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Abstract

As advanced image manipulation techniques emerge, de-
tecting the manipulation becomes increasingly important.
Despite the success of recent learning-based approaches
for image manipulation detection, they typically require ex-
pensive pixel-level annotations to train, while exhibiting
degraded performance when testing on images that are dif-
ferently manipulated compared with training images. To
address these limitations, we propose weakly-supervised
image manipulation detection, such that only binary image-
level labels (authentic or tampered with) are required for
training purpose. Such a weakly-supervised setting can
leverage more training images and has the potential to adapt
quickly to new manipulation techniques. To improve the
generalization ability, we propose weakly-supervised self-
consistency learning (WSCL) to leverage the weakly anno-
tated images. Specifically, two consistency properties are
learned: multi-source consistency (MSC) and inter-patch
consistency (IPC). MSC exploits different content-agnostic
information and enables cross-source learning via an online
pseudo label generation and refinement process. IPC per-
forms global pair-wise patch-patch relationship reasoning
to discover a complete region of manipulation. Extensive
experiments validate that our WSCL, even though is weakly
supervised, exhibits competitive performance compared with
fully-supervised counterpart under both in-distribution and
out-of-distribution evaluations, as well as reasonable manip-
ulation localization ability.

1. Introduction

With the advent of increasingly powerful image editing
techniques [39, 24, 26, 56, 36, 20, 59, 58, 61, 20, 44], im-
age manipulation has never been so convenient, and can be
easily accomplished using natural language [44, 20, 44] or
sketch [39, 59, 58, 61] by general users. Such advances
allow malicious users to easily manipulate images, creat-
ing fake news, promoting blackmail, and generating Deep-
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(a) In-distribution (IND) manipula-
tion detection result on the testing
split of the CASIA dataset [10, 11].
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(b) Out-of-distribution (OOD) ma-
nipulation detection results, which
are averaged over Columbia [17],
Coverage [51] and IMD2020 [33].

Figure 1. Image-level manipulation detection performance compar-
ison with existing fully-supervised methods [65, 57, 22, 6]. All
methods are trained on CASIA [10, 11]. Our weakly-supervised
method achieves comparable performance with fully-supervised
methods under both IND and OOD manipulation detections.

fakes [60, 48]. Thus, detecting the authenticity of an image is
crucial for media forensics and credible information sharing.

Despite previous efforts to detect image manipulations,
existing solutions still confront several challenges when deal-
ing with real problems. First, although learning-based image
manipulation techniques demonstrate excellent performance
compared with traditional methods, they may not easily
generalize well to testing images that are manipulated differ-
ently compared with training images. As more sophisticated
image manipulation techniques continue to emerge, it is ex-
ceedingly challenging, if not impracticable, to encompass
all manipulation methods in the training data to enable effec-
tive handling of novel manipulations. As shown in Fig. 1,
despite work well in the training image dataset, the perfor-
mance of learning-based methods can degrade considerably
when testing on out-of-distribution images, i.e., the unknown
unknowns. Moreover, most learning-based methods for de-
tecting image manipulation rely on the full supervision, i.e.,
training with pixel-level mask [42, 25, 55, 57, 65, 6, 9].
This approach is commonly adopted due to the creation
of image manipulation datasets using sophisticated soft-
ware [17, 11, 51, 15], where manipulated images and masks
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are generated simultaneously. Although the pixel-mask can
provide full supervision to help the model differentiate au-
thentic and tampered image regions, the cost of such image
annotation is non-trivial and limits the amount of the training
images. On the other hand, emerging language-driven image
editing/synthesis or sketch-based manipulation methods do
not necessarily generate pixel-level masks during the edit-
ing process [39, 59, 58, 61, 44, 20, 44, 36], but still have
great potential to help train image manipulation detection if
properly used.

To address the limitations of previous fully-supervised
image manipulation detection methods, we propose weakly-
supervised image manipulation detection (W-IMD), where
only binary image-level labels are required to tell whether
a given image is authentic or tampered with, thereby elim-
inating the need for pixel-level masks during training. We
observe that image manipulation detection typically relies
on inconsistency detection between features of the manipu-
lated regions compared to features from the surrounding re-
gions. Thus, we propose two different self-consistency learn-
ing schemes: (1) multi-source consistency (MSC) and (2)
inter-patch consistency (IPC) to achieve weakly-supervised
self-consistency learning (WSCL) that aims to improve the
generalization ability of image manipulation detection.

For (1) multi-source consistency (MSC) learning, we
take advantage of content-agnostic information by using dif-
ferent noise patterns in the image [14, 2] in a late-fusion
manner. Specifically, we build an exclusive model on differ-
ent sources (e.g., raw RGB image, and its noise maps) and
generate an ensemble prediction by averaging predictions
from different models. Intuitively, each source may focus
on different locations, and locations where all models have
consistent high/low activations and are likely to be manip-
ulated/authentic. Hence, we use the ensemble prediction
as a pseudo ground truth to guide each individual model,
and enable them to learn cross-source information. When
combining predictions from different sources, the ensemble
model can be more reliable and accurate than single mod-
els. For (2) the inter-patch consistency (IPC) learning, it
learns global pair-wise image patch-patch similarities in a
self-supervised learning manner. By learning the pair-wise
relationship, IPC helps the model to differentiate low-level
authentic and tampered image patch features. Enforcing
the IPC constraints helps to correct potential false positives,
estimate a more complete image region of manipulation, and
mitigate overfitting.

We conducted experiments on seven benchmark datasets
to validate the effectiveness of our weakly-supervised
method. First, we follow the conventional setting of
image manipulation detection and demonstrate that our
WSCL achieves comparable image-level detection perfor-
mances with several fully-supervised methods under both
in-distribution and out-of-distribution evaluations. Further-

more, we validate that our method can be easily extended to
new manipulations where only image-level labels are avail-
able. By fine-tuning on the image-level labels, our WSCL
achieves even better performance. Finally, we also demon-
strate that our method achieves reasonable pixel-level ma-
nipulation localization performance even under the setting
of weakly-supervised learning.

To summarize, our contributions are threefold.

• We first propose weakly-supervised image manipula-
tion detection (W-IMD), where only binary image-level
labels are required to achieve image manipulation de-
tection. Such a paradigm eliminates the need for pixel-
level annotations and can be easily adapted to new
mask-free image editing techniques.

• We propose weakly-supervised self-consistency learn-
ing (WSCL) for the W-IMD task. By exploiting the
multi-source consistency and inter-patch consistency,
our WSCL learns and fuses information from differ-
ent content-agnostic sources, performs global image
patch-patch relationship learning, and promotes generic
image manipulation detection. Our WSCL also has
the capability to locate the manipulation region in the
pixel-level1.

• Experiments validate that our WSCL achieves strong in-
distribution and out-of-distribution image manipulation
detection capability, promising results when fine-tuned
with image-level labels on novel manipulations, and
reasonable manipulation localization ability.

2. Related Work
Image manipulation detection. We focus on detecting three
types of image manipulation, i.e., copy-move [7, 41, 51, 53,
54], splicing [8, 19, 52, 42], and inpainting [68]. Specifi-
cally, copy-move denotes copying and pasting image content
within the same image, and splicing indicates pasting image
content from one image to another. Inpainting removes a
particular area from an image and fills the region with new
content estimated from the surrounding.

Traditional unsupervised methods detect manipulations
by exploiting specific low-level tampering artifacts, such
as color filter array (CFA) analysis [13], local noise analy-
sis [29], and double JPEG compression [3]. However, these
methods assume that all given images consist of authentic
and tampered pixels, and perform two-class clustering on
pixels to locate the manipulation. Thus, they detect ma-
nipulation out of all testing images, meaning that they al-
ways achieve 0 specificity and 1 sensitivity. Recent fully-
supervised methods exploit content-agnostic features to lo-

1In this paper, we use “detection” to indicate image-level fake/authentic
classification, and use “localization” to indicate pixel-level manipulation
localization.
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Figure 2. The single-stream overview. Given an input image, a baseline method (upper) predicts a manipulation map. The prediction
map is supervised by an adaptive pooling-based classification loss LA-CLS and a multi-source consistency learning loss LMSC. Meanwhile,
the inter-patch consistency branch (bottom) learns a consistency volume measuring patch-patch similarities. The consistency volume is
supervised by the inter-patch consistency loss LIPC.

calize manipulations [66, 25, 55, 18, 57, 6, 9], given the
hypothesis that manipulation areas differ from pristine parts
in terms of their noise distributions. Two of the noise filters
are the most popular, i.e., the steganalysis rich model (SRM)
filter [14, 66] and the Bayar convolutional filters [2]. Specifi-
cally, SRM filters [14, 66] use predefined kernels to learn dif-
ferent types of noise residuals among the neighboring pixels
of the center pixel, followed by linear or non-linear max/min
operations. The Bayar convolutional filters [2] improve the
SRM filters by using learnable weights, with the constraint
that the weighted sum of neighboring pixels equals the nega-
tive of the weight of the center pixel. In addition to the SRM
and Bayar filters, CAT-Net [22] learns compression artifacts
from the RGB and DCT domains jointly. MVSS-Net [6]
learns semantic-agnostic information by exploiting noise dis-
tribution and boundary artifacts in a multi-view, multi-scale
fashion. Except for leveraging noise maps, GSR-Net [65]
designs a pipeline to automatically generate copy-move im-
ages to enhance the training set. Mantra-Net [55] learns the
manipulation trace by conducting fine-grained manipulation
type classification.

There exist several works that exploit the image consis-
tency [4, 19, 30, 31, 32, 63] for image forensics and Deep-
fake detection. And most of them use a Siamese network
to determine whether two input image patches contain the
same forensic characteristics, such as EXIF metadata [19] or
camera model characteristics [4, 30, 31]. Recently, Zhao et
al. [63] propose to use a pair-wise similarity consistency
volume [12, 64] to detect and localize Deepfakes in a fully-
supervised setting. Unlike Zhao et al. [63] that requires a cu-
rated inconsistency image generator and pixel-level ground
truth to learn the consistency volume, we only leverage

image-level labels and use a self-supervised approach for
training.
Weakly-supervised learning aims to use coarse or in-
complete supervision to construct a model to predict fine-
grained labels. For example, given image-level categori-
cal labels to predict bounding box [21, 46] or segmenta-
tion mask [37, 38, 67] and given video-level categorical
labels to predict temporal boundaries of actions [50]. Such
a paradigm greatly relieves the annotation burden from its
fully-supervised counterparts.

Our weakly-supervised image manipulation detection (W-
IMD) is most related to weakly-supervised semantic segmen-
tation (W-SSS), where only image-level labels can be lever-
aged to predict segmentation mask [37, 38, 67, 5]. Different
from most W-SSS works, this paper focuses on improving
the generalization ability of image-level manipulation detec-
tion, instead of pursuing high pixel-level localization ability.
Thus, we leverage two different single-stage W-SSS methods
as baselines due to their fast and simple training schemes:
multiple instance learning fully convolutional network (MIL-
FCN) [37] and Araslanov and Roth [1]. The former applies
multiple-instance learning on weakly-supervised segmenta-
tion without considering specific prior knowledge on this
task; the latter achieves strong segmentation performance by
considering several priors in W-SSS, such as local consis-
tency, semantic fidelity, and completeness.

3. Proposed Method

During training, for each input image X ∈ RH×W×3

with height H and width W , we only have its image-level
manipulation label y ∈ {0, 1}, where 0 denotes authentic
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images, and 1 denotes manipulated images. During infer-
ence, for each image, we not only predict whether the image
is tampered with, but we also generate a binary localization
map M̄ ∈ {0, 1}H×W to localize manipulation at the pixel
level. An overview of our method is shown in Fig. 2.

3.1. Baseline

Without loss of generality, given an input image of size
H ×W , we denote the final prediction map generated by
a baseline method as M̂ ∈ (0, 1)H×W . The image-level
prediction ŷ is generated by pooling the prediction map:
ŷ = Pool(M̂), where the pooling function can be method-
specific, e.g., global max pooling. The image classifica-
tion loss LCLS is typically a binary cross-entropy (BCE)
loss between the prediction and the ground truth LCLS =
LBCE(y, ŷ), where

LBCE(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ). (1)

The final manipulation localization map M̄ is obtained by
thresholding M̂ at θ, and θ is a thresholding hyperparameter.

3.2. Adaptive Pooling for Image-Level Detection

Global max pooling has been one of the most widely used
pooling methods for image-level prediction generation in
image manipulation detection [42, 25, 55, 65, 6]. However,
it has several clear disadvantages. First, it only detects the
most discriminative part, but it fails to detect the full extent
of the manipulation. Second, the loss only back-propagates
through the sole maximal response, impeding the model
training. To address this problem, inspired by Otsu’s method
of image binarization [34], we propose an adaptive pooling
method, which dynamically selects pixel-level responses
from the prediction map M̂ to form the image-level predic-
tion ŷA.

Specifically, we first use Otsu’s method to partition the
prediction map into two groups. The Otsu’s method finds a
threshold ωo that minimizes the intra-class prediction vari-
ance [34]:

ωo = arg min
ω∈{m̂i,j}

|{m̂i,j |m̂i,j < ω}| var ({m̂i,j |m̂i,j < ω}) +

|{m̂i,j |m̂i,j ≥ ω}| var ({m̂i,j |m̂i,j ≥ ω}) ,
(2)

where var(·) denotes the variance, and m̂i,j is the pixel-
level response at spatial location (i, j) on M̂ . As Otsu’s
method only applies to discrete distributions, in practice, we
restrict the candidate set of thresholds ω to the values of
pixel-level responses {m̂i,j}. The image-level prediction
ŷA determined by our adaptive pooling is the average value
of the group with a higher response: ŷA = 1

|Mh|
∑

m̂∈Mh
m̂,

where Mh = {m̂i,j |m̂i,j ≥ ωo}. And our adaptive pooling-
based classification loss LA-CLS is as the BCE loss be-
tween the ground truth and the adaptive pooling predic-
tion: LA-CLS = LBCE(y, ŷA). By exploiting multiple high

Bayar Stream

RGB Stream

SRM Stream

SRM Filter

Bayar Conv

Threshold

Figure 3. An illustration of multi-source consistency learning.
Three parallel streams are trained on RGB image, SRM noise map,
and Bayar noise map separately. Their weighted average prediction
is used as pseudo ground truth to supervise each single stream.

responses instead of only the maximal one, our adaptive
pooling is more robust to noisy high responses and able to
capture a more complete manipulation region.

3.3. Learning Multi-Source Consistency

Prior arts found that exploring semantic information from
images works well for IND manipulation detection, but
yields poor OOD detection performance [65]. Moreover,
leveraging image noise maps to learn content-agnostic infor-
mation can produce strong performance [14, 66, 2, 55, 18, 6].
Given these findings, we speculate that relying exclusively
on content-related information would be insufficient for de-
tecting and localizing the manipulations. However, the suc-
cess of previous research heavily relies on the pixel-level
ground truth. Without such strong supervision, the model
easily overfits without fully learning from different input
sources. To mitigate this problem, we propose multi-source
consistency (MSC) learning. First, MSC employs a multi-
stream framework, with each stream exploiting different
sources of the image, and thus fully exploits the manipulation
in different views. By combining the outputs of individual
streams, the detection and localization results can be more
robust and accurate. Moreover, the ensemble prediction is
used to supervise each individual stream, while helping to
alleviate overfitting, correct failures within single streams,
and ultimately improve the final prediction. An illustration
is shown in Fig. 3.

Specifically, we adopt a three-stream framework, with
each stream taking as input raw RGB image, SRM noise
map [14, 66], and Bayar noise map [2], respectively. The
SRM and Bayar noise maps are selected due to its wide
use in previous works [66, 25, 55, 18, 57, 6, 9]. The three
streams do not share parameters, but share the same training
scheme. Given predictions from three streams, an ensemble
prediction M̂ens can be obtained by weighted averaging three
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prediction maps:

M̂ens =
wRM̂R + wSM̂S + wBM̂B

wR + wS + wB
, (3)

where wR, M̂R, wS, M̂S, wB, M̂B are predefined weights
and prediction maps of the RGB stream, SRM stream, and
Bayar stream, respectively. Then, a binary pseudo ground
truth M̄ens is generated by thresholding the weighted average
prediction map at θ, and provides pixel-level supervision of
the three streams.

Our MSC learning encourages each individual stream to
fit the pseudo ground truth with a BCE loss:

LMSC =
1

HW

∑
i,j

LBCE(m̄ens,i,j , m̂source,i,j), (4)

where source ∈ {R,S,B}. All individual streams are trained
in parallel and simultaneously. Intuitively, pixels that all
three streams have high activations are more likely to contain
manipulations, while pixels that only one stream has high
activations are less likely to be manipulated. Thus, our MSC
enables each stream to improve itself by learning the voting
ensemble, and in turn improves the pseudo ground truth.

3.4. Learning Inter-Patch Consistency

Only exploiting local image features fails when the tam-
pered region is larger than the final layer’s receptive field,
as tampered regions in manipulations like copy-move and
splicing are both from authentic images, and they both have
unified, authentic forensic characteristics. Without referring
to the global context, it is intractable to detect these ma-
nipulations. Thus, we propose to learn global inter-patch
similarity (IPC) to detect inconsistent image patches, and dif-
ferentiate low-level features between authentic and tampered
patches.

IPC is conducted at an intermediate feature map F ∈
RH′×W ′×C , where H ′, W ′, and C are respectively height,
width, and the number of channels. Each feature vector fi,j

at spatial location i, j represents a local image patch within
its receptive field [27, 63]. For each patch, we compute
its dot product similarity against all image patches, thus, a
consistency volume V̂ ∈ (0, 1)H

′×W ′×H′×W ′
containing all

pair-wise similarities can be obtained:

v̂i,j,h,k = 1− σ
(
φ1(fi,j) · φ2(fh,k)√

C

)
, (5)

where φ1 and φ2 are two embedding heads realized by two-
layer MLPs, v̂i,j,h,k denotes the value at location (i, j, h, k)
of the consistency volume, and σ(·) denotes the sigmoid
function. If patches fi,j and fh,k share the same forensic
characteristic (i.e., if they are both authentic or both tam-
pered with), then v̂i,j,h,k = 0, while v̂i,j,h,k = 1 indicates

Split Dataset #au #tp #cpmv #splc #inpaint

Train
CASIAv2 [11] 7,491 5,063 3,235 1,828 0

GIER [43] 4,189 4,190 N/A
IEdit [45] 2,255 2,255 N/A

Val IMD2020 [33] 2,010 2,010 N/A

Test

CASIAv1 [10] 800 920 459 461 0
Columbia [17] 183 180 0 180 0
Coverage [51] 100 100 100 0 0
NIST16 [15] 0 563 68 288 208
GIER [43] 452 618 N/A
IEdit [45] 401 445 N/A

Table 1. Dataset details. “cpmv”, “splc” are abbreviations for copy-
move and splicing, respectively.

different forensic characteristics. Therefore, authentic im-
ages are expected to have all zero consistency volumes, while
tampered images should contain at least one location of value
1 in their consistency volumes. Fig. 2 bottom branch shows
an illustration.

Despite the previous exploration where the consistency
volume is trained with full supervision and a hand-crafted
inconsistency image generator [63], we show that the con-
sistency volume can be learned in a self-supervised learning
way, and benefit from multi-source consistency learning.

In the fully-supervised setting, such consistency volume
can be easily learned from the pixel-level ground truth [63].
However, in the weakly-supervised setting, such ground
truth is unavailable. To mitigate this problem, we exploit
two different ways to generate the learning target of IPC.
Self-supervision is inspired by self-distillation [62], where
the intuition is that deeper layers enjoy larger receptive fields
and can make better predictions compared to shallow layers.
In this setting, we regard the final localization map M̄ as
the teacher to guide the consistency volume learning within
each individual stream.
Ensemble-supervision uses the MSC ensemble localization
map M̄ens as the IPC learning target. Ensemble supervi-
sion fuses predictions from multiple sources and can help
individual streams learn cross-source information.

Given the target localization map M̄tgt ∈ {M̄ ,M̄ens},
we first downsample it to size (H ′,W ′), then convert it to
the target consistency volume V̄tgt: if location (i, j) and
(h, k) share the same value in the downsampled map, then
v̄tgt,i,j,h,k = 0, otherwise, v̄tgt,i,j,h,k = 1. The IPC is super-
vised by the BCE loss:

LIPC =
1

H ′W ′H ′W ′

∑
i,j,h,k

LBCE(v̄tgt,i,j,h,k, v̂i,j,h,k). (6)

In this way, our IPC enhances the low-level feature represen-
tation, differentiates authentic and tampered image patches
in shallow layers and in turn boosts the final prediction.

3.5. Optimization and Inference

The overall loss Ltotal is a weighted sum of the adaptive
pooling-based image classification loss LA-CLS, the MSC
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Method CASIAv1 Columbia Coverage IMD2020 Avg
AUC Spe. Sen. I-F1 AUC Spe. Sen. I-F1 AUC Spe. Sen. I-F1 AUC Spe. Sen. I-F1 AUC I-F1

U
n. NOI1 [29] 0.500 0.000 1.000 0.000 0.500 0.000 1.000 0.000 0.500 0.000 1.000 0.000 0.500 0.000 1.000 0.000 0.500 0.000

CFA1 [13] 0.482 0.000 1.000 0.000 0.344 0.000 1.000 0.000 0.525 0.000 1.000 0.000 0.500 0.000 1.000 0.000 0.500 0.000
Mantra-Net [55] 0.141 0.000 1.000 0.000 0.701 0.000 1.000 0.000 0.491 0.000 1.000 0.000 0.719 0.000 1.000 0.000 0.513 0.000
CR-CNN [57] 0.766 0.224 0.930 0.361 0.783 0.246 0.961 0.392 0.566 0.070 0.967 0.131 0.617 0.112 0.936 0.200 0.683 0.271
GSR-Net [65] 0.502 0.011 0.994 0.022 0.502 0.011 1.000 0.022 0.515 0.000 1.000 0.000 0.505 0.008 0.998 0.014 0.506 0.019
CAT-Net [22] 0.630 0.328 0.762 0.459 0.849 0.373 0.782 0.505 0.572 0.093 0.902 0.169 0.721 0.132 0.872 0.229 0.693 0.157

Fu
ll

FCN+DA [6] 0.796 0.844 0.717 0.775 0.762 0.322 0.950 0.481 0.541 0.100 0.900 0.180 0.746 0.100 0.981 0.182 0.711 0.404
MIL-FCN [37] 0.647 0.538 0.569 0.553 0.807 0.220 0.732 0.338 0.542 0.062 0.793 0.115 0.578 0.116 0.886 0.205 0.644 0.303

MIL-FCN [37] + WSCL 0.829 0.795 0.690 0.738 0.920 0.519 0.983 0.680 0.584 0.440 0.714 0.544 0.733 0.221 0.966 0.360 0.766 0.580
Araslanov and Roth [1] 0.642 0.458 0.542 0.496 0.773 0.127 0.902 0.223 0.560 0.077 0.746 0.140 0.665 0.126 0.832 0.219 0.660 0.270W

ea
k

Araslanov and Roth [1] + WSCL 0.796 0.638 0.726 0.679 0.917 0.324 0.948 0.483 0.591 0.220 0.838 0.348 0.701 0.193 0.872 0.316 0.751 0.456

Table 2. Comparison with unsupervised manipulation localization methods and fully-supervised methods on image-level manipulation
detection. The best and the second best results are noted with boldface and underlined, respectively.

Method GIER [43] IEdit [45] Avg
AUC F1 AUC F1 AUC I-F1

CAT-Net [22] 0.508 0.336 0.532 0.476 0.502 0.406
FCN+DA [6] 0.507 0.428 0.539 0.489 0.523 0.458Fu

ll

MVSS-Net [6] 0.510 0.325 0.537 0.522 0.523 0.423
MIL-FCN [37] + WSCL 0.574 0.320 0.563 0.556 0.568 0.438

W
ea

k

MIL-FCN [37] + WSCL w/ fine-tune 0.621 0.533 0.617 0.602 0.619 0.568
Table 3. Image-level manipulation detection performance compari-
son on novel image manipulation datasets [43, 45].

loss LMSC, and the IPC loss LIPC:

Ltotal = LA-CLS + w(t)λMSCLMSC + w(t)λIPCLIPC, (7)

where λMSC and λIPC are weighting hyperparameters.
w(t) = exp(−5(1− t/T )2) is a time-dependent Gaussian
warming-up function, where t is the current epoch, and T is
the maximal number of epochs. Such a warming-up function
prevents learning from unreliable pseudo ground truth at
early training stages [47, 23].

The final image-level prediction is obtained by weighted
averaging the predictions from three different streams, and
the prediction map is the ensemble localization map M̄ens.

4. Experiments
Datasets. Without explicitly mentioning, we train our
method on CASIAv2 [11] only. For the in-distribution (IND)
evaluation, we use the CASIAv1 dataset [10]. For the out-
of-distribution (OOD) evaluation, we use three datasets:
Columbia [17], Coverage [51] and IMD2020 [33]. We
further follow the convention to use NIST16 [15] for the
pixel-level manipulation localization evaluation. We use the
IMD2020 dataset [33] for validation and hyperparameter
tuning. IMD2020 contains 2, 010 real-life manipulated im-
ages, and we randomly sample 2, 010 images from the real
image set as the authentic image set. To demonstrate the
capacity of our method for novel manipulations, we carry
out experiments on recent language-driven image editing
datasets GIER [43] and IEdit [45]. Both datasets consist of
paired images before and after editing, and the manipulations
are not constrained by copy-move, splicing, and inpainting.
To avoid data leakage from the paired images in the two
datasets, we only sample either an authentic image or an
edited image from each pair to form the training set. Details

on the datasets are listed in Tab. 1.
Evaluation metrics. For image-level manipulation detec-
tion, we report specificity, sensitivity, and their F1 score (I-
F1). The area under receiver operating characteristic (AUC)
is also reported as a threshold-agnostic metric for image-
level detection. For pixel-level manipulation localization,
we follow previous methods [66, 42, 65, 6] to compute pixel-
level precision, recall, and their F1 (P-F1) score on tempered
images. The overall performance of image- and pixel-level
manipulation detection/localization is measured by the har-
monic mean of pixel-level and image-level F1 scores [6],
denoted as combined F1 (C-F1), and is sensitive to the lower
value of P-F1 and I-F1. To ensure a fair comparison, a de-
cision threshold of 0.5 is employed for all methods when
performing F1 computations.
Implementation details. Our method is implemented with
PyTorch [35]. We use ResNet50 [16] as the backbone, and
its weight is randomly initialized. The input size H ×W is
set to 224×224. Only random cropping and flipping are used
for data augmentation. We use the AdamW optimizer [28]
with a learning rate that decays from 10−4 to 10−5 and a
weight decay factor 5 × 10−4. We train the model for 60
epochs, and the learning rate decays by a factor of 0.1 at the
50-th epoch. Following [6], we use θ = 0.5 as the default
threshold to conduct the experiments. The hyperparame-
ters are determined via a grid search on the validation set:
λMSC = 0.1, λIPC = 0.1, and wR : wS : wB = 1 : 2 : 2. The
consistency volume is computed after the first residual block
in ResNet50, and its size is H ′ ×W ′ = 56× 56.

4.1. Comparison with the State-of-the-art

As our essential goal is to improve the generalization
ability for image-level manipulation detection, we build our
WSCL upon two single-stage W-SSS methods for their fast
and simple training schemes: MIL-FCN [37] and Araslanov
and Roth [1]. The former is a multiple instance learning
based method without considering priors in semantic infor-
mation; the latter is a state-of-the-art single-stage W-SSS
method with several domain-specific designs.
Image-level manipulation detection results are shown in
Tab. 2. Our WSCL improves both MIL-FCN [37] and
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Method Pixel-Level F1 Combined F1
CASIAv1 Columbia Coverage IMD2020 NIST16 Avg CASIAv1 Columbia Coverage IMD2020 Avg

U
n. NOI1 [29] 0.157 0.311 0.205 0.124 0.089 0.190 0.000 0.000 0.000 0.000 0.000

CFA1 [13] 0.140 0.320 0.188 0.111 0.106 0.188 0.000 0.000 0.000 0.000 0.000
Mantra-Net [55] 0.155 0.364 0.286 0.122 0.000 0.185 0.000 0.000 0.000 0.000 0.000
CR-CNN [57] 0.405 0.436 0.291 - 0.238 - 0.382 0.413 0.181 - -
GSR-Net [65] 0.387 0.613 0.285 0.175 0.283 0.349 0.042 0.042 0.000 0.026 0.028
CAT-Net [22] 0.276 0.352 0.134 0.102 0.138 0.200 0.345 0.406 0.149 0.144 0.261

Fu
ll

FCN+DA [6] 0.441 0.223 0.199 0.270 0.167 0.260 0.562 0.305 0.189 0.217 0.318
MIL-FCN [37] 0.117 0.089 0.121 0.097 0.024 0.090 0.193 0.141 0.118 0.131 0.146

MIL-FCN [37] + WSCL 0.172 0.270 0.178 0.193 0.110 0.185 0.280 0.386 0.268 0.252 0.296
Araslanov and Roth [1] 0.112 0.102 0.127 0.094 0.026 0.092 0.182 0.140 0.133 0.046 0.125W

ea
k

Araslanov and Roth [1] + WSCL 0.153 0.362 0.201 0.173 0.099 0.198 0.250 0.414 0.255 0.159 0.270
Table 4. Comparison with unsupervised and fully-supervised methods on pixel-level manipulation localization and the combined F1 score
between I-F1 and P-F1. The pixel-level manipulation localization performances are measured on manipulated images only.

Araslanov and Roth [1] baselines on all datasets. Our WSCL
with both baselines compares favorably with the previous
fully-supervised methods in terms of detection AUC and
F1. We note that our WSCL with Araslanov and Roth base-
line [1] underperforms that with the MIL-FCN baseline [37].
Such results indicate that the priors in W-SSS (e.g., local
consistency and semantic fidelity) may not help in W-IMD,
and developing specific methods for W-IMD is imperative.
We evaluate the IND and OOD manipulation detection with
the MIL-FCN baseline [37] in Fig. 1, where we observe
a strong OOD manipulation detection performance of our
method that surpasses previous fully-supervised methods,
showing the effectiveness of our WSCL. Note that for unsu-
pervised methods [29, 13], we use the maximal response on
the prediction map as its image-level prediction. They tend
to detect manipulations in all images, resulting in near 0.5
AUC and 0.0 F1 scores.

Novel manipulation detection. As emerging novice-
friendly manipulation methods [44, 20, 44, 39, 59, 58, 61] do
not necessarily generate pixel-level masks during their edit-
ing process, existing fully-supervised methods cannot make
use of these weakly-labeled data. We investigate the capac-
ity of fully-supervised methods and our weakly-supervised
method on two additional datasets [43, 45], which contain
manipulations that are different from the standard setting
(i.e., copy-move, splicing, and inpainting). The results are
summarized in Tab. 3, where MIL-FCN is used as base-
line [37] due to its strong image-level manipulation detection
performance observed in Tab. 2. Without fine-tuning, our
method already outperforms fully-supervised counterparts at
the average AUC on both datasets. Such results demonstrate
a strong generalization ability of our WSCL. We further fine-
tune our model with image-level labels on the two datasets,
and achieve the best performance. Though the comparison
between our fine-tuned model and fully-supervised methods
may not be fair, they cannot be trained without pixel-level
mask, demonstrating the necessity of developing weakly-
supervised methods.

Pixel-level manipulation localization results are listed in
the left part of Tab. 4. Our method achieves reasonable

Method Image-Level P-F1 C-F1AUC Spe. Sen. I-F1
Max Pool 0.578 0.116 0.886 0.205 0.131 0.131
Avg Pool 0.569 0.076 0.902 0.140 0.082 0.103
GeM [40] 0.683 0.139 0.725 0.233 0.111 0.149
GSM [49] 0.679 0.105 0.833 0.186 0.127 0.151
AP (Ours) 0.693 0.162 0.788 0.269 0.116 0.162

Table 5. Comparison on different pooling methods on the
IMD2020 [33] dataset with RGB as the source.

pixel-level manipulation localization performance, and the
average performance on five datasets is comparable with
fully-supervised Mantra-Net [55] and CAT-Net [22]. Such
a strong performance demonstrates the capability of our
pixel-level manipulation localization.
Overall detection and localization performance is sum-
marized in the right part of Tab. 4. Our method achieves a
similar average performance with CAT-Net [22]. Surpris-
ingly, our method achieves the best overall performance
on the Coverage dataset [51]. Such a strong performance
demonstrates the effectiveness of our method.
Qualitative results are visualized in Fig. 4. We make
the following observations. (1) Predictions from unsuper-
vised methods [29, 13] tend to be noisy, while both fully-
supervised method and our weakly-supervised method gener-
ate clean localization maps. (2) Our method tends to predict
a large area of manipulation, encompassing the ground truth
area, while fully-supervised method detects clean manipu-
lation boundaries. (3) Our method shows degraded results
on copy-move (see Coverage examples), where both source
and target manipulated areas are from the same image, and
our method tends to detect both areas.

4.2. Ablation Study

We carry out the ablation study on an OOD dataset
IMD2020 [33] with MIL-FCN [37] as the baseline, where all
variants are trained with the CASIAv2 dataset [11]. The abla-
tion study is performed progressively, with each subsequent
setting using the previous one as a baseline.
Adaptive pooling. To mitigate the problem of max pool-
ing in previous methods, we propose an adaptive pooling
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Figure 4. Qualitative results on five datasets. From top to bottom in each group: input image, ground truth mask, and predictions from
NOI1 [29], CFA1 [13], Mantra-Net [55] and our WSCL with MIL-FCN [37] as the baseline.

Source Image-Level P-F1 C-F1AUC Spe. Sen. F1

w
/o

M
SC

RGB 0.693 0.162 0.788 0.269 0.116 0.162
Bayar 0.685 0.187 0.642 0.290 0.132 0.181
SRM 0.674 0.196 0.733 0.309 0.109 0.161

Fusion 0.701 0.209 0.748 0.327 0.143 0.199

w
/M

SC

RGB 0.701 0.185 0.836 0.303 0.136 0.188
Bayar 0.715 0.193 0.762 0.308 0.177 0.225
SRM 0.707 0.210 0.837 0.336 0.181 0.235

Fusion 0.726 0.218 0.857 0.348 0.188 0.244
Table 6. Ablation study on the multi-source consistency learning
on IMD2020 [33].

IPC Image-Level P-F1 C-F1AUC Spe. Sen. F1
w/o 0.726 0.218 0.857 0.348 0.188 0.244
self. 0.730 0.219 0.920 0.354 0.192 0.249
ens. 0.733 0.221 0.966 0.360 0.193 0.252

Table 7. Ablation study on the inter-patch consistency learning on
IMD2020 [33].

to dynamically assign image-level labels to the pixels. We
compare our adaptive pooling with related pooling meth-
ods [49, 40] in Tab. 5. The results show adaptive pooling
achieves the best performance on all major metrics. Besides,
both GSM and GeM introduce an additional hyperparameter,
while our adaptive pooling does not require any hyperparam-
eter, making it more flexible. Such advantage demonstrates
the effectiveness of our adaptive pooling.
Multi-source consistency learning promotes unanimous
predictions among all individual models through a pixel-
level pseudo ground truth. The results are summarized
in Tab. 7. We observe that the late fusion improves the
single-stream performance w/ and w/o MSC, showing the
effect of voting ensemble. Furthermore, our MSC improves
the performance on single streams and the fusion results,

demonstrating its effectiveness on improving generalization.
Inter-patch consistency learning aims to learn global patch-
patch similarities, and further differentiate low-level authen-
tic and tampered image patch features. Two different su-
pervision implementations are tested: the localization map
from the same stream (self-supervision), and the ensemble
localization map from three streams (ensemble-supervision).
We make the following observations from Tab. 7. (1)
Both implementations of IPC clearly improve overall perfor-
mance, showing the effectiveness of IPC. (2) The ensemble-
supervision IPC outperforms the self-supervision counter-
part, and this is intuitive as the ensemble target fuses infor-
mation from multiple sources.

5. Conclusion

We propose the task of weakly-supervised image manip-
ulation detection, such that only binary image-level labels
are required to detect and localize manipulations. We pro-
pose a weakly-supervised self-consistency learning for this
task that aims to improve the generalization ability. Two
different self-consistency learning schemes are employed:
multi-source consistency and inter-patch consistency. By
leveraging content-agnostic information and combining pre-
dictions from various sources, MSC enhances the individual
stream’s ability for both manipulation detection and localiza-
tion. IPC learns the global similarity between image patches
to detect a complete region of manipulation, which improves
the low-level representation of image patches and thus facili-
tates the MSC learning process. Our WSCL shows strong
image-level manipulation detection performance under both
IND and OOD evaluation settings. We also achieve reason-
able pixel-level manipulation localization performance.
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Limitations. While our method demonstrates robust perfor-
mance in detecting image-level manipulation, its capability
in localizing the pixel-level manipulation is merely satisfac-
tory. This is an important limitation as accurate localization
is key to explainability and understanding the extent of the
manipulation, which is vital in forensics applications. Be-
sides, as shown in our supplementary material, our method
is vulnerability to certain types of noise and distortions, such
as Gaussian blur, which could potentially be exploited to
bypass our detection method. This highlights the need for
the method to be robust not just against various manipula-
tion techniques, but also against different types of image
noise and distortions. Thus, future work should aim to im-
prove the pixel-level manipulation localization ability, and
the robustness against different image distortions.
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