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Abstract

Neural Radiance Fields (NeRF) is a popular neural rep-
resentation for novel view synthesis. By querying spatial
points and view directions, a multilayer perceptron (MLP)
can be trained to output the volume density and radiance
along a ray, which lets us render novel views of the scene.
The original NeRF and its recent variants, however, are
limited to opaque scenes dominated with diffuse reflec-
tion surfaces and cannot handle complex refractive sur-
faces well. We introduce NeRFrac to realize neural novel
view synthesis of scenes captured through refractive sur-
faces, typically water surfaces. For each queried ray, an
MLP-based Refractive Field is trained to estimate the dis-
tance from the ray origin to the refractive surface. A re-
fracted ray at each intersection point is then computed by
Snell’s Law, given the input ray and the approximated lo-
cal normal. Points of the scene are sampled along the re-
fracted ray and are sent to a Radiance Field for further ra-
diance estimation. We show that from a sparse set of im-
ages, our model achieves accurate novel view synthesis of
the scene underneath the refractive surface and simultane-
ously reconstructs the refractive surface. We evaluate the
effectiveness of our method with synthetic and real scenes
seen through water surfaces. Experimental results demon-
strate the accuracy of NeRFrac for modeling scenes seen
through wavy refractive surfaces. Github page: https:
//github.com/Yifever20002/NeRFrac.

1. Introduction
Neural view synthesis has become one of the most pop-

ular topics in computer vision and graphics, thanks to the
breakthrough brought by NeRF[25]. Many follow-up works
have extended NeRF in various ways. Parameterization
of the viewing direction, however, has basically stayed
the same, which fundamentally limits their application to
opaque and mostly Lambertian surfaces which is easier to
interpolate with a neural representation. Significant depar-
tures from this fundamental requirement implicitly imposed
by the viewing parameterization can cause dramatic accu-

(a)

(b)

Figure 1: (a) Refraction causes significant erroneous defor-
mations to NeRF as it fundamentally relies on straight-line
sampling. It produces artifacts when dealing with scenes
behind refractive surface. (b) Novel view synthesis of an
underwater scene. Our method is physically-based and
renders scenes through the refractive surface accurately in
comparison to past state-of-the-art NeRFs.

racy drop. To handle specular reflection, for instance, a
non-trivial reparameterization becomes essential [45].

Another limitation of NeRF is that it samples points on
straight rays. This is a stronger assumption than one may
think, as it implies that, under any circumstances, light
travels along a straight line from the scene surfaces to the
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viewer (human eyes or cameras). A typical physical phe-
nomenon we encounter in everyday life that violates this
assumption is refraction. Consider looking at an underwa-
ter scene from outside of the water, for instance, fish swim-
ming in a pond. When viewed from different angles, this re-
fracted underwater scene no longer conforms to the straight
ray sampling assumption of NeRF. It would cause unwanted
deformations to the scene.

Some NeRFs model light bending with an additional de-
form layer[31, 33, 13], which outputs an offset of each 3D
point to smooth the rendering results. This offset, however,
is not physically grounded and cannot model light refrac-
tion. We also experimentally find that in underwater scenes,
images rendered with a deform layer do maintain visual co-
herence, but severely deviate from the ground truth.

In this work, we propose NeRFrac, a NeRF that models
deformation caused by refraction from its first principles.
Instead of simply deforming points in 3D space, we first
estimate the depth of the refractive surface and then bend
rays instead of points according to the Snell’s Law. Our
MLP-based neural Refractive Field allows direct inference
of intersections between rays and the refractive surface and
can implicitly learn the multi-view consistency. Once the
intersection is estimated, we can proceed to calculate each
refracted ray by Snell’s law. Then 3D points are sampled
along the refracted ray which are input to our underwater
Radiance Field.

Water surfaces are the most commonly encountered re-
fractive surfaces in daily life. Thus, we evaluate the effec-
tiveness of our method on modeling underwater scenes. We
build a 3 × 3 camera array to obtain a novel dataset of real
underwater scenes. Objects are placed under the water sur-
face, while the camera array captures images from outside
the water surface. To evaluate the accuracy of the simul-
taneously recovered water surface itself, we also build a
novel synthetic dataset using ray tracing [20] to create vari-
ous complex water surfaces. The experimental results show
that our NeRFrac outperforms the related NeRF methods.
We also show that by removing the learned Refractive Field,
we can view the underwater scene as if it were in air (or the
viewer were in the water), just with images captured out-
side from the water surface. To summarize, we make the
following main contributions in this paper:

1) NeRFrac, an end-to-end method for novel view syn-
thesis of scenes captured through refractive surfaces
trained with only sparse images;

2) A novel Refractive Field as part of NeRFrac, which
explicitly recovers the 3D complex refractive surfaces,
whose removal realizes elimination of the refractive
surface (e.g., in-water viewing);

2. Related Works
Neural Radiance Field. NeRF[25] is an end-to-end model
which represents 3D scenes based on an implicit represen-
tation encoded by an MLP. Training of a NeRF is rather
simple given multi-view images and corresponding cam-
era parameters. Due to its simplicity in training and high-
quality rendering results, NeRF has attracted intensive at-
tention leading to large strides in various directions, includ-
ing efficiency, accuracy, and complexity of scenes.

FastNeRF[14] divides the MLP into two blocks by fac-
torizing volume rendering, which results in 3000x accel-
eration. KiloNeRF[37] speeds up the training with thou-
sands of small MLPs, each representing a portion of the
scene. Some voxel-based improvements have led to NeRF
variants[22, 57, 42, 17, 46, 56] that can be trained very fast.
Point-NeRF[53] builds per-point features from dense point
clouds with multi-view stereo which enables the use of a
smaller and faster MLP for rendering.

Other methods improve rendering with specific designs.
Ref-NeRF[45] reparameterizes the view direction to bet-
ter model specular scenes. NeRFReN[15] proposes to split
a scene into transmitted and reflected components to deal
with complex reflections. Mip-NeRF[4] replaces each ray
with a conical frustum to anti-alias and deblur. Mip-NeRF
360[5] extends Mip-NeRF to unbounded scenes. Some
works[29, 47, 54] realize both surface reconstruction and
volume rendering to represent smooth 3D shapes of objects.
A light field representation is used in a few works[41, 3]
to improve rendering quality. Aug-NeRF[9] introduces ad-
versarial training to NeRF. IBRNet[48] applies a ray trans-
former and can perform real-time rendering. Tensorf[8] ap-
plies tensor factorization to achieve faster and better render-
ing. A handful of methods [51, 38, 10, 28] use depth guides
to optimize the results. Other works[11, 7, 43, 16, 2, 30, 36]
focus on the generation of portraits. Despite these extensive
advancements of the basic NeRF, refractive scene represen-
tation has hardly been explored. Several works[3, 6, 13] do
apply a NeRF to refractive scenes but do not capture the
physical behavior of light which is essential to accurately
represent the scene as we demonstrate. Water-NeRF[40]
deals with underwater scenes while the camera is put un-
derneath the surface.
Deformation Problem in Novel View Synthesis. The sam-
pling process in NeRF extracts points from straight rays,
which is a restricting assumption. In some cases, the consis-
tency between different views is not accurate and causes de-
formation. Deformation can be introduced between differ-
ent views of a dynamic scene. Nerfies[31] and D-NeRF[33]
design a temporal deformation field so it can interpolate in
both space and time. Relative motion of the camera and
the scene can also cause deformation. Deblur-NeRF[23]
uses a deformation kernel to obtain optimized rays, which
approximates the blurring process. LB-NeRF[13] uses a
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deformation field to simulate the bending of light through
transparent medium. The deformation layers in these stud-
ies share the same form: F (x, a) → ∆x, where x stands
for 3D points, and a denotes other related variables (t in D-
NeRF for example). In principle, refractive scenes can be
interpreted as deformation of the scene since the light itself
is deformed during propagation. Inspired by these studies,
we introduce an extra Refractive Field before a regular ra-
diance field to explicitly model refraction. We show that
this explicit modeling is much more effective in retaining
the structured deformation caused by the refractive surface
compared to using deformation layers.
Image based Refractive Surface Reconstruction. Recon-
struction of refractive surfaces is challenging as refractive
surfaces are usually transparent and the scene behind them
become dependent on the viewing direction. Past works
[52, 44, 27, 21, 58] recover a mesh model and a surface
normal map of the water surface from a monocular video.
Stereo reconstruction [1, 26] has also been used for wa-
ter surface reconstruction. For these works, a texture pat-
tern is put underwater to establish correspondences through
refraction. Ricardo[12] uses paired images for static re-
fractive surface reconstruction. Our setting is inspired by
[34], which adopts a 3 × 3 camera array for multi-view re-
construction of dynamic refractive surfaces and underwater
scenes. NeReF[50] shares similar goals to our work but re-
quires a pattern or images of the scene without water for
loss calculation. In contrast, our NeRFrac requires only
multi-view images as input, and a water-free pattern is not
necessary. Notably, some advanced neural surface recon-
struction works have been proposed, such as IDR[55] and
VolSDF[54]. IDR requires masked rendering, which is hard
to access in unbounded real data. VolSDF optimizes object
surfaces based on a neural signed distance function (SDF)
network. As we will demonstrate in Sec. 4 and Sec. 6, how-
ever, representing refractive surfaces with a neural SDF re-
sults in extra sampling and difficulty in gradient backprop-
agation.

3. Preliminaries
3.1. Snell’s Law

Refraction in nature conforms to the Snell’s Law, which
dictates how much a light ray “bends” when entering a
medium with a different index of refraction (e.g., air into
water)

n1 sin θ1 = n2 sin θ2 , (1)

where n1,n2 are the indices of refraction (IOR) of two me-
dia, and θ1, θ2 are the angles of incidence and refraction,
respectively.

In 3D world coordinates, angles of incidence and refrac-
tion are inconvenient to describe the ray behavior and in-
stead a vector form of Snell’s Law can be used. When

I ∈ R3 is the incident ray and N ∈ R3 is the normal vector,
the refracted ray T ∈ R3 becomes

T = η(I + c1N)− c2N , (2)

where η = n1

n2
, c1 = N · I , and c2 =

√
1− η2(1− c12).

We use Snell’s Law as a physical guide in NeRFrac. We
also build our synthetic underwater dataset so that it strictly
conforms to this physical constraint of light behavior. For
real captured data, we assume nair = 1 and nwater = 1.33,
and for the synthetic data, the IOR is known.

3.2. NeRF and Volume Rendering Revisited

NeRF[25] represents the radiance field of a scene with
an MLP. First, points x ∈ R3 are sampled along rays calcu-
lated from the camera pose. By querying x in the 3D world,
a spatial MLP outputs the volume density σ of x and a 256-
dimensional feature vector. Then, this feature vector is con-
catenated with the viewing direction v ∈ R3 of the ray, and
is sent to the direction MLP for radiance c = (r, g, b) pre-
diction. The color of each ray is computed with volume
rendering[19]. The expected color of the ray r(t) = o+ tv
becomes [25]

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt , (3)

where tn and tf are the near and far bounds, respectively,
and

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (4)

The final rendering result is compared with ground truth
color of each ray to optimize the MLP parameter values

L =
∑
r∈R

∥C(r)− Cgt(r)∥22 , (5)

where R is the ray batch.

4. Method
We aim to realize novel view synthesis as well as re-

fractive surface reconstruction in underwater scenes. We
can safely assume that the cameras are placed above the re-
fractive surface. Our method is developed for this forward-
facing setup [24], which is also applied to our synthetic and
real dataset. Figure 2 shows our pipeline.

Several surface reconstruction approaches[47, 54] opt to
learn the surface using a global expression, such as neu-
ral signed distance function (SDF). However, the use of
this global expression to model our refractive surface will
inevitably require intersection computation. Unlike find-
ing intersections with opaque surfaces, finding intersections
with refractive surfaces introduces redundant sampling and
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Figure 2: The overall pipeline of NeRFrac. NeRFrac consists of four parts: ① The Refractive Field which estimates the
distance from the ray origin to the refractive surface. ② Snell’s Law computation which also involves refractive surface
normal calculation and coordinate transformations. ③ Sampling on refracted rays. ④ Radiance Field for outputting radiance
and density of each spatial point. A simple image reconstruction loss can be used to train NeRFrac.

challenges in convergence. We will detail this analysis in
Sec. 6. For clarity, we first describe our approach.

In this work, we model the refractive surface with a neu-
ral Refractive Field. Our representation allows direct infer-
ence of intersections between rays and the refractive sur-
face, and can maintain multi-view consistency when the
network converges. The refractive surface, denoted by S,
is represented as an open 2-manifold surface. In the subse-
quent steps, we will illustrate the procedure of underwater
novel view rendering and estimating the shape of the refrac-
tive surface.

4.1. Refractive Field

Our Refractive Field ΨR(o,v) = d is designed to esti-
mate the distance from the input ray origins to the refractive
surface. For forward-facing captures, we represent scenes
in the normalized device coordinate (NDC). We first calcu-
late the average camera pose from given cameras. Quan-
tities in the average camera coordinate system are denoted
with subscript c and otherwise in the NDC frame. First,
batches of rays rc(t) = oc + tvc can be calculated given
the intrinsic and extrinsic parameters of the cameras, where
oc and vc stand for the origin and direction vector of each
ray, respectively. Then, these rays rc will be transformed
from the average camera coordinate system to the NDC
frame, denoted by r. After this transformation, every origin
o = (x, y, z) should have the same z = −1 (i.e., NDC near
plane) and every direction vector v = (vx, vy, vz) should
follow vz > 0. In NDC, all the ray origins o are arranged
on the near plane, and it is easier to interpolate o on a 2D
plane than in 3D coordinates.

Origins o and direction vectors v are sent to ΨR, which
consists of 8 fully-connected layers (using ReLU activa-
tions and 256 channels per layer). ΨR outputs depth d for
each ray. This can be further used to compute Xs, the es-
timated intersection of the input rays and the refractive sur-
face S. One ray will intersect the refractive surface at point

r(d) = o+ dv . (6)

where d is the Refractive Field output and r(d) is the esti-
mated intersection Xs we mention above.

4.2. Refraction Law in Average Camera Coordi-
nates

Ray r refracts once it arrives at Xs. To obtain the re-
fracted ray r′, first we need to calculate the normal of the
refractive surface at Xs. We can then obtain the refracted
ray r′ based on Snell’s Law. Both the vertical relation and
the vector form of Snell’s Law (see Eq. (2)), however, are
derived in the average camera coordinate frame. Since the
transform from the average camera coordinate frame to the
NDC frame is not Euclidean, we cannot directly calculate
the normal and apply Eq. (2) in the NDC frame. An in-
tuitive way is to transform Xs and v (the direction vector
of r) to average camera coordinates, where the vertical rela-
tion and the Snell’s Law are valid. After doing this, we have
vc and Xsc in the average camera coordinate frame. The
next step is the computation of the refractive surface normal
and the refracted direction vector v′

c in the average camera
coordinate frame.
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4.3. Refractive Surface Normal Calculation

To obtain the normal of the refractive surface, first we
sample 3× 3 neighbor points around Xs in the NDC frame
and transform them into the average camera coordinate
frame, denoting them as Xnear. Given 3D coordinates of
Xnear = (xnear, ynear, znear), we fit a plane using least
squares. After centering the coordinates, the loss of this
plane fitting becomes

J(w) =
1

2
(Pxyw − znear)

T(Pxyw − znear) , (7)

where Pxy = [xnear ynear] and w = [w1 w2]
T. Then we

solve this in close-form

w∗ = (Pxy
TPxy)

−1Pxy
Tznear , (8)

with QR decomposition. The local surface normal at Xsc

is given by Nc = [−w1,−w2, 1]. We next compute the re-
fracted direction vector v′

c according to Eq. (2) and to trans-
form v′

c back to NDC frames, denoted by v′. The derivation
of this transformation can be found in the supplemental ma-
terial.

We use neighbor points of Xs to calculate the local sur-
face normal, which takes advantage of the local continuity
of our refractive surface. This can safely be assumed for
most media including water expect for local perturbations
like a splash.

4.4. Sampling and NeRF Rendering Underneath
Refractive Surface

The underwater scene area is distributed along the +z
direction of S. As we approximate S with {Xi

s}i=1,2...,
we can define the ray r′ below the refractive surface as

r′(t) = Xs + tv′ . (9)

The rays r′(t) lie completely under the refractive sur-
face. For each ray, points x are sampled along r′(t),
and these 3D points will be fed to our Radiance Field
Ψx(x,v

′) = [RGB, σ] with positional encoding [35] for
further prediction of radiance and volume density. We ren-
der the scene below the refractive surface according to the
path integral Eq. (3) using coarse-to-fine optimization. The
rendering result is compared with the ground-truth color,
which defines the image loss in Eq. (5).

4.5. Refractive Surface Reconstruction

The refractive surface S consists of a collection of inter-
section points {Xi

s}i=1,2.... By visualizing Xs, we obtain
the shape of our reconstructed refractive surface. We trans-
form Xs to the average camera coordinate frame to visual-
ize it more intuitively.

Figure 3: Our setting for capturing real underwater dataset.

Also, note that all rays are below the refractive surface
when they are sampled, and points above the refractive sur-
face have no contributions to the final color of rays. That
is to say, the Refractive Field ΨR encodes information of
the refractive surface, and the Radiance Field Ψx encodes
information about what the scene below the surface truly
looks like. This disentanglement allows us to remove ΨR

in forward inference so that the scene can be viewed as if
the observer was in the same medium as it under the re-
fractive surface (e.g., water-free scene restoration). More
details and visualizations can be found in Sec. 5.

5. Experimental Results
We evaluate the effectiveness of NeRFrac with an exten-

sive set of experiments on synthetic data and real data in
which we focus on water as the refractive surface. We as-
sume the same forward-facing setup as in [24].

5.1. Synthetic Data

To align the real data, our synthetic data are also 3 × 3
images arranged per scene, generated using ray tracing [20].
The refractive surface is added to get multi-view images
of the scene seen through the refractive surface. We use
Taichi[18], a programming toolkit for rendering, which can
easily and efficiently complete these ray tracing tasks.

We test on two different shapes of common refractive
surfaces. Surface A (second sine) and B (primary sine)

A : z = z0 + a sin (ω
√
(x− x0)2 + (y − y0)2) ,

B : z = z0 + a sin (ω(x+ y)) ,
(10)

respectively, where a and ω are the amplitude and frequency
of the wave, which are configurable parameters.

5.2. Real Data

As shown in Fig. 3, to capture underwater scenes, we
build a 3 × 3 camera array looking down a water surface.
Nine cameras (FLIR BFS-U3-23S3C) are synchronized for
continuous recording. First, we calibrate the intrinsic and
extrinsic parameters of the cameras using COLMAP [39].
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PSNR↑ SSIM↑ LPIPS↓ Average↓
Synthetic data (second sine)

NeRF[25] 25.93 0.857 0.230 0.061
Mip-NeRF[4] 24.90 0.789 0.381 0.083
IBRNet[48] 26.26 0.857 0.219 0.058
Tensorf[8] 24.60 0.783 0.276 0.076
Plenoxels[56] 17.62 0.340 0.620 0.206
LB-NeRF[13] 26.16 0.873 0.166 0.052
NeRFrac(ours) 34.98 0.948 0.142 0.022

Synthetic data (primary sine)
NeRF[25] 21.01 0.723 0.334 0.112
Mip-NeRF[4] 21.84 0.707 0.448 0.117
IBRNet[48] 21.56 0.728 0.317 0.105
Tensorf[8] 21.20 0.651 0.426 0.124
Plenoxels[56] 17.61 0.325 0.626 0.207
LB-NeRF[13] 22.59 0.810 0.266 0.086
NeRFrac (ours) 34.38 0.945 0.148 0.023

Real data (plant)
NeRF[25] 21.54 0.794 0.235 0.091
Mip-NeRF[4] 25.90 0.728 0.414 0.082
IBRNet[48] 26.89 0.823 0.229 0.058
Tensorf[8] 28.23 0.853 0.178 0.047
Plenoxels[56] 21.72 0.573 0.463 0.127
LB-NeRF[13] 24.52 0.755 0.255 0.076
NeRFrac (ours) 28.29 0.883 0.153 0.043

Real data (tree)
NeRF[25] 28.95 0.804 0.360 0.059
Mip-NeRF[4] 28.91 0.759 0.436 0.065
IBRNet[48] 29.94 0.818 0.268 0.049
Tensorf[8] 29.30 0.805 0.280 0.053
Plenoxels[56] 23.67 0.530 0.533 0.116
LB-NeRF[13] 23.91 0.573 0.357 0.098
NeRFrac (ours) 31.20 0.871 0.222 0.039

Table 1: Quantitative comparison of our NeRFrac against
other methods. We show the results on both synthetic data
and real data. See the text for more details.

Then, objects are placed in a water tank where the depth of
the water is unknown. We approximately focus all camera
views onto the center of underwater scenes. Our real dataset
contains 10 multi-view underwater image sequences, each
including the full range of water surfaces from flat to fluctu-
ating. We use our synchronous camera array to take multi-
frame images continuously at 5fps. For this experimental
part, we train our NeRFrac frame by frame. Yet, our method
can be easily adapted to deal with continuous frames as
well. We strongly recommend readers to watch the sup-
plemental videos on this extension.

5.3. Comparison

For both synthetic and real data, we use 8 side views for
training and the center view for testing (see Fig. 3). We
train NeRF [25] with its default configurations for forward-
facing data. Then, we consider a set of recent NeRF variants

as additional baselines.
Mip-NeRF [4] uses a conical frustum for better sampling
and achieves higher accuracy among the NeRF baselines.
IBRNet [48] applies a ray transformer to NeRF MLP esti-
mation. We fine-tune the network with our data.
Tensorf [8] factorizes radiance fields into compact compo-
nents for scene modeling. This design allows faster and
higher-quality rendering.
Plenoxels [56] proposes a sparse voxel model which can be
optimized to high fidelity without any neural networks.
LB-NeRF [13] designs a deform layer to directly learn the
point offset for refractive scenes rendering and is the pure
deformable method we want to compare as stated in Sec. 2.
Since it is a very new work with no code available, we try
to reproduce this work based on PyTorch [32]. Implemen-
tation details can be found in the supplementary material.
Eikonal Fields (EiF) [6] optimizes for a field of 3D-varying
IOR and trace light that bends toward the spatial gradients
according to the laws of eikonal light transport. The refrac-
tion scene it uses, such as a crystal ball, is quite different
from our setting, resulting in a bias when using EiF on our
data. We show a comparison with this method in the sup-
plementary material.
Qian’s Method [34] reconstructs water surface via tradi-
tional geometric modeling. Since the source code is not
available, in the supplemental material, we present a com-
parison with this study kindly conducted by the authors of
[34] on their data.

We report three error metrics in total, namely the peak
signal-to-noise ratio (PSNR), the structural similarity in-
dex measure (SSIM) [49], and learned perceptual image
patch similarity (LPIPS) [59]. We also use a more intu-
itive metric, “average” [4], which is the geometric mean of
MSE = 10−PSNR/10,

√
1− SSIM, and LPIPS. Fig. 4 and

Tab. 1 show the results of NeRFrac and baseline methods.

5.4. 3D Water Surface and Water Removal

Fig. 5 shows the results of water surface reconstruction
for both synthesis and real data. Data “second sine” and
“primary sine” have waveforms A and B, respectively, as
described in Eq. (10). And data “plant,” “tree,” “red flower,”
and “fish” are real data that lack ground truth for the water
surface. We report the root mean square error (RMSE) to
evaluate our water surface reconstruction, which could be
found in Tab. 2.

Thanks to the disentanglement in Sec. 4.5, we can eas-
ily create views of the underwater scene without the water
refraction. For synthetic data, we can render ground truth
without water for quantitative evaluation. We use the same
metrics as stated in Sec. 5.3 for error estimation. Tab. 2
shows quantitative errors, and Fig. 6 displays the restoration
of underwater scenes. As for other benchmarks, we directly
remove the deformation fields of LB-NeRF as a reference.
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Figure 4: Qualitative Comparison. We show the results of synthetic data: “second sine” and “primary sine,” real data:
“plant” and “tree” (from top to bottom). By learning the deformation caused by refraction, our NeRFrac achieves the highest
accuracy among all methods (LB-NeRF in red means this work is reproduced by us). More visualizations are shown in the
supplemental material.

Notice that the lines shown in the ground-truth water-free
images, such as the corner of the wall, should have been
straight. They are, however, bent in the ground-truth water-
contained images taken from the leave-one-out camera due
to refraction. With our method, these lines can be restored
to their original shape.

6. 3D Refractive Surface Representations

In this work, we model the refractive surface with a neu-
ral Refractive Field, instead of commonly used global repre-
sentations, such as depth map and SDF. There are two main

PSNR↑ SSIM↑ LPIPS↓ Average↓ Surface RMSE↓(cm)
Synthetic data (second sine)

LB-NeRF[13] 16.26 0.499 0.412 0.19 /
NeRFrac (ours) 29.38 0.914 0.142 0.036 0.116

Synthetic data (primary sine)
LB-NeRF[13] 17.26 0.523 0.437 0.178 /
NeRFrac (ours) 29.94 0.918 0.144 0.035 0.144

Table 2: Results of virtual water-free scene restoration and wa-
ter surface reconstruction. We compare our method with LB-
NeRF[13] to show our superiority.
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(a)

(b)

Figure 5: Reconstruction of water surface. The boundaries
of these water surfaces are determined by the FOV of the
capturing camera. (a) Ground truth and surface reconstruc-
tion results of our synthetic data. (b) Surface reconstruction
results of our real data (no ground truth available).

Figure 6: Qualitative result of underwater scene restoration.
We can render water-free scenes by removing the Refrac-
tive Field. We directly remove the deformation field of LB-
NeRF[13] to serve as a comparison. As can be seen, our
method successfully restores bent lines thanks to the explicit
modeling of Snell’s Law, while the purely implicit neural
method LB-NeRF fails in restoring water-free images.

considerations.
First, we recall the biggest advantage of having a global

representation of the refractive surface: the ability to calcu-
late the surface normal by differentiating the surface thanks
to its spatial continuity. This advantage, however, cannot

(a)

(b) (c) (d)

Figure 7: (a) Different intersection calculation strategies.
(b)(c) Qualitative and quantitative comparison between ΨR

and ΨD on both novel rendering results and the surface
shape (PSNR and RMSE used separately). (d) Multi-view
consistency is ensured with our NeRFrac.

be exploited in our scenario. We learn the refractive surface
in NDC frames, where the gradient direction is no longer in
line with the refractive surface normal direction. As a result,
differentiation for computing the refractive surface normal
becomes challenging.

Second, a globally defined surface representation in-
evitably necessitates extra sampling when calculating the
intersection between rays and the surface. As can be seen in
Fig. 7 (a), for common opaque surface reconstruction, these
sampled points will get the gradient from volume rendering
to update the surface shape. For our refractive surface re-
construction, however, we do not use these sampled points
for volume rendering, so most of them will fail to receive
the gradient, making surface shape update a challenge.

For further comparison, we replace our Refractive Field
ΨR with a self-implemented global depth map network ΨD,
which requires sampling for intersection calculation. The
design details of ΨD can be found in the supplementary ma-
terial. In Fig. 7 (b)(c) we show the results of ΨD compared
with ΨR. The challenge in gradient back propagation of
ΨD adds blurs and artifacts to rendered image as well as
the reconstructed refractive surface.

Our representation successfully avoids explicit intersec-
tion sampling and its consequent hurdles, without sacrific-
ing multi-view consistency. Note that, as we parameterize
the ray direction vectors v as the input of our Refractive
Field ΨR, this implicitly serves as a prior for promoting
multi-view consistency. As experimentally demonstrated in
Fig. 7 (d), when the network converges, the multi-view con-
sistency is guaranteed and Xs will converges to the NDC
global manifold S.
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7. Conclusion
We presented NeRFrac to tackle novel view synthesis

through refractive surfaces by introducing an MLP-based
Refractive Field. Unlike NeRF and most other related
works which sample directly on straight lines, we design
a Refractive Field to implicitly encode the refractive sur-
face, from which we calculate the refracted rays based on
Snell’s Law. Training the same epochs at a speed similar
to NeRF, we can achieve better results than advanced vari-
ants of NeRF. NeRFrac can also reconstruct the refractive
surface and create refraction-free scenes by removing the
learned Refractive Field. NeRFrac is currently limited to
modeling a single layer of refraction. We plan to extend
the method to handle complex layered refraction as well as
other light behavior including scattering and caustic in our
future work.
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