adapt the
proposed regions for vision-language alignments without
the need for extra grounding (region-to-word) annotations.
We aim to further investigate and optimize the self-locator’s
performance for various localization applications.
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