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Abstract

Vision-based reinforcement learning (RL) depends on
discriminative representation encoders to abstract the ob-
servation states. Despite the great success of increas-
ing CNN parameters for many supervised computer vi-
sion tasks, reinforcement learning with temporal-difference
(TD) losses cannot benefit from it in most complex envi-
ronments. In this paper, we analyze that the training in-
stability arises from the oscillating self-overfitting of the
heavy-optimizable encoder. We argue that serious oscilla-
tion will occur to the parameters when enforced to fit the
sensitive TD targets, causing uncertain drifting of the latent
state space and thus transmitting these perturbations to the
policy learning. To alleviate this phenomenon, we propose
a novel asymmetric interactive cooperation approach with
the interaction between a heavy-optimizable encoder and
a supportive light-optimizable encoder, in which both their
advantages are integrated including the highly discrimina-
tive capability as well as the training stability. We also
present a greedy bootstrapping optimization to isolate the
visual perturbations from policy learning, where represen-
tation and policy are trained sufficiently by turns. Finally,
we demonstrate the effectiveness of our method in utilizing
larger visual models by first-person highway driving task
CARLA and Vizdoom environments.

1. Introduction

Learning complex control from high-dimensional obser-
vations such as images is significant for many real-world
applications [37, 28]. It puts forward higher requirements
for the representation capability of visual encoder models,
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a) Returns during training b) Parameter oscillation

Figure 1. Comparison of DeepMDP agents on CARLA with
light- and heavy-weight visual encoders in episode returns (a)
and parameter oscillation (

∑T
t ∥∇θt∥)/∥

∑T
t ∇θt∥ (b). Com-

pared with 4-layer CNN, larger models like ResNet-18 do not im-
prove the RL performance as in supervised learning. The deteri-
oration results from the oscillating self-overfitting of the larger
model, which occurs in neither supervised learning nor RL with a
lightweight encoder.

especially in some complex scenes such as self-driving [5]
and robot controlling [29]. The last decade has witnessed
impressive progress in computer vision by training large-
scale networks [18] as they increase the search space of pos-
sible solutions. However, such parameter increment of vi-
sual models cannot directly benefit the reinforcement learn-
ing, and even leads to deterioration of training. For ex-
ample, as shown in Fig. 1(a), we illustrated the training
curves of DeepMDP [7] agents that use different CNN net-
works as visual encoders on the self-driving environment
CARLA [5]. The result shows that using a larger model,
e.g., ResNet-18 [18], leads to unstable training and achieves
distinctly lower returns than the lighter model with only
four convolutional layers.

To investigate this phenomenon, we quantified the os-
cillation of the network parameters by introducing an in-
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dicator calculated by the ratio of accumulation of modulus
length of the gradient to the module lengths of cumulative
gradient within T training steps, (

∑T
t ∥∇θt∥)/∥

∑T
t ∇θt∥,

where ∇ is gradient operator and θt is parameters of the
last convolution layer in the t-th step. A higher indicator
means worse oscillation and instability of parameters dur-
ing training. As shown in Fig. 1(b), we compared the os-
cillation in three experiments including i) training ResNet-
18 on RL, ii) training 4-layer CNN on RL, and iii) train-
ing ResNet-18 on supervised learning (SL) with CIFAR-
100 [24]. ResNet-18 suffers much more serious oscilla-
tion when training on RL, resulting in deteriorated perfor-
mance. However, such oscillation occurs neither on SL
with ResNet-18 nor on RL with the lighter 4-layer CNN.
We name this phenomenon as oscillating self-overfitting,
which particularly results from a pathological concurrence
of the overfitting capability of large models and the sensitive
learning targets of the temporal-difference (TD) loss [25].
Specifically, when the heavyweight parameters are enforced
to fit the sensitive TD targets which are partially generated
by themselves with a bootstrapping formulation, contradic-
tory gradients will propagate back to oscillate the param-
eters. This phenomenon results in uncertain drifting of the
state space and transmits these perturbations to policy learn-
ing. Therefore, stabilizing visual encoders with amounts of
parameters from TD losses for performance gain in RL is
still an open challenge.

From the perspective of the relation between the encoder
and the TD objective, existing representation learning for
RL can be categorized into two groups, as illustrated in Fig.
2. One approach jointly learns representation with policy
by the TD loss [16, 7, 23]. It efficiently learns the long-
term expected returns with light encoders while is incom-
patible with heavy-optimizable encoders due to the oscillat-
ing self-overfitting. Another group of approaches decouples
representation learning from RL to avoid instability, where
the encoder is learned only by auxiliary dynamic predictive
losses [11, 32]. However, it is inaccessible to the expected
returns from the bootstrapping objective in RL. In this pa-
per, we propose a novel asymmetric interactive cooperation
for representation learning in RL. To take both the advan-
tages of representation capability and the stability for TD
targets, it separately trains a main heavy-optimizable en-
coder and a supportive light-optimizable encoder by aux-
iliary tasks and TD losses, respectively. And the asymmet-
ric interaction is simultaneously conducted between them
to effectively exchange their knowledge from each other,
where the heavy one transfer the representation capability
by parameter momentum and the light one transfer the long-
term expected returns by topological distillation. Hence, the
heavy encoder is equipped with the capability of latent state
abstraction without oscillating by the TD objective. More-
over, we present a greedy bootstrapping optimization for
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Figure 2. Illustrations of different learning paradigms of visual
encoders. a) Joint Learning trains the visual encoder end-to-end
with reinforcement loss. b) Decoupled learning trains the encoder
only by auxiliary tasks. c) The proposed AIC trains a supportive
light-optimizable encoder with the expected returns information
from TD targets and transfers it to the main visual encoder.

further stability of training, where representation and pol-
icy are trained sufficiently by turns.

The main contributions of this paper can be summa-
rized in three aspects. First, it investigates the phenomenon
of oscillating self-overfitting that leads to deterioration in
RL with heavy-optimizable encoders, and proposes a novel
asymmetric interactive cooperation to alleviate it. Second,
it presents a topological distillation between latent state
spaces to learn state abstraction by interactive cooperation
without any explicit labels. Third, it presents a greedy boot-
strapping optimization for further stability of training. Ex-
periments demonstrate a significant performance gain over
the complex and realistic environments of CARLA and Viz-
doom.

2. Related Work

Jointly Representation Learning with RL. Since learning
control directly from high-dimension visual observations is
hard to converge, many approaches learn the encoder jointly
with RL and elaborate auxiliary tasks [39, 38, 26, 6, 21, 34],
as shown in Fig. 2(a). The first line of methods utilizes self-
supervision to learn the visual invariances [17, 16, 15, 35].
CURL [27] introduced a contrastive loss to learn discrimi-
native features from raw pixels. The second line learns to
abstract the state by preserving the property of Markov de-
cision processes (MDPs) [12, 19, 2]. DeepMDP [7] learns
the latent space with the same dynamic transition as the en-
vironment. DBC [40] learns invariant representations with
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Figure 3. Flowchart of the proposed asymmetric interactive cooperation. The representation learning consists of two components including
momentum adaptor tuning and topological distilled transferring. In the momentum adaptor tuning, the adaptor is optimized by RL to learn
the information of expected returns while the momentum encoder is updated by moving average from the online encoder. In topology
distilled transferring, the online encoder is trained by three auxiliary tasks while transferring the information of expected returns by
topology distillation from the momentum adaptor encoder. The policy is learned by freezing the online encoder.

the bisimulation distance. The third line of methods de-
signs regularization to stabilize the training process [23].
DrQ [23] and SVEA [16] propose data regularization us-
ing image augmentation of random shift or random convo-
lution. A-LIX [3] adaptively regularizes the convolutional
features to prevent overfitting while it doesn’t study the
heavy visual models. The common drawback of these meth-
ods is the difficulty for the heavy-optimizable encoders due
to oscillating self-overfitting caused by TD losses, resulting
in more serious instability. Other recent works have con-
cerned the stability of large models in RL [25, 31], but they
focus on a different component of policy learning instead
of representation. We also note recent work RL with Trans-
former while they only contain slight parameters [4, 20] or
rely on supervised imitation learning [36].

Decoupled Representation Learning from RL. Recent
methods proposed to decouple representation learning from
TD losses for efficient training [30, 31], in Fig. 2(b). A
typical approach is the world model [9, 8]. It first pretrains
an encoder using Variational Autoencoder [33] by the col-
lected rollouts from a random policy and then trains policy
with the encoder frozen. However, the encoder does not
perform well since the pretraining data is of different distri-
bution from those in policy learning. Recent world model

class methods [14, 30, 32, 13, 1], such as Dreamer [11],
turn to learn the encoder and the policy alternatively step-
by-step, in which the encoder is updated by the newly col-
lected data. Theoretically, these approaches can train any
large model stably. But there still exists a bottleneck, that is,
the encoder is isolated from the long-term expected returns
hidden in the TD losses, which is significant for the state
abstraction with respect to the downstream controls. In our
work, we tackle this problem by interacting with a support-
ive light-optimizable encoder, which learns from TD losses
stably and transfers its knowledge to the main encoder, as
shown in Fig. 2(c).

3. The Proposed Approach

3.1. Overview

Asymmetric interactive cooperation alternatively trains
a light-optimizable supportive encoder with TD losses to
learn the long-term expected returns without oscillating
self-overfitting, and a heavy-optimizable main encoder with
auxiliary tasks to capture stronger representation capability.
Simultaneously, two kinds of interaction are conducted be-
tween them to exchange their knowledge including:
• Light ← Heavy: parameter momentum to absorb the
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representation capability, as in Sec. 3.2.
• Light → Heavy: topological distillation to learn the

long-term expected returns, as in Sec. 3.3.
Beyond them, it presents a greed bootstrapping frame-

work for AIC to alleviate the drifting of the state space for
further stability in Sec. 3.4. The flowchart of AIC is illus-
trated in Fig. 3.

3.2. Momentum Adaptor Tuning

Attaching adaptor to momentum. To efficiently learn
the long-term expected returns, the light-optimizable en-
coder should satisfy the following two conditions: 1) It
only contains a few learnable parameters so that it con-
verges without oscillating self-overfitting. 2) It can utilize
the middle-level representation of the heavy-optimizable en-
coder rather than relying only on the raw observation in-
put. To fulfill the above conditions, we implement the
light-optimizable encoder by applying learnable CNN adap-
tors β to the momentum network θm of the online heavy en-
coder θo. As illustrated in Fig. 3, each 3×3 convolutional
layer in the momentum encoder is connected with a 1×1
convolutional adaptor module in a parallel manner. Thus
the result of each layer is formulated by,

xl+1 = ρ(xl; θ
m
l , βl) = θml ∗ xl + βl ∗ xl, (1)

where xl is the input tensor of the l-th layer and ∗ denotes
the convolution operator. θml and βl are the weights of the
momentum model and the adaptor, respectively. We name
this light-optimizable encoder as momentum adaptor en-
coder, referring to fm. It interacts with the online heavy
encoder fo by parameter momentum to utilize its represen-
tation. In each iteration step, the momentum model is up-
dated by moving average of the online encoder fo,

θm ← τθm + (1− τ)θo, (2)

where θo is the parameters of online encoder and τ ∈ [0, 1]
is the momentum factor.
Adaptor Tuning. The adaptor is updated with RL by max-
imizing the expected return,

β∗ = argmax
β

E

[ ∞∑
t

γtR(st, at, st+1)

]
, (3)

where γ is the discount factor and R is the reward. st and
at are the state and action in time step t. Given a batch
of transitions {(ot, at, rt,ot+1)} from the replay buffer B,
ot ∈ RC×H×W is the observation stacking multiple frames.
H , W are the height and width of the image and C is the
channel number. We first projected the observation from
images to a latent state sm = fm(ot; θ

m, β) with the mo-
mentum adaptor encoder fm. To tune the adaptor with the
reinforcement learning, we optimize the predicted state by
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Figure 4. Illustration of the distance between state topology in dif-
ferent latent spaces. ψm(·) and ψo(·) denote the similarity func-
tion of states.

conditioning it on a learnable critic head hc and an actor
head ha for SAC [10] algorithms. Both two heads are im-
plemented by 3-layer MLPs. Then the critic takes state smt
and action at as inputs and learns to predict Q(smt , at) with
the critic loss,

Lcritic = (Q(st, at)− y(rt, st+1))
2
, (4)

where the TD target is given by

y(rt, st+1) = rt + γ(Q̄(st+1, ât+1)− αr log π(ât+1|st+1)).
(5)

Q̄ is the target critic by moving average, and π(ât+1|st+1)
is the policy distribution predicted by the actor head. αr is
the temperature parameter in SAC. ât+1 ∼ π(·|st+1). The
actor learns to generate the action that maximizes the Q-
value predicted by the critic,

Lactor = αr log π(ât|st)−Q(st, ât). (6)

By jointly training the adaptor β with the critic hc and actor
ha, the information of long-term expected returns will be
efficiently learned to the adaptor, resulting in a better state
abstraction for the control task.

3.3. Topology Distilled Transferring

Topology of abstracted states. Since the information of
expected returns is stably captured by the momentum adap-
tor fm, the core issue is how to transfer that knowledge into
the online heavy-optimizable main encoder fo, making its
representation more adaptive to policy learning. To this end,
we introduce a teacher-student distillation manner where
the momentum adaptor encoder fm(·; θm, β) and the online
main encoder fo(·; θo) are considered as the teacher and
student, respectively. Learning state abstraction for control
is to project the observed states into a latent space, where
the adjacency among states is consistent with the transitions
in the real environment. For instance, the states near the
same time-step in the real environment should also be ad-
jacent in the feature space. Hence, we transfer the capabil-
ity of state abstraction by distillation of the adjacency, i.e.,
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topological relation in the latent state space. To this end, we
first define topological relation T (S) in the state space S as
the set of similarity between every state pairs (si, sj) in the
data,

T (S) = {ψ(si, sj)|(si, sj) ∈ S} (7)

where ψ(si, sj) denotes the similarity function of states.
This set of similarities reveals the structural information of
the state space, thus preserving the representation capabil-
ity of the states. Our objective is to minimize the distance
between the teacher’s topological relation T (Sm) and the
student’s T (So), as illustrated in Fig. 4,

θm∗ = argmin
θm

DT (T (Sm), T (So))

= argmin
θm

Eoi,oj∼B
[
Dist

(
ψm(smi , s

m
j ), ψo(soi , s

o
j)
)]
.

(8)
smi = fm(oi|θm, β), soi = fo(oi|θo), ψm(·), ψo(·) are the
similarity functions among states of Sm, So, respectively.
Topological distillation. Here we introduce the pro-
cess of topological distillation in detail. Given a batch of
observations {ot}, we encode them to latent states {smt }
and {sot}with the momentum adaptor encoder fm(·; θm, β)
and the online main encoder fo(·; θo), respectively. In
this paper, we suppose the states are abstracted in a high-
dimensional Euclidean space, and use L2 distance as the
similarity function ψm(·) = ∥ · ∥2 for the teacher. Then
the topological relation within a batch is formulated as an
adjacent matrix of the state features from the teacher, re-
ferring to Am ∈ RN×N . N is the batch size. Am

[i,j] =

ψm(smi , s
m
j ) = ∥smi − smj ∥2, where [i, j] denotes the i-th

row and the j-th column in the matrix Am. Moreover, due
to the unknown scale of the latent state, the matrix is nor-
malized by its average value as ∥Am∥,

∥Am∥[i,j] = Am
[i,j]/(

1

N2

∑
m,n

Am
[m,n]). (9)

However, directly minimizing the distance between topo-
logical relations with the same similarity function ψo as
ψm will prevent the student online encoder from other basic
discrimination. To flexibly distill knowledge and avoid dis-
turbing the basic representation, the similarity function of
the student’s state space is defined by the L2 distance after
a linear transformation ϕ with weight W,

ψo(soi , s
o
j) = ∥ϕ(soi )− ϕ(soj)∥2 = ∥WT soi −WT soj∥2.

(10)
And the intra-batch adjacent matrix of the online encoder’s
state space is computed as Ao, where Ao

[i,j] = ψo(soi , s
o
j).

Similar normalization as in Eq. 9 is also performed to Ao,
referring to ∥Ao∥. We distill the information of long-term
expected returns from sm to so by minimizing the L2 dis-
tance between their intra-batch similarity matrices Am and

Ao. The transferring loss is defined by

Ltrans =
1

N2

∑
(i,j)∈[1,N ]

Dist(Am
[i,j],A

o
[i,j]), (11)

where Dist(u, v) = max
(
(u− v)2 − ϵ, 0

)
. Note that ϵ is

a small loose factor, making the distillation learning more
stable to converge.
Dynamic prediction. Although the online encoder indi-
rectly learns the long-term expected returns by the above
distillation, its potential in representation capability is far
from being developed. To this end, the online encoder is
learned to capture other basic characters including environ-
ment dynamics as well as visual perception by using addi-
tional auxiliary tasks. As illustrated in Fig. 3, the predicted
states sot are conditioned on three auxiliary heads: a reward
predictive head R, a state predictive head P and an obser-
vation decoder head G. Taking the current states sot and ac-
tions at as inputs, the R and P aim to predict the reward
R(sot , at) and next state P(sot , at), and thus learn a latent
state space of which dynamic is consistent with the envi-
ronment. Dynamic predictive loss is defined as

Ldynamic = Lreward + Lstate

= Dr(R(sot , at), rt) +Ds(P(sot , at), sot+1))

= (R(sot , at)− rt)2 + ∥P(sot , at)− sot+1)∥2.
(12)

To guarantee temporal capacity, the decoder G is trained to
predict the next observation with the predicted next state
ŝot+1 = P(sot , at). The decoding loss is defined as

Ldec = Do(ôt+1,ot+1)

= Do(G(P(sot ,at)),ot+1)

=
1

HW

H,W∑
h,w=1

(G(P(sot , at))[h,w] − o
[h,w]
t+1 )2.

(13)

Then the overall loss of the topology distilled transferring is
formulated by

Lencoder = Ltrans + Ldynamic + Lobs, (14)

where the online main encoder and auxiliary heads are
jointly learned with the adaptor frozen.

3.4. Greedy Bootstrapping for AIC

In most deep reinforcement learning approaches, the rep-
resentation module and policy module are trained in a si-
multaneous manner. That is, while the policy model is
trained from the reinforcement signals the encoder is also
simultaneously changing. This phenomenon will disturb
policy improvement due to the drifting of state representa-
tion. To tackle this problem, this section presents a greedy
bootstrapping framework for AIC, which consists of two
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Algorithm 1: Greedy Bootstrapping for AIC
1 Initialize the replay buffer B with random episodes.
2 while not converged do
3 // Representation learning
4 Build data-loader with the replay buffer B.
5 for update step c=1...C do
6 Draw next batch of transitions {(ot, at, rt,ot+1)}.
7 //Momentum Adaptor Tuning
8 Update momentum encoder by moving average.
9 Update adaptor by optimizing Eq. 4.

10 //Topology Distilled Transferring
11 Update online encoder by optimizing Eq. 14.
12 end
13 // Policy learning (encoder frozen)
14 for update step cp=1...S do
15 Draw transition sequences {(ot, at, rt,ot+1)} ∼ B.
16 Update critic and actor parameters.
17 end
18 Add new experiences to the replay buffer B.
19 end

alternative training stages for the representation and pol-
icy, respectively. In each representation stage, the encoder
keeps training until convergence, and so does the policy in
the other stage. The framework is described in detail in Al-
gorithm 1.
Greedy representation learning. Over the latest collected
replay buffer, the encoder is trained by iterating all the im-
ages in each epoch. Different from sampling a random
batch in each iteration like most other methods, our ergodic
sampling strategy brings stable training without ignorance
of any crucial samples. In each stage of representation
learning, the encoder is trained for several epochs until it
is converged.
Greedy policy learning. With the main encoder trained
sufficiently, the policy is learned continuously by freezing
the encoder and conditioned on its output state. Beneficial
from the stable and discriminative latent state, the critic and
actor are trained efficiently from the reinforcement signal by
SAC algorithms and tend to produce better behaviors. The
policy is learned continuously for enough steps and then
used to interact with the environment for new trajectories.

4. Experiment

4.1. Environments Setup

Benchmarks. We evaluate our method on two reinforce-
ment learning environments with complex and realistic ob-
servations, i.e., CARLA [5] and Vizdoom [22], with con-
tinuous and discrete action space, respectively. Both tasks
are developed in 3D physical scenes with a complex state
space, which calls for deeper visual encoders with stronger
representation capability.
Implementation details. We adopt ResNet-18 as the back-
bone of the visual encoder. Before the last pooling layer, the

Figure 5. Comparison with other baseline approaches on the
CARLA environment.

Figure 6. Ablation Study of our method using ResNet-18 as the
visual encoder on the CARLA environment.

feature map is flattened and then projected into 1024-dim
state features with a linear layer and layer norm operation.
The momentum factor τ is set to 0.05. We use Adam to
optimize the parameters of all modules in our approach.

4.2. CARLA Autonomous Driving Environment

Experimental settings. In the autonomous driving task,
we construct a highway driving scenario with 20 other
vehicles of different models using the CARLA simulator.
We use five cameras on the roof of the ego-vehicle, each
with a 60-degree view and obtaining images of 84 × 84
pixels. We concatenate them together for observation of
84 × 420 pixels. We stack the last three frames as the
inputs. Following DBC [40], the reward is formulated as
rt = vTegoûh · ∆t − ξ1 · I − ξ2 · |steer|, wherevego is the
velocity vector of the ego-vehicle, projected onto the high-
way’s unit vector ûh, and multiplied by time discretiza-
tion ∆t = 0.05 to measure highway progression in me-
ters. Impulse I ∈ R+ is caused by collisions, and a steering
penalty steer ∈ [−1, 1] facilitates lane-keeping. The hyper-
parameters ξ1 amd ξ2 are set to 10−4 and 1, respectively.
Comparison with other methods. We compare our ap-
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Figure 7. Comparison of other representation-decoupled methods
on the CARLA environment.

proach with seven baselines, including joint representa-
tion learning methods, i.e., CURL [27], SVEA [16], Deep-
MDP [7], DBC [40]; representation decoupled methods,
i.e., DreamerV2 [13], Iso-Dream [32], and the baseline
SAC [10]. As shown in Fig. 5, our AIC outperforms all
baselines by large margins. Compared with joint represen-
tation learning, the superior performance can be attributed
to that our method stably learns a more discriminative state
abstraction with deeper architectures, while avoiding the os-
cillating self-overfitting. Representation decoupled meth-
ods train encoders only on auxiliary tasks without TD losses
and thus usually require more time to converge. However,
AIC effectively learns the long-term expected returns by in-
teraction with the light-optimizable momentum adaptor en-
coder, resulting in faster convergence.
Ablation Study. We conduct ablation studies to validate
the effectiveness of the proposed topology distilled trans-
ferring and the greedy bootstrapping strategy. All the ex-
periments train the ResNet-18 as the encoder. Fig. 6 shows
that SAC fails to learn an effective policy with the heavy-
optimizable encoder since the state features are deteriorated
by the serious oscillating self-overfitting. By applying the
dynamic loss and decoder loss, the deterioration is slightly
alleviated, since the encoder is encouraged to learn the in-
herent information of environment dynamics by the targets
which are more stable than TD. However, disturbed by the
oscillating gradients of the TD loss, the encoder is still
hard to converge. Compared to it, the greedy bootstrapping
strategy achieves significant improvement, denoted as AIC
w\o Ltrans, because it interrupts the backward propaga-
tion of the unstable gradient and simultaneously it trains the
encoder and policy stably and sufficiently. AIC distinctly
outperforms the AIC w\o Ltrans due to the topology dis-
tilled transferring, which additionally incorporates the long-
term expected return information into the encoder, making
it more adaptive for the downstream controlling.
Comparison with other decoupling methods. To further

Figure 8. Comparison with different architectures of the encoder
on the CARLA environment.

Figure 9. Comparison of other stabilizing methods using ResNet-
18 on the CARLA environment.

evaluate the greedy bootstrapping framework, we compare
it with other two typical methods that decouple representa-
tion learning from RL. Initial decoupling first collects a set
of transitions using a random policy and then pretrains the
encoder with auxiliary tasks as in Eq. 12 and 13. After-
ward, the policy is trained by SAC with the encoder frozen.
As shown in Fig. 7, the initial decoupling method performs
high-variance results because the performance significantly
depends on whether the distribution of the collected pre-
training data is similar to those from a learned policy. Step-
ping decoupling learns the encoder and the policy step by
step, respectively. The encoder is trained by transitions
from the same data distribution as the policy. However,
since the encoder keeps updating during policy learning,
the latent state space suffers from unstable drifting, mak-
ing it difficult to learn policy from the volatile state abstrac-
tion. The greedy bootstrapping strategy surpasses both two
approaches because it guarantees a determined latent state
space that is conducive to the inductive learning of policy.
Moreover, it learns the encoder by traversing all the transi-
tions in the replay buffer, prevented from ignorance of some
critical images or overfitting to parts of data.
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Table 1. Comparison with other methods using ResNet-18 on Medikit of Vizdoom environment.

- DQN (Baseline) DrQ SVEA CURL DeepMDP AIC (Ours)

Episode Returns (mean/std) 888±584 1361 ± 1004 435±185 408±203 1026±807 1686±1283
Min returns 252 252 79 24 284 56
Max returns 2444 4200 1008 1136 3710 4800

Survival Time (mean/std) 64 ±26 85±43 45± 8 44±9 72±37 96±53
Min Time 26 26 27 23 39 26
Max Time 135 210 68 74 191 210

Improvements on different encoders. We evaluate our ap-
proach with different architectures as the visual encoder, in-
cluding a light CNN of 4-layer convolution (Conv-4), and
three heavyweight models, i.e., VGG-11, ResNet-18, and
ResNet34. For each architecture, we conduct three experi-
ments using SAC, SAC with auxiliary tasks (dynamic loss
and decoder loss as in Eq. 12 and 13), and our AIC ap-
proach. The comparison is illustrated in Fig. 8. Firstly,
all heavyweight models fail to learn effective policies using
SAC, where only TD loss is used. The results indicate the
oscillating self-overfitting is consistent for heavy models.
Secondly, auxiliary tasks improve the performance of SAC
with heavyweight encoders, but they are still inferior to the
light encoder like Conv-4. The oscillating self-overfitting
seriously prevents the encoder from sufficient learning. Fi-
nally, AIC consistently improves the performance with all
heavy encoders by large margins, as well as the light en-
coder of Conv-4. It shows a consistent rank of performance
that these architectures have achieved in supervised learn-
ing tasks. It demonstrates that our method makes full use
of the representation capability of heavyweight visual en-
coders through interactive cooperation.
Comparison with stabilizing methods. To evaluate AIC
for stabilizing the training of heavy-optimizable encoders,
we compare it with SVEA and DrQ using ResNet-18 as the
backbone. As shown in Fig. 9, both two methods perform
not well, since the increase of parameters significantly exac-
erbates the challenge of stabilizing. However, AIC exceeds
them by large margins, indicating its capability to stably
learn heavy models.
Qualitative analysis. In order to evaluate the effectiveness
of our approach in alleviating the oscillating self-overfitting,
we visualize the updating trajectories of the encoder param-
eters over a set of training steps by TSNE. We use ResNet-
18 as the encoder backbone and choose the weights of the
last convolution layer for visualization. The comparison be-
tween DeepMDP with the TD loss and AIC is shown in Fig.
10, where each point represents the parameters in a step and
the color changes from deep to light over the training steps.
As we can see, the parameters with the TD loss of the Deep-
MDP agent suffer from significant oscillation during train-
ing. Different from that, the parameters of AIC show a dis-

Parameters with TD Loss Parameters with AIC (Ours)

Training Step Training Step

Figure 10. Parameter updating trajectories of the ResNet-18 en-
coder over training steps.

tinct optimizing direction and only have slight oscillation in
a short time. The qualitative results demonstrate AIC effec-
tively alleviates the oscillating self-overfitting for the heavy-
optimizable encoder in visual reinforcement learning.

4.3. Vizdoom Medikit Environment

Experimental settings. Vizdoom is based on the first-
person perspective video game in a semi-realistic 3D world.
We use the difficult medikit collecting scenario, where the
agent is spawned in a random spot of a maze with an acid
surface, which slowly, but constantly, takes away the agent’s
life. The agent needs to collect medikits and avoid blue
vials with poison, both of which appear in random places
during the episode. In each step, the agent is allowed to
move (forward/backward), or turn (left/right). The reward
is formulated as rt = 1− ξ3 ·Em− ξ4 ·Ev− ξ5 ·Ed, where
Em, Ev , Ed denote the events of getting a medikit, a vial
and to death, respectively. ξ3 = ξ4 = ξ5 = 100.
Superior performance with heavy encoders. To evaluate
our approach, especially with deep deep encoders, we com-
pare it with five methods. All of them use ResNet-18 as
backbones. Since the Vizdoom is of discrete action space,
we adopt DQN as the baseline. As shown in Table 1, AIC
performs superiorly to the compared methods. CURL and
SVEA perform poorly, since the observations of such a fine-
grained collecting task of first-person perspective are sensi-
tive to random cropping of CURL. And the random conv of
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SVEA is not applicable for the low-contrast images in this
scenario. However, AIC is able to effectively train heavy
models under different conditions.

5. Conclusion
In this paper, we investigate the phenomenon of oscil-

lating self-overfitting which results in the deterioration of
RL when training heavy-optimizable encoders. To allevi-
ate this problem, we propose a novel asymmetric interac-
tive cooperation approach. Through interaction between
a main heavy-optimizable encoder and a supportive light-
optimizable encoder, both advantages of them are integrated
including the highly discriminative capability and the train-
ing stability. We further present a greedy bootstrapping
framework for further stability. Experimental results of
CARLA and Vizdoom show that AIC achieves competitive
performance over complex and realistic environments.
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