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Abstract

There are two main approaches to object detection:
CNN-based and Transformer-based. The former views ob-
ject detection as a dense local matching problem, while the
latter sees it as a sparse global retrieval problem. Research
in neuroscience has shown that the recognition decision in
the brain is based on two processes, namely familiarity and
recollection. Based on this biological support, we propose
an efficient and effective dual-processing object detection
framework. It integrates CNN- and Transformer-based de-
tectors into a comprehensive object detection system con-
sisting of a shared backbone, an efficient dual-stream en-
coder, and a dynamic dual-decoder. To better integrate
local and global features, we design a search space for
the CNN-Transformer dual-stream encoder to find the opti-
mal fusion solution. To enable better coordination between
the CNN- and Transformer-based decoders, we provide the
dual-decoder with a selective mask. This mask dynamically
chooses the more advantageous decoder for each position
in the image based on high-level representation. As demon-
strated by extensive experiments, our approach shows flexi-
bility and effectiveness in prompting the mAP of the various
source detectors by 3.0∼3.7 without increasing FLOPs.

1. Introduction
Object detection is a fundamental and challenging re-

search problem in the field of computer vision. The task
is to predict a bounding box and a category label for each
object in an image. In early times, CNN-based method
has made significant progresses in this field, which utilizes
convolution to attain both low- and high-level local pattern
information from the input image, and performs classifi-
cation on all candidate grids paved on the image [33, 22,
39, 5, 9, 17]. Recently, Transformer-based detector is pro-
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posed as an alternative solution to this problem. It em-
ploys a Transformer-based encoder and decoder to build
attention-based global representation and reason about re-
lationships between objects and the global image context
via a set of queries [3, 46, 24, 43, 41, 28, 19, 45]. Overall,
CNN- and Transformer-based detectors can be structured
into a backbone-encoder-decoder architecture. This archi-
tecture includes a backbone that extracts rich and general
shallow features, an encoder that generates task-relevant
high-level representations, and a decoder that predicts the
results. Studies in [35, 44] show that visual perception pro-
cess in human brain is also hierarchical and conclude that
the ventral visual stream (VVS) of the human brain can be
abstracted by a backbone-encoder-decoder structure, which
provides biologically-plausible explanation to the structure
of current deep learning based object detectors, as shown in
Figure 2(c).

There is increasing evidence that brain’s recognition is,
in fact, on the basis of the dual-process detection theory
which has already a far-reaching influence in the field of
psychology and cognitive neuroscience [44]. It claims that
brain’s recognition reflects the joint contribution of two sep-
arable retrieval processes, namely familiarity and recollec-
tion. Neuroscientists find that familiarity is associated with
distinct visual cortex area whose biological mechanism in-
spires the CNN architecture [34] and recollection is typi-
cally ascribed to the hippocampus which has close relation-
ship to the Transformer [42]. These findings indicate that in
the field of deep learning based object detectors, the func-
tion and working mechanism of CNN- and Transformer-
based detectors are both bio-inspired and have close rela-
tion to familiarity and recollection processes. But each sin-
gle process can not fully reflect how human brain deliver-
ing object detection tasks and may easily reach its limit as
shown in Figure 1. Some recent works attempt to improve
the performances of detectors with CNN-Transformer hy-
brid methods [7, 43, 6, 8, 37], by introducing the key prop-
erties of one to the other. However they only consider either
familiarity-like CNN-based encoding-decoding pipeline or
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Figure 1: Our proposed method can dynamically combine
the advantages of CNN- and Transformer-based detectors
with a selective mask to achieve better performance. The
bird’s shape and pose carry rich local-patterns, but the bird
is uncommonly seen in the sea, thus lack of context infor-
mation, while the half of surfboard is submerged in the sea,
thus missing local features, but it carries adequate contex-
tual information, such as the pose of the person and the
wave of the sea. Thus, the former can be better local-
ized by the CNN-based detector and the latter is easier for
Transformer-based detector.

recollection-like Transformer-based pipeline, which can not
reflect the dual-process mechanism concurrently.

Inspired by the dual-process recognition mechanism
in human brain and take full advantages of CNN- and
Transformer-based detectors simultaneously, in this paper,
we propose a Dynamic Dual-Processing framework, DDP
in short, which simulates the familiarity and recollection
processes of the brain, as shown in Figure 2(d). It consists
of a shared backbone, an efficient dual-stream encoder and a
dynamic dual-decoder. Although it is easy to think of using
two independent CNN- and Transformer-based encoding-
decoding branches, a simple ensemble of these two detec-
tors is costly and yields marginal improvements. To real-
ize an effective and efficient combination of them, there
are two critical issues that need to be addressed: 1) how
the information interacts and integrates between CNN and
Transformer streams in encoder; 2) how two decoders co-
operate and aggregate the predictions in order to achieve
the optimal performance. To solve the first question, our
dual-stream encoder(DSE) preserves both CNN and Trans-
former encoding streams and allows intermediate feature in-
teractions along each stream, which is unlike previous hy-
brid single-stream encoders. Instead of manually designing
feature interaction strategies, we use neural network archi-
tecture search method to find the optimal depth and fea-
ture fusion strategies. To solve the second question, con-

trary to simply assembling the predictions of two indepen-
dent decoders, we provide a dynamic dual-decoder(DDD)
equipped with a binary selective mask. This mask dynam-
ically chooses the more advantageous decoder for each po-
sition in the image based on high-level representation, as
shown in Figure 1(c). The learning of this mask can be
seen as the competition of CNN- and Transformer-based
decoders in predicting the target at the corresponding po-
sition. Thus, it avoids the redundant computation and en-
able each decoder concentrate on its own powerful side and
avoid weakness, as shown in Figure 1(d). We show that
the proposed framework achieves promising performance
in terms of accuracy and model complexity on the COCO
datasets [23]. Extensive experiments validate the effective-
ness of the cooperation of CNN and Transformer in both
encoder and decoder.

2. Related Works
Human Vision System. Extensive studies on neuro-

science have focused on constructing the conceptual model
for human vision systems. As shown in Figure 2(c), a dual-
process encoding-decoding structure is demonstrated [44,
35]. The visual stimulus is first processed in the initial stage
of visual system(backbone), where simple features are ex-
tracted [18]. And these early-stage features flow into an en-
coder, which represents more complex information, such as
object form, contextual associations and context-dependent
representations [15, 1]. In decoder, familiarity and recol-
lection processes play key rules in making the inference for
object recognition and forming long-term memories of vi-
sual objects and their contexts [12, 29].

CNN- and Transformer based Encoders. The mech-
anisms of processing higher level features between CNN-
and Transformer-based encoders are distinct. Some CNN-
based encoders such as FPN [21], PAFPN [25] and
biFPN [38] construct semantic-riched feature pyramids by
fusing local context from multi-scale features, and others,
e.g., Dilated-encoder [5] and Trident Network [20], obtain
boosted high-level features by employing dilated convolu-
tions to increase the receptive field of the encoders. In con-
trast, Transformer-based encoders in [3, 46, 28] strengthen
the features by applying self-attention to capture long-
range dependency among each pixel on the feature map.
Nevertheless, neither of CNN- and Transformer-based en-
coders learns from the dual-stream encoder of human vi-
sion system, which interactively produces local and non-
local higher level features in parallel.

CNN- and Transformer based Decoders. We can cat-
egorize CNN-based decoder into one- and two- stage de-
tectors. For the decoder of one-stage detectors, the object
category and position can be directly determined with ref-
erence to the anchor point [22, 26], grid centers [32, 39] or
object centers/corners [9, 17]. On the other hand, two-stage
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Figure 2: Illustration of deep learning based object detectors, human vision system, and proposed framework. Either CNN-
based(a) or Transformer-based detectors(b) is a single-mode detection system. By contrast, our proposed framework(d) is a
dual-process framework inspired by human vision system.

detectors make prediction w.r.t region proposals [11, 33]
or learnable embeddings [36]. On the contrary, the Trans-
former based decoder [3] straightforwardly reasons objects
in the image by modeling the cross-attention between learn-
able queries and a set of keys from encoder’s feature maps,
which is inherently one-stage. Certain works also asso-
ciate queries with spatial positions to accelerate the cross-
attention modeling, e.g. in [46, 24, 28, 41]. However,
both CNN- and Transformer-based decoders are static and
single-mode, which is incapable of simulating the dynamic
dual-processing recognition in human vision system.

CNN- and Transformer-combined Detectors. To fur-
ther improve the performance, recent works are dedicated
to introducing Transformer elements to CNN-based detec-
tors. For example, [30] incorporates self-attention into tra-
ditional CNN-based object detection framework as a post-
process module, re-rescoring the confidence of each pre-
diction. In [27, 14], they improve capability of CNN-
based encoder by fusing global context produced by at-
tention mechanism into FPN. Furthermore, [7, 6, 37] ap-
ply Transformer-like modules on the decoder in CNN-
based detectors. Another line of works aim at improv-
ing Transformer based detectors by learning from CNN-
based detector design paradigms. Specifically, Efficient
DETR [43] introduces a RPN into DETR framework, em-
powering dense-to-sparse query selection mechanism. Dy-
namic DETR [8] replaces Transformer-based encoder by a
convolution-based dynamic encoder and brings RoIPool op-
eration in the process of cross-attention in order to generate
region features. But above mentioned methods only con-

sider to bridge CNN-based or Transformer-based detectors
based on existing single-mode framework, none of them is
feasible to represent dual-processing mechanism.

3. Human Vision System to Neural Detectors

Hint1: Dual CNN- and Transformer-like Recogni-
tion Pathways with a shared backbone. It is shown
in Figure 2(c) that after passing through a shared Retina,
LGN, V1, V2 and V4, the visual stimulus is processed
by a dual-process recognition model [44]. TEO-IT and
PH-HPC are associated with familiarity and recollection
respectively. The above finding indicates that to mimic
the dual-process recognition model, CNN(familiarity) and
Transformer(recollection) based modules should co-exist in
both encoder and decoder of an object detector and they can
share a same backbone.

Hint2: Interaction between CNN and Transformer
Pathways When Encoding Visual Information. Within
the encoder of above dual-process model, researchers also
found bi-directional interactions between TEO and PH [40],
which enable to create contextual-bind representations and
attentive-linked representations for TEO-IT and PH-HPC
pathways. However, the interaction mechanism is so com-
plex that is not fully exploited. These studies indicate that
bi-directional connections between CNN and Transformer
processing pathways enable visual system to obtain en-
hanced features by fusing contextual and attention features.
To enable this unknown feature fusion process, we use neu-
ral network search to find a satisfied architecture.
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Figure 3: The formation of Dual-Stream Encoder with bi-
directional connections. (b) and (c) provide a zoom-in look
of feature fusion node Ot and Oc respectively.

Hint3: CNN and Transformer Decoders Working
Collaborately. As mentioned above, familiarity and recol-
lection are responsible for fast matching-based recognition
and slow retrieval-based recognition [44]. Their collabora-
tion is controlled by PR/EC module [2]. The above process
implies that there should be a mechanism that adaptively
decides to use either CNN or Transformer decoder when
detecting different objects, which is a selective mask in our
dynamic dual decoder design.

4. Dynamic Dual-Processing Framework
Motivated by the inspirations from Section 3 we pro-

pose a general brain-like dynamic dual-processing frame-
work(DDP) by effectively unifying traditional CNN and
Transformer based detectors. In accordance with Hint1, the
new pipeline is consisted of three components, i.e., shared
backbone, dual-stream encoder(DSE) and dynamic dual-
decoder(DDD), as shown in Figure 2(d).

4.1. Dual-Stream Encoder

As mentioned in Hint2, we first unify the CNN- and
Transformer-based encoders in a dual-stream way to sim-
ulate the local and global visual processing pathways, as
shown in Figure 3(a). Ec

1 ∼ Ec
n and Et

1 ∼ Et
n are anno-

tations from [38] and [3], representing a series of repeated
blocks for CNN- and Transformer-encoder. For simplicity,
we denote n is the maximum number of blocks for both
CNN- and Transformer-based encoders in DSE, but in prac-
tice, the maximum length of CNN- and Transformer-based
encoder blocks can be different. It should be noticed that Ec

and Et account for general CNN- and Transformer-based

encoding blocks, which can represent the common opera-
tions such as bottom-up [21] and top-down [25] for CNN-
encoder or self-attention [3], deformable self-attention [46]
for Transformer-encoder, etc. In addition, along each in-
dividual pathway, we set up a chain of intermediate nodes
Oc

1 ∼ Oc
n and Ot

1 ∼ Ot
n, where the local features from

CNN-encoder and the global self-attention features from
Transformer-encoder will be combined and enhanced. Be-
sides, each node should also determine whether to stop the
feature encoding process and directly output encoded fea-
tures to the decoder if they are semantically rich enough.

To find the optimal feature fusion strategy with af-
fordable computation complexity, a neural network search
method is applied. Thus, we customized our DSE as a
searchable direct-acyclic supernet, which is similar to [10],
The search space contains feature flow edges and encoder
depth. In specific, as shown in Figure 3(b), the output of
i-th node Ot

i of Transformer-stream can be represented by

Ot
i = Ht(Add(Et

i , w
c
1iR

c(Ec
1), ..., w

c
iiR

c(Ec
i ))) (1)

where we refer [31] for the overall feature fusion operations.
Ht is the feature fusing transformation for the Transformer-
based stream, which is a linear function. Rc stands for a
convolution layer that performs channel projection with a
flatten operation, and the edges such as wc

ji ∈ {0, 1}, are
architecture parameters of the supernet. And if wc

ji = 1,
feature from j-th block of CNN-based encoder will be se-
lected to fuse with i-th block of transformer-based encoder
otherwise not. As for the CNN-based stream, as shown in
Figure 3(c), we also have

Oc
i = Hc(Add(Ec

i , w
t
1iR

t(Et
1), ..., w

t
iiR

t(Et
i ))) (2)

but with minor difference, where Hc is a convolution layer
and Rt is composed of a reshape operation and a channel
projection matrix to allow element-wise add among features
from different sources.

Different from [10], the depth of each stream in DSE is
also searchable, where the depth can be a discrete number
dc or dt varied in range (1, n). For instance, once an active
encoder depth dt for Transformer stream is specified, the
output of Et

dt in the Transformer-steam will be directly out-
put to the decoder, and the remaining encoder blocks and
fusing nodes along the path will not be activated, which is
the same for the CNN-based stream. Overall, by combin-
ing feature fusing nodes and number of encoder blocks, we
have the total search space capacity of O(n22n

2

).

4.2. Dynamic Dual-Decoder

As shown in Figure 2(d), the DDD is composed of
CNN- and Transformer-based decoders and a dynamic se-
lective mask, which together simulate the switchable fa-
miliarity and recollection modes in visual processing sys-
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Figure 4: Working mechanism of the selective mask in
Dynamic Dual Decoder. Only part of regions of anchors
or queries will be activated complementarily based on the
argmax of sampled value from parameterized Gumbel-
softmax distribution.

tem. The green box(CCS) stands for the Concat-Conv-
GumbelSoftmax operation, which is used to generate the
mask. As shown in Figure 4, this mask is projected to the
coordinate spaces of anchors and queries, and then imposed
on them, where 1 activates the anchor in CNN-decoder
and 0 activates the query in transformer-decoder at a corre-
sponding position. it is noteworthy that queries in original
DETR model do not contain any spatial prior while in later
works such as Deformable DETR [46], Anchor DETR [41]
and DAB-DETR [24], the queries are given spatial informa-
tion. Thus, in our statement, we embrace the 4D box-like
query in DAB-DETR for Transformer-based decoder.

Based on above description, we define Dc and Dt as
CNN- and Transformer-decoder correspondingly and set
the centers of anchors of the CNN-decoder as A and queries
as Q. We define a binary mask m, therefore, the prediction
r(y, x) produced by our dual-decoder at a position (y, x) on
the mask can be expressed as follows:

r(y, x) =

{
Dc(A(ya, xa)) if m(y, x) = 1

Dt(Q(yq, xq)) if m(y, x) = 0
(3)

where (ya, xa) and (yq, xq) are projected positions of (y, x)
for spatial alignment.

However, learning such binary mask in neural network
is challenging because of its non-differentiability. To tackle
this issue, we refer the Gumbel-softmax reparameterization
trick [16], in which they reparameterize a non-differential
stochastic node that samples from a categorical distribution
by a learned neural networks, acting on random noise from
Gumbel base distribution. For more details about Gumbel-
softmax reparameterization trick, please refer [16]. In our
case, we take the output of selective mask m to reparame-
terize the an i.i.d Gumbel Distribution Gi ∼ Gumbel(0, 1),
which results,

m̃i =
exp((logmi +Gi)/τ)∑1

j=0 exp((logmj +Gj)/τ)
, for i = 0, 1 (4)

where, m1 = 1−m0, and τ > 0 is a temperature parameter
that determines the sharpness of the softmax. Therefore, we
get the approximation of selective mask m̃. In the forward
pass, we use the argmax of m̃ to perform binary selection of
anchor or query, and in the backward pass, use the softmax
to enable gradient descent based training. The details of
training procedure will be explained in the next section.

5. Muti-stage Learning of DDP

In previous sections, we have demonstrated how the hu-
man vision-friendly detector is constructed by following the
guidelines of human vision system. However training such
a compound system is not straightforward and for this rea-
son a three-step training strategy is proposed.

5.1. Stand-alone Pre-training

In our formulation, if we only consider the two inde-
pendent processing pathways without feature interaction in
DSE and the selective mask in DDD, the whole frame-
work is annealed to a structure of two parallel CNN- and
Transformer-based detectors with a shared backbone. We
define the complete detector as N with parameters θb, θe, θd
for backbone, encoder and decoder respectively. Therefore,
as a starting point, we first jointly train this naive combi-
nation without search space and dynamic selective mask to
optimize these parameters until convergence. In this step,
both CNN and Transformer detector work separately as in-
dividual detectors. For a batch of input images I , the overall
training procedure can be represented by

min
θb,θe,θd

L(Nθb,θe,θd(I), gt(I)) (5)

where L is the loss function of object detection, and gt(I)
is the ground truth labels of these images.

5.2. Searching for the DSE

For the search of fusing strategies and the depth of DSE,
we refer [13], utilizing SPOS method to perform the NAS
task. In this method, the parameterized supernet is trained
and then searched for the optimal subnet. In the train-
ing phase, all possible subnets are independently and uni-
formly sampled from the search space, and the parameters
in each sampled subnet are updated during each iteration.
In our case, for the each iteration of DSE supernet train-
ing, we first get the active encoder depth for CNN- and
Transformer-stream dc and dt, which are randomly chosen
from set D = {1, 2, ..., n}. Under the chosen depth, the
fusing strategies wc

ji for all i ∈ (1, dc), j ≤ i and wt
ji for

all i ∈ (1, dt), j ≤ i, are i.i.d. drawn from Bern(0.5). For
each concrete wc

ji, w
t
ji, d

c and dt, can get a specific DSE
structure. Therefore, for each batch of image I , similar to
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Equation 5, the training can be represented by,

d = {dt, dc},where dt, dc ∼ D

w = {wt
ji, w

c
ji},where wt

ji, w
c
ji ∼ Bern(0.5)

min
θb,θe|w,d,θd

L(Nθb,θe|w,d,θd(I), gt(I))

(6)

where we denote the parameter of DSE given a specific
sampled structure as θe|w,d. Besides, before training of the
supernet, we will load the pretrained weights from previ-
ous step in Section 5.1 After training of the supernet, we
can effectively explore the performance of all possible sub-
structures and find the optimal DSE for given complexity
constraints by choosing the one with the best performance
on validation set, which results,

w∗, d∗ = argmax
w∼Bern(0.5),d∼D

mAPval(Nθe|w,d(I), gt(I))

s.t complex(w∗, d∗) <= Cmax

(7)

where we simplify the notation of w and d in this equation
and the w∗ and d∗ represent the optimal fusing strategy and
encoder depth of searched DSE, which also satisfy the com-
plexity constraint Cmax. Also referring [13], the evolution
search algorithm with FLOPs constraints is also used to find
w∗ and d∗.

5.3. Selective mask Learning and Joint-training

After previous training steps in Section 5.1 and 5.2,
we can obtain an acceptable dual-detector system with a
searched DSE and a dual-decoder without the dynamic se-
lective mask in DDD. As explained in Section 4.2, the dy-
namic selective mask do not localize and classify objects in
the images, but predict which decoder performs better for
a given position in the image. In another words, we can
not train this module with the localization loss and object
category classification loss in traditional object detection
task, but rather incorporate the selective mask into the cal-
culation of the mean-average precision(mAP), and directly
maximize mAP.

In more detail, we define the detection result rc(ya, xa)
given anchor A(ya, xa) for CNN-decoder, rt(yq, xq) given
Q(yq, xq) for Transformer-decoder and predicted selective
mask m̃(y, x) from Gumbel-softmax in Equation 4 at the
position (y, x). Therefore, the result at (y, x) produced by
the dynamic dual-decoder is,

r(y, x) = rc(ya, xa) ∗ m̃(y, x)+ rt(yq, xq) ∗ (1− m̃(y, x))
(8)

where this equation is the one-line form of Equation 3.
The mAP on one image can be expressed with this result

and ground truth objects ,

mAP =

N∑
j=1

∑
x,y

tp(gj , r(y, x))

tp(gj , r(y, x)) + fp(gj , r(y, x))
(9)

where N is the number of GT objects in an image, gj being
the j-th GT in the image, and tp, fp represent the rules
that determine whether a prediction r(y, x) is a true positive
or false positive sample. Therefore, the loss function for
training given a batch of image I can be write as

Lθm = 1−
∑
I

mAP (10)

in which θm is the parameter of the submodule(CCS) to
generate the selective mask. In above training proce-
dure, we take the pre-trained weights of the backbone, the
searched DSE and DDD from the last step and freeze the
parameters of them.

With a learned selective mask, we effectively compen-
sate the weakness of one detector with the strength of the
other and we believe that by jointly training the detection
task of dual-decoder and selective mask, anchor/query se-
lection mechanism enables CNN and transformed based de-
coder to concentrate more on their own strength, which re-
sults better overall performance. Thus, at last we append
a finetuning stage, which jointly trains the whole network
with detection and mAP loss.

6. Experiments

6.1. Dataset and Implementation Details

Dataset. Our experiments are conducted on the MS
COCO benchmark [23] that contains COCO train2017 split
(∼ 118k images) and evaluated with val2017 (5k images).
We adopt the mean-average precision as the metric for eval-
uating the performance following previous researches.

Implementation Details. In our experiment, we con-
struct two versions of models, denoded as DDP and DDP+.
For the first one, we choose the YOLOF and DAB-DETR
as the components of DSE and DDD with a shared ResNet-
50, and for the second model, we use SparseRCNN and
DN-DETR as source models and ResNet-101 as the back-
bone. We also search for different architectures for DDP
and DDP+ under different complexity constraints. For the
search of DSE, for DDP, the maximum depth of YOLOF’s
Dilated Encoder and DAB-DETR’s encoder are both 6, but
for DDP+, since the depth of FPN used in SparseRCNN
is fixed as 1, thus, only the depth of DN-DETR’encoder
is searchable, which is set as 6. The learning rate in the
searching phase is set as 1/10 of the original learning rate,
and both supernets are trained for 10 epochs. The evolution
search algorithm setting is the same as in SPOS [13]. The
searched network is further finetuned by 5 epoch with the
same learning rate as searching. We train the CCS module
for 10 epochs with 1/10 of the original learning rate. At
last, the whole network is jointly trained for 5 epochs with
1/15 of the original learning rate.
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Model Model type Backbone AP AP50 AP75 APS APM APL FLOPs

YOLOF* [5] C ResNet-50 37.7 56.9 40.6 19.1 42.5 53.2 86G
FCOS [39] C ResNet-50 38.5 57.7 41.0 21.9 42.8 48.6 177G
Faster RCNN-FPN [33] C ResNet-50 40.2 61.0 43.8 24.2 43.5 52.0 180G
Sparse-RCNN [36] C ResNet-50 42.8 61.2 45.7 26.7 44.6 57.6 129G
DETR [3] T ResNet-50 42.0 62.4 44.2 20.5 45.8 61.1 86G
Conditional DETR [28] T ResNet-50 40.9 61.8 43.3 20.8 44.6 59.2 90G
Anchor DETR [41] T ResNet-50 42.1 62.4 45.0 21.9 46.2 60.3 -
DAB-DETR* [24] T ResNet-50 42.2 63.1 44.7 21.5 45.7 60.3 94G
DN-DETR [19] T ResNet-50 44.1 64.4 46.7 22.9 48.0 63.4 94G
ATSS-Dyhead [7] C+T ResNet-50 42.6 60.1 46.4 - - - -
RetinaNet-BVR [6] C+T ResNet-50 38.5 59.1 40.9 - - - -
TSP-FCOS [37] C+T ResNet-50 43.1 62.3 47.0 26.6 46.8 55.9 189G
TSP-RCNN [37] C+T ResNet-50 43.8 63.3 48.3 28.6 46.9 55.7 188G
Efficient DETR [38] C+T ResNet-50 44.2 62.2 48.0 28.4 47.5 56.6 159G
DDP(94G) C+T ResNet-50 45.2 66.3 48.5 25.9 48.6 64.1 94G
DDP(120G) C+T ResNet-50 46.8 67.5 50.3 28.9 50.2 64.9 120G

YOLOF [5] C ResNet-101 39.8 59.4 42.9 20.5 44.5 54.9 151G
FCOS [39] C ResNet-101 40.8 60.0 44.0 24.2 44.3 52.4 243G
Faster RCNN-FPN [33] C ResNet-101 42.0 62.5 45.9 25.2 45.6 54.6 246G
Sparse R-CNN* [36] C ResNet-101 44.1 62.1 47.2 26.1 46.3 59.7 206G
Deformable DETR [46] T ResNet-50 43.8 62.6 47.7 26.4 47.1 58.0 173G
DETR [3] T ResNet-101 43.5 63.8 46.4 21.9 48.0 61.8 152G
Conditional DETR [28] T ResNet-101 42.8 63.7 46.0 21.7 46.6 60.9 156G
Anchor DETR [41] T ResNet-101 43.5 64.3 46.6 23.2 47.7 61.4 -
DAB-DETR [24] T ResNet-101 43.5 63.9 46.6 23.6 47.3 61.5 174G
DN-DETR* [19] T ResNet-101 45.2 65.5 48.3 24.1 49.1 65.1 174G
RetinaNet-BVR [6] C+T ResNeXt-101 46.5 66.3 50.6 - - - -
TSP-FCOS [37] C+T ResNet-101 44.4 63.8 48.2 27.7 48.6 57.3 255G
TSP-RCNN [37] C+T ResNet-101 44.8 63.8 49.2 29.0 47.9 57.1 254G
Efficient DETR [38] C+T ResNet-101 45.2 63.7 48.8 28.8 49.1 59.0 239G
Dynamic DETR [8] C+T ResNeXt-101-DCN 49.3 68.4 53.6 30.3 51.6 62.5 -
DDP+(173G) C+T ResNet-101 48.9 68.0 53.1 31.4 51.5 66.8 173G
DDP+(221G) C+T ResNet-101 51.3 69.5 55.4 34.4 55.1 68.8 221G

Table 1: Evaluation results on COCO 2017 validation set. * represents the source CNN- and Transformer-based detectors on
which we build our dual-stream encoder and dyanmic dual-decoder. C, T and C+T in model type column mean CNN- and
Transformer-based detectors and combined detectors respectively.

Model FLOPs Params FPS mAP

DAB-DETR-R50 94G 44M 21 42.2
YOLOF-R50 86G 44M 39 37.7
DN-DETR-R101 174G 63M 17 45.2
SparseRCNN-R101 206G 125M 19 44.1
DDP(94G) 94G 51M 27 45.2
DDP(80G) 80G 42M 41 43.4

Table 2: Model complexity, FPS and mAP comparison. The
mAP and FPS are measured on COCO val2017 with batch
size 1 on V100 GPU.

6.2. Main Results

Comparison with Source Models. Table 1 shows our
main results on COCO 2017 validation set compared with
other methods. In the table, with a ResNet-50 as the back-
bone, our DDP(94G) and DDP(120G) achieve mAP of 45.2
and 46.8, outperforming their source models, i.e., YOLOF
and DAB-DETR by a large margin. This is also valid for
DDP+ with higher complexity, which is based on SparseR-
CNN and DN-DETR. It is noteworthy that DDP(94G) and
DDP(173G) improve the mAP of +3 and +3.7 compared
with the DAB-DETR-R50 and DN-DETR-R101 without in-
creasing the model complexity. In addition, we investigate
the model complexity and latency compared with source
models in Table 2. In specific, DDP(80G) is a searched
lightweight model obtaining 43.4 mAP with 41 FPS on
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Model mAP Model mAP

DINO-SwinL 63.2 DyHead-SwinL 58.4
HTC++-SwinL 58.0 DDP-SwinL(Ours) 64.8

Table 3: Comparison of SOTA method on COCO val2017.

V100, which is faster and more accurate than YOLOF-R50
and DAB-DETR-R50. Above results show that our method
is a general and efficient framework, which can be used
to boost the performance of single-mode object detectors
without sacrificing model efficiency.

Comparison with Other Methods. From Table 1, we
can see that our method achieves better performance than
concurrent works that focus on improving detectors by
combining CNN and Transformers corresponding to model
type C + T in the table. For example, DDP(120G) and
DDP+(221G) obtain 2.6 and 6.1 mAP improvement over
EfficientDETR-R50 and EfficientDETR-R101 with 39G
and 18G fewer FLOPs. It is common believed that as the
complexity of a model increases, the performance benefit
gradually decreases or even plateaus. For example, DAB-
DETR-101 only surpasses DAB-DETR-R50 1.3 with 80G
more FLOPs. This may be due to the limitations of a sin-
gle model architecture. However, an intriguing observa-
tion of our method is that from DDP(94G), DDP(120G),
DDP(173G) to DDP(221G), our model obtains perfor-
mance gain of 1.6, 2.1 and 2.4 with increase of 26G, 53G
and 48G FLOPs respectively. With our method, even when
the computational complexity of the model reaches a certain
scale, additional FLOPs can still bring significant perfor-
mance improvements. Thus, by integrating more advanced
detectors (DINO [45] and HTC++ [4]) and using a stronger
backbone SwinL, our framework gets mAP of 64.8, achiev-
ing promising performance as shown in Table 3.

6.3. Ablation Studies

In this section, we analyze the impacts of our proposed
Dual-Stream Encoder and Dynamic Dual-Decoder. If not
otherwise noted, we use encoders and decoders of YOLOF
and DAB-DETR and ResNet-50 as the backbone through-
out the analysis.

Analysis of NAS-based DSE Module. To explore the
impact of DSE module, we consider a static dual decoder
without selective mask and observe the mAP of CNN- and
Transformer-based detector separately. As presented in Ta-
ble 4, the accuracy of DSE-w/o fusion represents the preci-
sion of the first training stage in Section 5.1. The APCNN
and APTrans for DSE-w/o fusion are 39.2 and 42.0 show
that sharing the same backbone for CNN- and Transformer-
based encoder and decoder does not hurt the performance.
Especially, the mAP for CNN-stream is even 1.5 higher than
the YOLOF reported in Table 1, because we align the train-

Model APCNN APTrans FLOPs

DSE-w/o fusion 39.2 42.0 106G
DSE-interleaved 39.8 42.5 115G
DSE-random1 37.6 38.6 94G
DSE-random2 38.7 39.9 120G
DSE-searched1 41.3 43.4 94G
DSE-searched2 42.1 44.0 120G

Table 4: Evaluation results on COCO 2017 validation set
for ablation study of NAS-based DSE. DSE-interleaved
means fusing features of CNN-stream and Transformer-
stream interchangeably, and DSE-random presents a ran-
dom sampled architecture.

Model AP

DDD-w/o mask CNN-dec 41.3
DDD-w/o mask Trans-dec 43.4
DDD-w/o mask merge 43.8
DDD-with mask 44.7
DDD-with mask + joint-training 45.2

Table 5: Evaluation results on COCO 2017 validation
set. DDD-w/o mask merge represents directly merging the
results from CNN- and Transformer-decoders and doing
NMS.

ing strategy of CNN-branch with the Transformer-branch.
Compared with DSE-w/o fusion, DSE-search1 achieves

+2.1 and +1.4 improvements for CNN- and Transformer
streams respectively with 12G FLOPs saving. However,
we find that a simple feature interaction mechanism, such
as interleaved fusion or a random sampled architecture ei-
ther brings marginal improvement or even hurts the perfor-
mance. With our one-shot based search method, we can
effortlessly obtain a series of DSEs with different FLOPs.
Thus, we can obtain a stronger DSE-search2 under 120G
FLOPs with even higher accuracy 42.1 and 44.0.

Analysis of Dynamic Dual-Decoder. We mainly study
the impact of selective mask in dynamic Dual-Decoder. The
experiment is carried out with previously discussed DSE-
search1 module, obtaining the mAP of 41.3 and 43.4 for
single CNN-decoder and Transformer-decoder correspond-
ingly, as shown from the first two rows of Table 5. And there
is a successive improvement +1.3 and +1.8 compared with
the accuracy from the Transformer-decoder, by adding the
selective mask and iterative joint-training approach. Hence,
we can conclude that the mask makes the strength of CNN
and Transformer decoder complementary, and iterative joint
training further pushes CNN and Transformer decoder to
concentrate more on their advantages.

Based on above analysis, we visualize the selective mask
in Figure 5. These masks show the dynamic inference prop-
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Figure 5: The visualization of selective masks. The color in blue represents that Transformer-decoder is selected to predict the
objects in these regions and anchors of CNN-decoder at these positions are suppressed. And the red means the Transformer-
decoder is inhibited and the CNN-decoder is used. The lighter blue or red color indicates that CNN- and Transformer-decoder
achieve comparable performance for those objects, and the selective mask does not show obvious preference in these areas.

erty of our DDD module. We find that the predicted mask
shows an interesting pattern. From this figure, we can see
that when recognizing objects with rich texture, obvious
color or fixed shapes, the mask tends to choose CNN de-
coder and when the object is camouflaged or inflated over
the entire image, it trusts more on the Transformer decoder.
This behavior is surprisingly brain-like and shows a strong
evidence for Hint3 as discussed in Section 3.

7. Conclusion
This paper presents a dynamic dual-process object de-

tection framework that combines CNN- and Transformer-
based detectors in a cooperative manner, which consists of
three parts: a shared backbone, an efficient dual-stream en-
coder, and a dynamic dual-decoder. Each part of the integra-
tion between the two mainstream detectors has been elabo-
rately designed, taking into account both biological plausi-
bility and cost efficiency. Experimental results demonstrate
that our method is flexible, effective, and capable of sta-
bly improving the accuracy of the source model, breaking
through the performance bottleneck of a single-type detec-
tor. We hope that our work will inspire further exploration
into next-generation object detection frameworks.
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