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Abstract

We propose a simple pairwise sigmoid loss for image-
text pre-training. Unlike standard contrastive learning with
softmax normalization, the sigmoid loss operates solely on
image-text pairs and does not require a global view of the
pairwise similarities for normalization. The sigmoid loss si-
multaneously allows further scaling up the batch size, while
also performing better at smaller batch sizes. With only four
TPUv4 chips, we can train a Base CLIP model at 4 k batch
size and a Large LiT model at 20 k batch size, the latter
achieves 84.5% ImageNet zero-shot accuracy in two days.
This disentanglement of the batch size from the loss further
allows us to study the impact of examples vs pairs and neg-
ative to positive ratio. Finally, we push the batch size to
the extreme, up to one million, and find that the benefits
of growing batch size quickly diminish, with a more rea-
sonable batch size of 32 k being sufficient. We hope our re-
search motivates further explorations in improving the qual-
ity and efficiency of language-image pre-training.

1. Introduction

Contrastive pre-training using weak supervision from

image-text pairs found on the web is becoming the go-to

method for obtaining generic computer vision backbones,

slowly replacing pre-training on large labelled multi-class

datasets. The high-level idea is to simultaneously learn

an aligned representation space for images and texts using

paired data. Seminal works CLIP [34] and ALIGN [23] es-

tablished the viability of this approach at a large scale, and

following their success, many large image-text datasets be-

came available privately [55, 13, 21, 45] and publicly [37,

6, 15, 7, 38].

The standard recipe to pre-train such models leverages

the image-text contrastive objective. It aligns the image and

text embeddings for matching (positive) image-text pairs

while making sure that unrelated (negative) image-text pairs

�equal contribution

Table 1: SigLiT and SigLIP results. Sigmoid loss is mem-

ory efficient, allows larger batch sizes (BS) that unlocks

language image pre-training with a small number of chips.

SigLiT model with a frozen public L/16 checkpoint [39],

trained on the LiT image-text dataset [55] using four TPU-

v4 chips for one day, achieves 79.7% 0-shot accuracy on

ImageNet. The same setup with a g/14 checkpoint [54]

leads to 84.5% accuracy, trained for two days. With a public
unlocked B/16 image checkpoint [39], trained on the We-

bLI dataset [13], SigLIP achieves 71.0% 0-shot accuracy

using 16 TPU-v4 chips for three days. The last two rows

show results with randomly initialized models.

Image Text BS #TPUv4 Days INet-0

SigLiT B/8 L∗ 32 k 4 1 79.7

SigLiT g/14 L 20 k 4 2 84.5

SigLIP B/16 B 16 k 16 3 71.0

SigLIP B/16 B 32 k 32 2 72.1

SigLIP B/16 B 32 k 32 5 73.4
∗ We use a variant of the L model with 12 layers.

are dissimilar in the embedding space. This is achieved via a

batch-level softmax-based contrastive loss, applied twice to

normalize the pairwise similarity scores across all images,

then all texts. A naive implementation of the softmax is

numerically unstable; it is usually stabilized by subtracting

the maximum input value before applying the softmax [18],

which requires another pass over the full batch.

In this paper, we propose a simpler alternative: the sig-

moid loss. It does not require any operation across the full

batch and hence greatly simplifies the distributed loss im-

plementation and boosts efficiency. Additionally, it con-

ceptually decouples the batch size from the definition of

the task. We compare the proposed sigmoid loss with the

standard softmax loss across multiple setups. In partic-

ular, we investigate sigmoid-based loss with two promi-

nent approaches for image-text learning: CLIP [34] and

LiT [55], which we call sigmoid language image pre-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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training (SigLIP) and sigmoid LiT (SigLiT), respectively.

We find that the sigmoid loss performs significantly better

than the softmax loss when the batch size is smaller than

16 k. As the train batch size grows, the gap closes. Impor-

tantly, the sigmoid loss is symmetric, requires just a single

pass, and a typical implementation requires less memory

than the softmax loss. This enables successful training of a

SigLiT model at a batch size of one million. However, we

find that the performance saturates with growing batch size,

both for softmax and sigmoid. The good news is that a rea-

sonable batch size, i.e. 32 k, is sufficient for image-text pre-

training. This conclusion also holds for multilingual SigLIP

training on over 100 languages.

In Table 1, we present setups for image-text pre-training

that require a moderate amount of TPUv4 chips for training.

SigLiT is surprisingly efficient, reaching 79.7% zero-shot

accuracy on ImageNet in just a single day on four chips.

SigLIP’s more demanding from-scratch training reaches

73.4% zero-shot accuracy in 5 days with 32 TPUv4 chips.

This compares favorably to prior works such as FLIP [29]

and CLIP [34], which require approximately 5 and 10 days

respectively on 256 TPUv3 cores. When fine-tuning a pre-

trained vision backbone in SigLIP, denoted as in Table 1,

we found that disabling the weight decay on the pre-trained

backbone leads to better results (see Figure 4 for details).

We hope our work paves the way for making the nascent

language-image pre-training field more accessible.

2. Related Work

Contrastive learning with the sigmoid loss. One prior

work proposes a similar sigmoid loss for the task of unsu-

pervised dimensionality reduction [19]; in the scope of con-

trastive image-text learning, the vast majority of works rely

on the softmax-based InfoNCE loss as popularized by [43].

In supervised classification, the sigmoid loss has already

been shown to be slightly more effective and robust than

the softmax loss [3, 47].

Contrastive language-image pre-training has become

popular since CLIP [34] and ALIGN [23] applied softmax

contrastive learning [56, 43, 10, 24] to large-scale image-

text datasets. Both models perform very well on zero-shot

transfer tasks, including classification and retrieval. Follow-

up works show that contrastively pre-trained models pro-

duce good representations for fine-tuning [49, 16], linear

regression [23], object detection [30], semantic segmenta-

tion [31] and video tasks [53].

Generative language-image pre-training Besides soft-

max contrastive pre-training, various alternatives have been

proposed. GIT [45], SimVLM [46], and LEMON [21] suc-

cessfully pre-train models using a generative text decoder

instead, while CoCa [52] adds such a decoder to the dis-

criminative CLIP/ALIGN setup, thus combining the pros

Algorithm 1 Sigmoid loss pseudo-implementation.

1 # img_emb : image model embedding [n, dim]
2 # txt_emb : text model embedding [n, dim]
3 # t_prime, b : learnable temperature and bias
4 # n : mini-batch size
5

6 t = exp(t_prime)
7 zimg = l2_normalize(img_emb)
8 ztxt = l2_normalize(txt_emb)
9 logits = dot(zimg, ztxt.T) * t + b

10 labels = 2 * eye(n) - ones(n) # -1 with diagonal 1
11 l = -sum(log_sigmoid(labels * logits)) / n

and cons of both approaches into a single very capable

model. BLIP [28] further proposes CapFilt which uses the

generative decoder to create better captions and the discrim-

inative part of the model to filter pairs. Language-Image

pre-training is a very active field and surveys [8] rapidly be-

come outdated.

Efficient language-image pre-training On the other hand,

few works have tried making language image pre-training

more efficient. LiT [55] and FLIP [29] are notable attempts,

the former requires a pre-trained and locked backbone, and

the latter sacrifices quality by randomly dropping visual to-

kens. BASIC [33] and LAION [48] look at scaling batch-

size but only go up to 16 k and 160 k respectively, by using

many hundreds of chips, and for the former also mixing in a

large private classification dataset [33, 51]. The recent Lion

optimizer [12] claims to be able to reduce the training cost

to reach similar quality.

3. Method

In this section, we first review the widely-used softmax-

based contrastive loss. We then introduce the pairwise sig-

moid loss and discuss its efficient implementation.

Given a mini-batch B = {(I1, T1), (I2, T2), . . . } of

image-text pairs, the contrastive learning objective encour-

ages embeddings of matching pairs (Ii, Ti) to align with

each other, while pushing embeddings of unmatched pairs

(Ii, Tj �=i) apart. For practical purposes, it is assumed that

for all images i, the text associated with a different image j
is not related to i, and vice-versa. This assumption is usu-

ally noisy and imperfect.

3.1. Softmax loss for language image pre-training

When using the softmax loss to formalize this objective,

an image model f(·) and a text model g(·) are trained to

minimize the following objective:

− 1

2|B|
|B|∑
i=1

⎛
⎜⎜⎜⎝

image→text softmax︷ ︸︸ ︷
log

etxi·yi

∑|B|
j=1 e

txi·yj

+

text→image softmax︷ ︸︸ ︷
log

etxi·yi

∑|B|
j=1 e

txj ·yi

⎞
⎟⎟⎟⎠
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(a) Initially each device holds 4

image and 4 text representations.

Each device needs to see the rep-

resentations from other devices

to calculate the full loss.

(b) They each compute the com-

ponent of the loss (highlighted)

for their representations, which

includes the positives.

(c) Texts are swapped across the

devices, so device 1 now has I1:4
and T5:8 etc. The new loss is

computed and accumulated with

the previous.

(d) This repeats till every image

& text pair have interacted, e.g.

device 1 has the loss of I1:4 and

T1:12. A final cross-device sum

brings everything together.

Figure 1: Efficient loss implementation demonstrated via a mock setup with 3 devices and a global batch size of 12. There

are no all-gathers, and at any point in time only the bright yellow square (size 4× 4) is materialized in memory.

where xi =
f(Ii)

‖f(Ii)‖2
and yi =

g(Ti)
‖g(Ti)‖2

. In this paper, we

adopt the vision transformer architecture [17] for images

and the transformer architecture [44] for texts. Note that

due to the asymmetry of the softmax loss, the normalization

is independently performed two times: across images and

across texts [34]. The scalar t is parametrized as exp(t′),
where t′ is a global freely learnable parameter.

3.2. Sigmoid loss for language image pre-training

Instead of the softmax-based contrastive loss, we pro-

pose a simpler alternative that does not require computing

global normalization factors. The sigmoid-based loss pro-

cesses every image-text pair independently, effectively turn-

ing the learning problem into the standard binary classifica-

tion on the dataset of all pair combinations, with a positive

labels for the matching pairs (Ii, Ti) and negative labels for

all other pairs (Ii, Tj �=i). It is defined as follows:

− 1

|B|
|B|∑
i=1

|B|∑
j=1

log
1

1 + ezij(−txi·yj+b)︸ ︷︷ ︸
Lij

where zij is the label for a given image and text input, which

equals 1 if they are paired and −1 otherwise. Note that at

initialization, the heavy imbalance coming from the many

negatives dominates the loss, leading to large initial opti-

mization steps attempting to correct this bias. To alleviate

this, we introduce an additional learnable bias term b similar

to the temperature t. We initialize t′ and b to 10 and -10 re-

spectively. This makes sure the training starts roughly close

to the prior and does not require massive over-correction.

Algorithm 1 presents a pseudocode implementation of the

proposed sigmoid loss for language image pre-training.

3.3. Efficient “chunked” implementation

Contrastive training typically utilizes data parallelism.

Computing the loss when data is split across D devices

necessitates gathering all embeddings [55] with expensive

all-gathers and, more importantly, the materialization of a

memory-intensive |B| × |B| matrix of pairwise similarities.

The sigmoid loss, however, is particularly amenable to

a memory efficient, fast, and numerically stable implemen-

tation that ameliorates both these issues. Denoting the per-

device batch size as b = |B|
D , the loss is reformulated as:

− 1

|B|
D∑

di=1︸︷︷︸
A: ∀ device di

B: swap negs
across devices︷︸︸︷

D∑
dj=1

C: per device
loss︷ ︸︸ ︷

b(di+1)∑
i=bdi︸ ︷︷ ︸
all local
positives

b(dj+1)∑
j=bdj︸ ︷︷ ︸

negs from
next device

Lij

This is particularly simple for the sigmoid loss as each pair

is an independent term in the loss. Figure 1 illustrates this

method. In words, we first compute the component of the

loss corresponding to the positive pairs, and b − 1 nega-

tive pairs. We then permute representations across devices,

so each device takes negatives from its neighbouring de-

vice (next iteration of sum B). The loss is then calculated

with respect to this chunk (sum C). This is done indepen-

dently in each device, such that each device computes the
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Figure 2: The effect of pre-training batch size. Left: SigLiT results, trained for 18B seen examples. Sigmoid loss outper-

forms the softmax loss significantly with small batch sizes, and performs similarly at larger batch sizes. We successfully

trained an SigLiT model with up to one million batch size. However, performance for both sigmoid and softmax saturate at

around 32 k batch size. Middle: SigLIP results, trained for 9B seen examples. Both sigmoid loss and softmax loss saturate

at a reasonable batch size, while the peak of the sigmoid loss comes earlier and slightly outperforms the peak of the softmax

loss. A very large batch size hurts both losses. Right: mSigLIP results, trained for 30B seen examples. With a multilingual

setup using over 100 languages, 32 k batch size is surprisingly sufficient and scaling beyond that hurts performance on a

36-language cross-modal retrieval task.

loss with respect to its local batch b. Losses can then simply

be summed across all devices (sum A). Individual collec-

tive permutes (for sum B) are fast (and indeed D collective

permutes is typically faster than two all-gathers between D
devices), and the memory cost at any given moment is re-

duced from |B|2 to b2 (for sum C). Usually b is constant as

scaling |B| is achieved by increasing the number of accel-

erators. Due to being quadratic with respect to the batch

size, the vanilla loss computation rapidly bottlenecks scal-

ing up. This chunked approach enabled training with batch

sizes over 1 million on relatively few devices.

4. Results

In this section, we evaluate the proposed SigLiT and

SigLIP models across a wide range of batch sizes. We dis-

cuss what can be achieved with a small number of accel-

erator chips, using both SigLiT and SigLIP recipes. We

also briefly discuss the impact of batch size on multilin-

gual language image pre-training. We ablate the importance

of our large-batch stabilization modification and the intro-

duced learned bias term and present a study on the effect of

positive and negative pairs ratio in the sigmoid loss. Lastly,

we explore SigLIP’s data noise robustness.

To validate our models, we report zero-shot transfer re-

sults on the ImageNet dataset [14] and zero-shot retrieval

results across 36 languages on the XM3600 dataset [41].

We use the ScalingViT-Adafactor optimizer [54] by default

for all our experiments.

4.1. SigLiT: Scaling batch size to the limit

Following [55], we use the same precomputed embed-

dings for the images using a ViT-g vision model, and train

a base size text tower from scratch with the same hyperpa-

rameters using the LiT image-text dataset [55].

We perform a study over a wide range of batch sizes,

from 512 to 1M , demonstrating the impact of batch size

for contrastive learning. Results are presented in Figure 2

(left). When the batch size is smaller than 16 k, sigmoid loss

outperforms softmax loss by a large margin. With growing

batch sizes, we observe that softmax loss quickly catches

up and potentially slightly underperforms sigmoid loss with

a large enough batch size. Overall, we recommend using

the SigLIP recipe for large batch sizes as well, due to the

simplicity, compute savings, and straightforward memory

efficient implementation.

There is a consensus that contrastive learning benefits

from large batch sizes, while most of the existing studies

stop at 64 k batch size [55, 33, 10]. We successfully trained

an SigLiT model at one million batch size, to explore the

limit of contrastive learning. To our surprise, the perfor-

mance saturates at 32 k batch size, further scaling up the

batch size only gives a minor boost, and the model peaks at

256 k batch size. Our best SigLiT with a B-sized text mode

achieves 84.7% zero-shot transfer accuracy on ImageNet,

while the original LiT paper reports a slightly better 85.2%

score with a 10 times larger g-sized text model. Figure 3

presents the impact of training duration for different batch

sizes. It demonstrates that large, 262 k batch size signifi-
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Figure 3: SigLiT ImageNet 0-shot transfer results with
different training durations. Large batch size results in a

big performance boost, but needs a sufficiently long sched-

ule to ramp up, as for short schedules, very large batch size

results in a small number of gradient update steps.

cantly outperforms smaller 8 k batch size when trained for

a sufficiently long time. Note, that for short training dura-

tions, large batch size leads to the fewer absolute number of

update steps and thus needs more time to ramp up.

4.2. SigLIP: Sigmoid loss is beneficial for language-
image pre-training

We pre-train SigLIP models on the WebLI dataset [13],

using only English image and text pairs. We use

moderately-sized models: B/16 ViT for image embeddings

and B-sized transformer for text embeddings. The input

images are resized to 224×224 resolution. The text is to-

kenized by a 32 k vocabulary sentencepiece tokenizer [27]

trained on the English C4 dataset [35], and a maximum of

16 text tokens are kept. Figure 2 middle plot shows SigLIP

results, With less than 32 k batch size, SigLIP outperforms

CLIP baselines with the standard softmax loss. On the other

end of the scale, the memory efficiency of the sigmoid loss

enabled much larger batch sizes. For example, with four

TPU-v4 chips, we could fit a batch size of 4096 with a Base

SigLIP but only 2048 with a corresponding CLIP model.

The two advantages together demonstrate significant bene-

fits of the sigmoid loss for language image pre-training with

fixed resources, which will be discussed in Section 4.5.

As batch size increases, the gap between the sigmoid and

the softmax losses diminish. SigLIP performs best at batch

size 32 k, whereas the softmax loss required 98 k for optimal

performance and still didn’t outperform the sigmoid based

variant. Scaling further, a larger batch size like 307 k hurts

both losses.

16 k 32 k 64 k 128 k 240 k

INet-0 71.6 73.2 73.2 73.2 73.1

XM avg 34.8 34.9 34.4 33.6 32.7

XM de 54.7 54.8 55.4 54.3 54.7

XM en 46.5 46.2 46.5 46.6 46.6

XM hi 9.1 8.5 7.9 8.1 7.3

XM ru 50.1 49.9 49.7 48.6 49.3

XM zh 30.7 32.5 32.0 30.6 23.7

Table 2: Multilingual SigLIP results with various batch

sizes, pre-trained for 30 billion seen examples. We report

zero-shot transfer results on ImageNet (INet-0) and aver-

aged text to image retrieval results across 36 languages on

the crossmodal 3600 dataset (XM). The full table on 36 lan-

guages can be found in Appendix.

4.3. mSigLIP: Multi-lingual pre-training

We further scale up the training data by keeping all the

100 languages from the WebLI dataset [13]. With multi-

lingual data, one usually needs to use a larger international

vocabulary. We first verify the impact of two tokenizers: a

small multilingual vocabulary with 32 k tokens [35], and a

large multilingual vocabulary with 250 k tokens [50]. We

train B-sized ViT and text models for 900M total exam-

ples seen, and observe slightly more than 1% improvement

when using a larger vocabulary.

However, the token embeddings become huge for very

large vocabulary sizes. Following the standard setup, we

would need to store a N×W token embedding lookup table

to train the multilingual model, where N is the vocabulary

size mentioned above and W is the embedding dimension

of the text model. To save memory, we propose to use a

“bottlenecked” token embedding. We use N × K embed-

ding matrix and additional K × W projection, where the

bottleneck K is much smaller than W .

In our experiments, we observed that using a large mul-

tilingual vocabulary with a bottleneck can be scaled up as

efficiently as using a small multilingual vocabulary. Specif-

ically, by enabling the bottleneck of size K = 96 for Base

architecture with W = 768, we only see about a half per-

cent quality drop on ImageNet zero-shot transfer, compared

to using the full 250k vocabulary.

With the memory improvements, we train mSigLIP

models for various batch sizes, for a total of 30 billion ex-

amples seen. Table 2 and Figure 2 (right plot) show the

results. We were expecting a large batch size to improve

multilingual pre-training, where the model sees more ex-

amples from the same language as hard negatives in a sin-
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Figure 4: Top: SigLIP with pre-trained encoders ramps up

quickly. However, only disabling weight decay on the pre-

trained encoder weights leads to stable behavior and good

ImageNet 0-shot transfer results. Bottom: ImageNet 10-

shot transfer results, where decaying the pre-trained weights

leads to deterioration of the pre-trained model visual repre-

sentation quality. Disabling weight decay makes the curve

flatter.

gle mini-batch. However, we didn’t observe clear improve-

ments with a batch size larger than 32 k. A batch size of

32 k is sufficient for a multilingual setup as well. On the

XM3600 cross-modal retrieval tasks, we found that going

beyond 32 k batch size leads to worse results on average

while on ImageNet zero-shot transfer it stays flat. mSigLIP

sets the new state-of-the-art on XM3600 text to image re-

trieval task, with only a Base size model. Our best result is

34.9%, which is more than 6% higher than the previously

reported result 28.5% [13] with a standard LiT model [55]

using a much larger four billion ViT-e model.

4.4. SigLiT with four TPU-v4 chips

For many practitioners, the important question usually is

“what can be trained with a limited amount of resources?”

We explore the usage of SigLiT models in this section with

only four TPU-v4 chips, as the memory efficient sigmoid

loss is suitable for this application scenario.

We follow the same setup as in section 4.1. We use the

publicly available ViT-Augreg-B/8 [39] model as the frozen

( ) vision tower, and precompute embeddings to accelerate

the training [55]. The text model is a Large Transformer, but

with a depth of only 12 layers (instead of 24). It is trained

using the LION [12] optimizer with decoupled weight de-

3

4
5
6

Lo
ss

 L

β2 = 0.999
β2 = 0.95

1

10

||∇
w

L|
|

1B 2B 3B 4B 5B
Examples seen

2

4

||Δ
w

||
Figure 5: The effect of Adam and AdaFactor’s β2. As

we increase batch-size, we observe more frequent training

instability. This instability can mainly be seen in the loss

curves (top) and is caused by spikes in the gradient norm

(middle) which results in large parameter updates (bottom).

Decreasing the β2 momentum value stabilizes the training.

Even though occasional gradient spikes still happen (see

step at 2B), they do not destabilize the training process.

cay 1 × 10−7, linearly warm-up of learning rate over 6.5k

steps up to a peak of 1 × 10−4, followed by a cosine de-

cay to 0. We train for a total of 65 000 steps with a batch

size of 32k – this leads to just under one day of training.

Table 1 shows the results when training a model on four

chips for one day, achieving 79.7% 0-shot ImageNet classi-

fication accuracy; very competitive in this limited resource

regime. With a ViT-g/14 [54] model as the vision tower and

a Large text tower, we can train at 20 k batch size on four

chips for 107 k steps in under two days. This further pushes

the 0-shot ImageNet classification accuracy up to 84.5%.

4.5. SigLIP with a small amount of TPU-v4 chips

It’s resource demanding to train a CLIP model from-

scratch in general, with SigLIP it’s possible to fit a larger

train batch size with fewer amount of chips. In this section,

we explore ways to train SigLIP models efficiently with pre-

trained weights. We use pre-trained weights to initialize the

image model to accelerate the pre-training, which was orig-

inally discussed in [55]. We use the public and unlocked

ViT-Augreg-B/16 [39] model to initialize our vision tower

and fine-tune on the same WebLI English data as used for

SigLIP. In all the experiments, we apply a 0.1 learning rate

multiplier to the pre-trained image tower to make it suitable
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Figure 6: The effect of batch composition. We simulate various batch compositions by masking out negatives, either

randomly, keeping only the hardest, or the easiest. With no masking, we have 16 k negatives for each positive in the batch

(1:16 k) and the strongest masking we apply (1:1.6) results in almost balanced minibatches. In one setting we match total
pairs seen by training for significantly longer. We observe ImageNet 0-shot score, the final value of the learned bias, and the

average logits of positive and negative pairs. Overall, the imbalance does not seem to be detrimental, but finding an efficient
way of mining negatives might be beneficial.

for fine-tuning.

Figure 4 presents unlocked fine-tuning results along-

side from-scratch randomly initialized baselines. We used

16 TPU-v4 chips and train at 16 k batch size for 2.4 B ex-

amples seen. We found that the fine-tuning setup doesn’t

perform well out-of-the-box; this is consistent with prior

works [55] where finetuning image models degraded visual

representation quality. This is evidenced by ImageNet 10-

shot linear classification, where in Figure 4 the fine-tuned

setup is barely better than the from-scratch baseline.

We hypothesize that the default weight decay applied to

the pre-trained weights reduces their effectiveness. Moti-

vated by the fine-tuning recipe from [17, 54, 25], that uses

no weight decay, we also propose disabling weight decay on

the pre-trained weights for SigLIP training. Weight decay

is therefore only applied to the randomly initialized weights

in the text model. This simple modification significantly

improved SigLIP results. Figure 4 shows that with our im-

proved recipe, SigLIP reaches 71% 0-shot accuracy on Im-

ageNet, using 16k batch size, trained on 16 chips for three

days. We also present from-scratch results in the bottom

rows of Table 1: with 32 TPUv4 chips for only two days,

SigLIP achieves 72.1% 0-shot accuracy. This presents a

significant training cost reduction e.g. compared to CLIP

(approx. 2500 TPUv3-days for 72.6%) reported in [29].

4.6. Scaling up SigLIP

In this section, we scale up SigLIP by “overtraining”

the model [42, 1] for a long schedule. We present results

in Table 3 using ViT-B or ViT-L as the vision encoder,

while the text encoder is kept the same size (B or L respec-

tively). Following the recipe as described in Section 4.2,

we train both models for 40 billion examples seen, but in-

crease the number of image patches from (224/16)2 = 196
to (256/16)2 = 256 and the number of text tokens from

16 to 64. To get SigLIP results for different resolutions,

we continue training the pre-trained model for 5 billion

examples on the target resolutions (i.e. 224 or 384), us-

ing a 100x smaller learning rate without weight decay. In

Table 3, we report zero-shot classification results on Im-

ageNet [14], ObjectNet [2], ImageNetv2 [36], ImageNet

ReaL [3], and zero-shot image-to-text (I→T) retrieval, text-

to-image (I→T) retrieval results on MSCOCO [11]. Our

SigLIP models outperform the previous models consistently

with ViT-B and ViT-L architectures.

4.7. Stabilizing large-batch training

As we move to large batch sizes, the language image pre-

training using transformers becomes increasingly more un-

stable, even when using a modestly-sized model (e.g. Base

size). The reason for these instabilities is large spikes in the

gradient norms, which translate to large-magnitude changes

in the weights that may destabilize the training process,

see Figure 5. We observe that reducing β2 in Adam and

AdaFactor from its default 0.999 to 0.95 (which was sug-

gested in [20, 9]) is enough to stabilize the training. Intu-

itively, this allows recovering from gradient spikes quicker.

We opt for setting β2 = 0.95 for all our experiments.

4.8. Negative ratio in sigmoid loss

One question which arises when shifting the perspective

from the softmax’s “pick the right class” view to the sig-
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Method
Image Encoder ImageNet-1k COCO

Size Patch # Validation v2 Real ObjectNet I→T T→I

CLIP B 196 68.3 61.9 - 55.3 52.4 33.1

OpenCLIP B 196 70.2 62.3 - 56.0 59.4 42.3

EVA-CLIP B 196 74.7 67.0 - 62.3 58.7 42.2

SigLIP B 196 76.3 69.6 82.8 70.7 64.4 47.2

SigLIP B 256 76.6 70.0 83.1 71.3 65.1 47.4

CLIP L 256 75.5 69.0 - 69.9 56.3 36.5

OpenCLIP L 256 74.0 61.1 - 66.4 62.1 46.1

EVA-CLIP L 256 79.8 75.3 - 72.9 63.7 47.5

SigLIP L 256 80.6 74.2 85.9 77.9 69.5 51.1

CLIP L 576 76.6 72.0 - 70.9 57.9 37.1

EVA-CLIP L 576 80.4 73.8 - 78.4 64.1 47.9

Table 3: Comparison with other methods. Our SigLIP models outperform the previous models, e.g. OpenCLIP [22] and

CLIP [34], by a significant margin on both the zero-shot classification tasks and the zero-shot retrieval tasks. Compared to

the recently introduced EVA-CLIP [40] model, SigLIP-L outperforms EVA-CLIP-L on all the tasks with the same number of

256 patches. SigLIP-L (256 patches) also outperforms EVA-CLIP-L (576 patches) by a large margin on the retrieval tasks.

moid’s “rate this pair” view, is the imbalance in positive

versus negative pairs. For a batch size |B|, the batch con-

tains |B| positive pairs, but |B|2 − |B| negative examples.

In the modest batch-size of 16 k, there are actually 268 M

negative examples for only 16 k positive ones. At the same

time, because the sigmoid loss decomposes into a sum of

per-example losses, we can perform controlled experiments

to study the effect of the mini-batch composition and dis-

tribution of examples visited. We run experiments in the

SigLiT setup at batch-size 16 k for 900 M steps and vary

the composition of the batch by masking out (i.e. ignoring)

enough negative examples to reach a target “positive : neg-

ative” ratio, masking in the following ways:

• Random: Randomly choose negative pairs to mask.

• Hard: Keep hardest negative pairs (highest loss).

• Easy: Keep easiest negatives pairs (lowest loss).

• Hard + matching total pairs seen: Masking exam-

ples while training for a fixed number of steps does

decrease the total number of pairs seen during train-

ing. Hence in the matched pairs setting, we increase

the number of training steps by the masking ratio in

order to keep the number of pairs seen constant.

Figure 6 shows the effect of the various masking strate-

gies. Randomly removing negatives to rebalance does dete-

riorate performance. Keeping the easiest examples does not

work at all, while keeping the hardest negatives does almost

maintain the quality, indicating that, as could be expected,

a lot of the learning on the negative side comes from the

harder examples. This is further confirmed by the slightly

increased performance of training longer on the hardest ex-

amples in order to match the total pairs seen.

We also look at the value of the learned bias at the end of

training as well as the average logit value for positive and

negative examples across these settings, and find the result

mostly follows what one would expect: as fewer negatives

are present, the bias and logits become more positive over-

all. Interestingly, when training with more hard negative

pairs, the average logits of positive pairs stays mostly flat.

This study confirms that (1) the imbalance does not seem

to be a major reason for concern, while at the same time (2)

coming up with an efficient way of including more negative

examples can be promising but is not trivial.

Table 4: Bias (b) and temperature (t′) initialization. Re-

sults are reported using Base architecture, 8 k batch size,

trained for 900M examples. Enabling the bias term b with

−10 initialization improves results consistently.

b t′ INet-0 Pet-0 C100-0

n/a log 10 62.0 81.8 59.9

-10 log 10 63.0 82.4 61.0
-10 log 1 61.0 80.0 60.4

0 log 10 61.7 79.9 59.0

0 log 1 53.7 73.2 53.8
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Figure 7: Sigmoid-training increases robustness to data noise. Titles show the type of corruption applied, and x-axes show

the probability with which they are applied. With increasing corruption severity, M-scale models trained with sigmoid loss

for 3.6 billion examples retain superiority over corresponding softmax baseline.

4.9. Bias term in sigmoid loss

We ablate the bias term in the loss function, using the

Base architecture with an 8 k batch size, trained for 900M

examples with the SigLIP setup. Zero-shot transfer results

are reported on ImageNet [14], Oxford-iiit pet [32] and Ci-

far100 [26]. Table 4 presents results with and without a bias

term in the sigmoid loss.

Enabling the bias term with a −10 initialization consis-

tently improves performance across all tasks. This is be-

cause the bias term ensures that the training starts close to

the prior, preventing dramatic over-correction in early op-

timization. In contrast, a randomly chosen bias term ini-

tialization, such as the 0 initialization in Table 4, fails to

address the over-correction issue, leading to significantly

worse results. This effect is particularly noticeable when

using a small temperature t′ initialization. We set the bias

and temperature initialization to b = −10 and t′ = log 10
(hence t = 10) as the default for all experiments.

4.10. Label noise robustness

Prior works demonstrated improved robustness against

label noise when using the sigmoid loss for classification

models [3]. This property would be particularly useful here

in the face of the famously noisy nature of popular large-

scale image-text datasets. In order to study this for SigLIP,

we train M/16 image models alongside an M text model at

batch size 16384 for 3.6 billion seen examples. We corrupt

the training data using one of the following methods:

• Image: With probability p, replace the image with uni-

form random noise.

• Text: With probability p, replace tokenized text with a

new sequence of randomly sampled tokens, up to some

(sampled) sequence length.

• Batch alignment: Randomly shuffle the ordering of

p% of the batch.

• Image & text: Apply both with probability p each.

• Image, text & batch: Alongside (4), also shuffle frac-

tion p of alignments.

Results from varying the likelihood of the corruption are

shown in Figure 7. Models trained with sigmoid loss are

increasingly robust to all kinds of added noise.

5. Conclusion
We conducted a study on two language-image pre-

training instances that used the sigmoid loss: SigLiT and

SigLIP. Our results demonstrate that the sigmoid loss per-

forms better than the softmax baseline, particularly for

small train batch sizes. This loss function is also more mem-

ory efficient, which allows larger train batch sizes without

requiring additional resources. We performed a thorough

investigation of the batch size in contrastive learning. Sur-

prisingly, we found that a relatively modest batch size of

32 k yielded nearly optimal performance. Further studies

have been performed to understand better the introduced

bias term in the sigmoid loss, robustness to data noises and

the impact of positive and negative pairs ratio in the sigmoid

loss. We hope this work will facilitate language-image pre-

training research with limited resources.
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