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Abstract

Advanced 3D object detection methods usually rely on
large-scale, elaborately labeled datasets to achieve good
performance. However, labeling the bounding boxes for
the 3D objects is difficult and expensive. Although semi-
supervised (SS3D) and weakly-supervised 3D object detec-
tion (WS3D) methods can effectively reduce the annotation
cost, they suffer from two limitations: 1) their performance
is far inferior to the fully-supervised counterparts; 2) they
are difficult to adapt to different detectors or scenes (e.g,
indoor or outdoor). In this paper, we study weakly semi-
supervised 3D object detection (WSS3D) with point anno-
tations, where the dataset comprises a small number of fully
labeled and massive weakly labeled data with a single point
annotated for each 3D object. To fully exploit the point an-
notations, we employ the plain and non-hierarchical vision
transformer to form a point-to-box converter, termed ViT-
WSS3D. By modeling global interactions between LiDAR
points and corresponding weak labels, our ViT-WSS3D can
generate high-quality pseudo-bounding boxes, which are
then used to train any 3D detectors without exhaustive tun-
ing. Extensive experiments on indoor and outdoor datasets
(SUN RGBD and KITTI) show the effectiveness of our
method. In particular, when only using 10% fully labeled
and the rest as point labeled data, our ViT-WSS3D can en-
able most detectors to achieve similar performance with the
oracle model using 100% fully labeled data.

1. Introduction

3D object detection is one of the fundamental tasks in
computer vision and has a wide range of real-world applica-
tions, such as self-driving and navigation. It aims to regress
the 3D bounding boxes and corresponding category labels
of objects for a given scene. Due to the inherent limitation
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Figure 1. (a) Different types of supervision for 3D object detection.
(b) Various annotation formats. The cost of point-level annotations
is significantly lower than the box-level annotation. (c) The com-
parative performance of using the fully-supervised and our weakly
semi-supervised settings.

of LiDAR sensors, point clouds are usually disordered and
sparse, making 3D object detection a challenging task.

To accurately locate the objects, elaborately annotated
large-scale data is inevitable for the existing methods, while
labeling 3D bounding boxes is tedious and time-consuming.
Recently, some methods [16, 35, 27, 1] have been pro-
posed to reduce the expensive cost of labeling. There are
two typical settings: semi-supervised 3D object detection
(SS3D) [35, 47], where only a small amount of precisely
annotated scenes are available; weakly-supervised 3D ob-
ject detection (WS3D) [27, 37], where coarse annotations
(e.g., labeling a point for an object) are used to train the 3D
detector instead of precisely annotated 3D bounding boxes.

Although SS3D and WS3D methods can effectively re-
duce annotation costs, they still have obvious limitations.
On the one hand, their performance is still far inferior
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to their fully-supervised counterparts. In specific, the
SS3D methods [35, 47] usually transfer knowledge from
labeled data to unlabeled data in a teacher-student frame-
work. However, knowledge transfer may be ineffective
when the domain gap between labeled and unlabeled data
is vast (e.g., labeled and unlabeled data belong to sunny
and rain, respectively). For the WS3D methods [27, 37],
the supervision information provided by the weak annota-
tion is hard to reflect characters (e.g., the geometric struc-
ture) of 3D objects, leading to poor performance. On the
other hand, current SS3D and WS3D methods are usu-
ally designed for specific frameworks or scenes (e.g., in-
door or outdoor), which are hard to transform into other
frameworks or scenes. For example, a representative semi-
supervised method 3DIoUMatch [35], initially designed for
PVRCNN [29], can bring a 4.6% improvement compared
with the supervised counterpart under 2% full label setting.
However, we empirically find that it can not work well in
PointRCNN [31], with only 1.5% improvement achieved.

Considering these issues, training 3D object detec-
tors with considerably low annotation cost by a gen-
eral paradigm while achieving comparable performance
with the fully-supervised counterpart is worth exploring.
To achieve this goal, a cheap yet effective annotation
format is needed. Among various weak formats (e.g.,
point-level [37], scene-level [27]), point-level annotation
is simple to annotate, convenient to store and use, and
localization-aware, which provides a stronger prior of ob-
ject location. According to the method in [37], a box an-
notation takes 110 seconds1, while a point annotation only
takes 5 seconds, as shown in Fig. 1 (b).

Nevertheless, only adopting point-level annotations is
not enough. A natural way to achieve a good trade-off
between detection performance and annotation costs is to
combine a small number of fully annotated data, where we
treat such a setting as the weakly semi-supervised paradigm.
Recently, some methods [3, 44, 8] have demonstrated the
potential of weakly semi-supervised paradigm in 2D object
detection. These methods help students obtain favorable re-
sults and save tremendous resource consumption. Regard-
ing 3D object detection, there is no doubt that replacing 3D
bounding boxes with point labels in 3D point clouds is nec-
essary since annotating 3D objects is more time-consuming
and labor-intensive than 2D objects. Whereas, how to adopt
weakly semi-supervised learning with points to 3D scenes,
especially point cloud, has not been explored yet.

In this paper, we aim to explore the weakly semi-
supervised 3D object detection (WSS3D) with points, as
shown in Fig. 1 (a). To fully utilize the limited box-level
annotations and abundant points, we propose a simple yet

1Note that some modern softwares [50] may improve labeling process-
ing, but it also accelerates point labeling processing, and the cost gap be-
tween full and weak labels still remains.

effective WSS3D pipeline: 1) Train a point-to-box con-
verter with a small number of fully-labeled data. 2) The
trained converter transforms massive point annotations into
pseudo-bounding boxes. 3) Finally, train any 3D object
detector with fully-labeled and pseudo-labeled scenes in a
fully-supervised setting.

The core of such a pipeline is to build a robust point-
to-box converter. Recently, vision transformers [4, 38]
have shown great potential in feature interaction. Inspired
by YOLOS [7] that directly encode the image token as
a sequence for object detection, we propose a simple vi-
sion transformer-based converter for WSS3D, termed ViT-
WSS3D. Specifically, the ViT-WSS3D adopts the plain
and non-hierarchical ViT [5] to extract features from point
clouds and point annotations. Despite the simple de-
signs, ViT-WSS3D can generate high-quality pseudo boxes
through point annotations.

The benefits of ViT-WSS3D are from three aspects: 1)
Thanks to vision transformers’ strong feature representation
ability, our ViT-WSS3D can be extremely simple, which en-
joys a plain and non-hierarchical encoder structure without
specific domain knowledge for design. 2) The simple and
compact ViT-style architecture makes it easy to scale up
the model and take advantage of pre-trained technologies
(e.g., MAE [11]) proposed in advances of 2D vision. 3) Our
method is out-of-the-box, which can be adapted to any 3D
object detector without exhaustive tuning and modification.

To demonstrate the effectiveness of our method, we con-
duct extensive experiments on outdoor KITTI [9] and in-
door SUN RGB-D [32] datasets. In particular, with only
10% fully-annotated scenes on both datasets, our ViT-
WSS3D can help existing detectors perform closely com-
pared to the 100% fully-supervised counterparts.

2. Related work

2.1. Fully-supervised 3D object detection

Existing 3D object detectors can be roughly categorized
into three branches by feature representation: voxel/pillar-
based [49, 39, 15, 41, 14, 10], point-based [31, 25, 40, 45,
6], and hybrid-style [29, 30].

For voxel and pillar-based methods, VoxelNet [49] di-
vides a point cloud into equally spaced 3D voxels and uses
convolution to extract features. Due to the high expense
of 3D convolution, SECOND [39] and PointPillars [15] in-
troduce the sparse convolution and pillars representation,
respectively, to increase the speed. CenterPoint [41] flat-
tens representation into an overhead map view and uses an
image-based keypoint detector. To better use the voxel fea-
ture, the density-aware RoI grid pooling [14] and voxel-
based set attention [10] are proposed. For point-based meth-
ods, PointRCNN [31] generates proposals via segmentation
before refining, and VoteNet [25] handles the sparse nature
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of point cloud with deep hough voting. To reduce the in-
formation loss brought by downsampling, various sampling
methods [40, 45] are introduced, and some detectors [6]
get rid of downsampling. For hybrid-style methods, PV-
RCNN [29, 30] series integrates 3D CNN and point-based
set abstraction to learn more discriminative features.

Although these methods have achieved remarkable per-
formance, their success is built on large-scale, elaborately
labeled datasets, which is tedious and time-consuming to
fulfill such requirements.

2.2. Semi/Weakly-supervised 3D object detection

Two branches of methods have been proposed to reduce
the heavy burden of labeling: semi-supervised [47, 35, 16,
13] and weakly-supervised [22, 27, 26, 37] methods.

Semi-supervised methods usually leverage the teacher-
student learning framework. Specifically, SESS [47] de-
signs a thorough perturbation scheme and consistency
losses to enhance the consistency between predicted pro-
posals. 3DIoUMatch [35] introduces a 3D IoU-based filter-
ing mechanism to filter noisy pseudo-labels. DDS3D [16]
proposes a dynamic threshold strategy used to choose high-
quality pseudo-labels. Different from the traditional semi-
supervised setting, Liu et al. [19] propose the first work to
explore the sparsely annotated strategy for the 3D object de-
tection task, which only needs to annotate some instances
for each scene.

Weakly-supervised methods attempt to recover the loss
of information brought by weak labels via various means.
Specifically, Qin et al. [26] presents a cross-modal knowl-
edge distillation strategy to help students predict results.
Ren et al. [27] proposes self and cross-task consistency
losses with no access to spatial labels at training time. Xu
et al. [37] makes use of synthetic 3D shapes to complement
and refine the real labels. Meng et al. [22] propose generat-
ing cylindrical object proposals under weak supervision and
refining them using a few well-labeled instances.

Although these methods reduce the heavy burden of
labeling, their performance is inferior to their fully-
supervised counterparts, and they are usually designed for
specific frameworks or scenes (e.g., outdoor and indoor).
Unlike them, our method can generate more precise pseudo
labels to guide students efficiently without making assump-
tions about students and scenes, which is easy to migrate.

2.3. Vision transformer

The transformer [34] dominates many computer vision
tasks [2, 48, 38, 20, 17], attributed to its strong feature ex-
traction ability. 3D point clouds are unordered data and sets,
which makes it feasible to utilize transformer [34] to pro-
cess point clouds. Recently, many transformer-based net-
works have been proposed for 3D object classification [46],
point cloud pre-training [42, 24] and 3D object detec-

tion [23, 21, 36, 43]. Different from them, we adopt a plain
vision transformer to address the weakly semi-supervised
3D object detection.

3. Our method
3.1. Preliminaries

Problem definition. In this work, we explore weakly
semi-supervised 3D object detection, where the datasets
consist of a small set of fully-labeled Lidar scenes Φf =

{(Ii, ϕi
f )}

Nf

i=1 and massive weak annotated (i.e., point an-

notation) Lidar scenes Φp = {(Ii, ϕi
p)}

Np

i=1. Specifically,
Nf and Np represent the number of fully-labeled scenes
and point-labeled scenes. Ii indicates point clouds of the
fully-labeled or point-labeled scenes. The annotations ϕi

f of
fully-labeled scenes mean the 3D bounding boxes (center,
dimension, and orientation) and corresponding class labels,
and the ϕi

p represents the point annotation with the class la-
bel (i.e., [pxi , p

y
i , p

z
i , ci]) of point-labeled scenes. Note that

for point-labeled Lidar scenes, due to the original datasets
not providing point-level annotations, we add random dis-
turbances R to the gravities of the 3D bounding boxes to
construct ϕp.

3.2. Overall framework

The overview of our method is shown in Fig. 2. The
overall process contains three stages:

• Train a point-to-box converter as the teacher model on
a small amount of fully-annotated bounding boxes ϕf .
At this stage, we use the center point with random dis-
turbance R as the simulated point annotations, forcing
the converter to recover boxes from noisy points, as
shown in Fig. 2 (a).

• Reason pseudo-3D bounding boxes ϕ′
p from massive

point annotations ϕp using the trained teacher, as
shown in Fig. 2 (b). Note that no 3D bounding box
is available at this stage, and the trained teacher has to
reconstruct the full 3D bounding boxes with only ac-
cess to point annotations.

• Train any student detectors on fully-annotated bound-
ing boxes ϕf together with pseudo boxes ϕ′

p in a fully
supervised manner (Fig. 2 (c)). Note that since the
whole paradigm makes no assumption about students,
the teacher is entirely independent of students, and
they are trained separately.

In order to better leverage the point annotations, one ba-
sic idea of our method is to utilize the point annotations in
the forward pass directly and interact with the point cloud
features through a plain and non-hierarchical vision trans-
former [5]. The simple and compact converter contains
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(a) Training a point-to-box converter (b) Transforming the point annotations 
to the pseudo GT boxes
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…
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Predicted boxesGT boxes
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data to train a student
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Figure 2. The overall framework of our method. (a) We first train a point-to-box converter, which encodes the point annotations and
makes global interactions. (b) We then reason the pseudo boxes from the weak point annotations through the trained converter. (c) Finally,
we combine the fully labeled boxes and pseudo boxes to train any student in a fully supervised manner, despite the architecture and
representation type of students.

a scene encoder, an annotation encoder, a transformer en-
coder, and a simple detection head. In the following sec-
tions, we will introduce our designs for each module and
the flexibility of our method in detail.

3.3. Point tokenization

The purpose of tokenization is to embed point cloud and
point annotations of a given scene into a meaningful token
sequence. The inputs are scene points I ∈ RS×(3+C) and
annotation points ϕp ∈ RM×3, where I is transformed into
scene tokens Zs ∈ RN×D through a scene encoder and ϕp

is embedded into annotation tokens Za ∈ RM×D through
an annotation encoder, followed by a simple integration to
form a token sequence Z0 ∈ R(N+M)×D.

Scene encoder is used to embed the unordered scene
points I into informative tokens named scene tokens Zs that
contain the comprehensive features of a scene. We group
scene points into N local patches and map them to the fea-
ture space. Specifically, we first use the farthest point sam-

pling (FPS) algorithm to select N key points from original
scene points I , then use the kNN algorithm to select k near-
est neighbors for each key point to form N patches. To ag-
gregate the local information, points within each local patch
are normalized by subtracting the key point of the patch to
get relative coordinates. We finally map the unbiased lo-
cal patches to feature space using mini-PointNet, obtaining
scene tokens Zs ∈ RN×D.

Annotation encoder aims to encode the point annota-
tions ϕp to useful tokens named annotation tokens Za that
carry the vital information of point annotations. Because the
point annotations contain rich priors about object locations,
we want to leverage information as much as possible and
not disturb them. Thus we do not group them or make them
normalized. Instead, we utilize the naive mini-PointNet as
the encoder to embed point annotations into annotation to-
kens Za ∈ RM×D. Note that we pad point annotations with
zeros to the same M for batch processing since the number
of objects varies across scenes.
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After the scene and annotation encoding, we need to in-
tegrate the outputs into a meaningful token sequence for the
subsequent process of the transformer.

Z0 =
[
Z1
s , ..., Z

N
s ;Z1

a , ..., Z
M
a

]
+ Ep. (1)

As the Eq. 1 shows, we first stack annotation tokens and
scene tokens, then obtain position embedding Ep by ap-
plying a multilayer perceptron (MLP) on the center point
of each token and add them to get the token sequence
Z0 ∈ R(N+M)×D. This simple operation preserves all in-
formation in the scene and annotation tokens, which is help-
ful for feature extraction.

3.4. Transformer encoder

Since we want annotation tokens Za interact with scene
tokens Zs without barriers and treat them equally, we use
the plain and non-hierarchical ViT [5] to extract features
from the input token sequence Z0. Each transformer en-
coder layer contains a multi-head attention (MSA), MLP,
and two layer normalizations (LN), with residual bypasses
inserted after the MSA and MLP, formally written as:

Z ′
l = MSA(LN(Zl−1)) + Zl−1, (2)

Zl = MLP(LN(Z ′
l)) + Z ′

l , (3)

where Zl is the output tokens of l-th encoder layer. After the
last layer of the encoder, we only output tokens originally
from annotation tokens, whose states serve as the feature
representations of objects, formally described as:

Zd =
[
ZN+1
L , ..., ZN+M

L

]
(4)

where L is the depth of the transformer encoder, Zi
L is the

i-th tokens of the output from the last encoder layer, and Zd

are the detection tokens used for predicting final results.
The plain and non-hierarchical transformer encoder

treats scene tokens and annotation tokens equally, enables
the direct mutual interaction between them without addi-
tional components (e.g., cross-attention), and assists im-
plicit context (e.g., scene layout) representation learning
through self-interaction within each type of token. Besides,
such a design makes the model easier to scale up. One can
tune the model complexity by simply changing the depth
of the transformer encoder or modifying the feature dimen-
sions. Moreover, our method can also use the prevalent 2D
ViT pre-training paradigm to boost performance without ex-
tra cost. In short, our model can evolve with the advance of
the 2D vision transformers.

3.5. Detection heads

Thanks to our straightforward design, the detection
heads do not need a complicated network architecture

and hand-crafted label assignment. Due to the efficiency
brought by point annotations and transformer encoder, it is
sufficient to use MLPs as detection heads in our method.
More specifically, we divide a 3D box into three parts: cen-
ter, dimension, and orientation, and use an MLP over Zd to
predict each part. For label assignment, since there is lit-
tle overlap between 3D objects, we assign a ground truth to
the prediction corresponding to its center directly to get rid
of bipartite matching, which is elegant and practical. We
adopt the widely used smooth L1 loss for regression and
focal loss [18] for classification to train the teacher.

Table 1. The detailed settings of the model architecture.

Name ViT-S ViT-B

Transformer encoder
Depth 12 12

# Heads 6 6
Feature dims 384 768

Detection head
# MLPs 3 3

MLP dims 384 768

4. Experiments
4.1. Datasets and metrics

KITTI [9] is one of the most prevalent outdoor datasets
centered on autonomous driving-related tasks, which con-
tains 7481 training samples and 7518 testing samples. We
divide the training samples into a train split (3712 samples)
and a validation split (3769 samples). We use the mAP with
40 recall points and 3D IoU threshold of 0.7(mAP40@0.7),
0.5(mAP40@0.5) and 0.5(mAP40@0.5) for Car, Pedestrian
and Cyclist categories, respectively.

SUN RGB-D [32] is an indoor dataset to advance the
state-of-the-arts in all major scene understanding tasks,
which is captured by four different sensors and contains
10,335 RGB-D images. The whole dataset is split into 5285
samples for training and 5050 samples for validation. We
use the mAP with 3D IoU threshold 0.25 (mAP@0.25) as
the metrics for 3D detectors.

4.2. Implementation details

We adopt ViT-Small (ViT-S) and ViT-Base (ViT-B [5]) as
the default transformer encoders, the detailed settings of the
model architecture shown in Tab. 1. There are minor differ-
ences between the ViT-S and ViT-B in our method. We only
need to change the parameters to get a much more powerful
model. This convenience is due to our simple design.

We use ViT-S when there are few fully-labeled scenes
(2%, 5% for KITTI and 5% for SUN RGB-D) otherwise
ViT-B, since the larger transformer encoder is more power-
ful and more likely to overfit. For the scene encoder, we set
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Table 2. The Comparison results of students with and without pseudo labels under different data settings on KITTI val split. We report the
mAP40@0.7, mAP40@0.5 and mAP40@0.5 for Car, Pedestrian (Ped.) and Cyclist (Cyc.) categories, respectively.

Students Settings
Car Ped. Cyc. Overall

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

PointPillars [15] 100% Full 87.1 76.4 73.3 52.6 46.0 41.5 81.0 62.9 58.8 73.6 61.8 57.9
PointPillars [15] 2% Full 51.9 42.4 38.4 16.1 14.1 12.5 28.1 16.8 16.3 32.1 24.4 22.4
PointPillars [15] 2% Full + 98% Weak 75.5 65.4 58.9 50.0 44.1 39.6 53.3 35.4 33.0 59.7 48.3 43.8
PointPillars [15] 5% Full 76.1 64.3 58.9 21.3 18.1 16.4 47.3 28.3 26.6 42.4 33.4 30.7
PointPillars [15] 5% Full + 95% Weak 86.1 74.7 70.2 51.2 45.8 41.1 81.2 55.4 51.9 72.8 58.6 54.4
PointPillars [15] 10% Full 81.8 69.0 64.7 33.7 29.2 26.1 62.8 38.7 35.5 59.9 45.7 42.1
PointPillars [15] 10% Full + 90% Weak 87.1 75.7 71.1 52.4 47.4 42.9 81.4 57.9 54.2 73.6 60.4 56.1

SECOND [39] 100% Full 88.9 79.5 76.1 62.5 54.6 48.6 80.6 64.2 60.6 77.3 66.1 61.7
SECOND [39] 2% Full 85.1 69.2 62.0 38.4 33.7 28.8 73.8 49.5 47.6 65.8 50.8 46.1
SECOND [39] 2% Full + 98% Weak 86.6 70.1 62.3 55.9 49.0 43.0 74.5 51.2 48.9 72.3 56.8 51.4
SECOND [39] 5% Full 86.9 75.3 70.7 53.8 39.8 34.2 79.8 53.1 50.1 73.5 56.1 51.7
SECOND [39] 5% Full + 95% Weak 87.9 75.9 72.9 57.0 51.1 45.5 81.3 58.3 54.8 75.4 61.8 57.7
SECOND [39] 10% Full 87.1 76.2 71.9 53.0 45.9 39.6 82.1 58.1 55.1 74.1 60.1 55.5
SECOND [39] 10% Full + 90% Weak 87.1 77.6 72.9 60.6 53.9 47.6 81.6 60.6 56.4 76.4 64.0 59.0

PointRCNN [31] 100% Full 91.7 80.2 79.6 65.1 59.8 53.7 90.3 72.1 67.7 82.4 70.7 67.0
PointRCNN [31] 2% Full 83.9 70.9 67.7 37.8 34.2 29.1 73.3 51.4 47.6 65.0 52.2 48.1
PointRCNN [31] 2% Full + 98% Weak 83.5 72.7 70.1 57.1 51.9 46.8 72.8 55.0 51.6 73.0 59.8 56.1
PointRCNN [31] 5% Full 87.2 76.1 69.5 45.8 39.9 35.6 77.2 51.5 48.9 70.2 55.8 51.3
PointRCNN [31] 5% Full + 95% Weak 90.6 79.2 76.9 65.6 59.4 53.6 89.7 63.2 59.4 82.0 67.2 63.3
PointRCNN [31] 10% Full 88.8 78.8 74.6 54.2 47.6 40.7 88.8 62.7 59.1 77.2 63.1 58.2
PointRCNN [31] 10% Full + 90% Weak 90.2 79.4 76.8 65.5 61.0 54.5 92.4 68.7 65.0 82.2 69.7 65.5

PVRCNN [29] 100% Full 91.9 83.0 82.4 64.9 57.8 52.9 87.8 70.6 66.3 81.5 70.4 67.2
PVRCNN [29] 2% Full 90.4 76.3 70.6 44.4 39.5 34.8 61.1 38.8 36.6 65.3 51.5 47.3
PVRCNN [29] 2% Full + 98% Weak 84.5 75.8 71.1 61.0 53.4 48.2 67.4 49.7 46.2 71.0 59.6 55.2
PVRCNN [29] 5% Full 91.9 80.1 77.2 55.6 48.4 41.5 75.1 45.7 43.1 74.2 58.1 53.9
PVRCNN [29] 5% Full + 95% Weak 91.3 82.2 79.5 59.9 51.6 47.2 84.3 56.9 53.1 78.5 63.6 59.9
PVRCNN [29] 10% Full 91.2 79.9 77.2 58.2 49.9 44.2 89.2 59.9 56.1 79.5 63.2 59.2
PVRCNN [29] 10% Full + 90% Weak 91.0 82.2 79.8 64.6 58.0 53.4 91.4 67.4 63.1 82.3 69.2 65.4

Table 3. The comparison results of 3DIoUMatch and our method
on KITTI val split. We take the PVRCNN as the student and report
mAP40 under the moderate difficulty.

Method Setting Car Ped. Cyc. Overall

PVRCNN [29] 100% Full 83.0 57.8 70.6 70.4

PVRCNN [29] 2% Full 76.3 39.5 38.8 51.5
3DIoUMatch [35] 2% Semi 76.9 46.0 45.4 56.1

Ours 2% Full + 98% Weak 75.8 53.4 49.7 59.6

PVRCNN [29] 5% Full 80.1 48.4 45.7 58.1
3DIoUMatch [35] 5% Semi 81.6 48.5 51.7 60.6

Ours 5% Full + 95% Weak 82.2 51.6 56.9 63.6

PVRCNN [29] 10% Full 79.9 49.9 59.9 63.2
3DIoUMatch [35] 10% Semi 82.0 55.0 64.9 67.3

Ours 10% Full + 90% Weak 82.2 58.0 67.4 69.2

the number of nearest neighbors k = 32 and the number
of scene tokens N = 2048 by default. For the annotation
encoder, we set M = 100 for KITTI and M = 300 for

SUN RGB-D. We set the random disturbance R = 0.1 and
R = 0.0 for KITTI and SUN RGB-D respectively. When
training the teacher, we use horizontal random flip, global
rotate scale transform, point shuffle, and GT-Sampling [39]
data augmentations on KITTI. Note that we re-generate the
database of GT-Sampling for every training set to avoid
the labeled data leaking risks. On SUN RGB-D, we only
use horizontal random flip and global rotate scale trans-
form augmentations. We train our teacher using 2 NVIDIA
GeForce 3090 GPUs, and we need about 8 hours on KITTI
and 4 hours on SUN RGB-D to train the teacher.

To perform semi-weakly supervised learning, we first
use a fixed stride to uniformly sample fully-labeled scenes
from the original dataset, and then prepare weakly-
annotated scenes as Sec. 3.1 describes.

4.3. Quantitative results

KITTI. To measure the effectiveness of our method,
we choose three ratio levels of fully-labeled scenes (10%,
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Table 4. The Comparison results of students with and without pseudo labels under different data settings on SUN RGB-D val split. We
report mAP@0.25 for all categories.

Students Settings Bed Table Sofa Chair Toilet Desk Dresser Nightstand Bookshelf Bathtub Overall

VoteNet [25] 100% Full 84.5 49.6 68.3 78.0 90.2 25.3 29.2 62.3 35.4 75.1 59.8
VoteNet [25] 5% Full 74.0 32.6 43.6 59.6 66.3 9.1 2.0 38.0 2.2 37.8 36.5
VoteNet [25] 5% Full + 95% Weak 82.8 42.7 59.6 73.8 71.5 22.0 25.0 57.7 12.2 76.4 52.4
VoteNet [25] 10% Full 77.1 35.4 48.2 63.0 73.5 9.3 7.4 45.0 3.1 45.4 40.7
VoteNet [25] 10% Full + 90% Weak 84.6 44.6 63.3 74.4 88.1 22.2 26.6 63.4 21.3 81.7 57.0
VoteNet [25] 20% Full 80.0 43.2 57.9 70.1 78.7 14.6 13.0 50.0 12.7 53.2 47.4
VoteNet [25] 20% Full + 80% Weak 85.9 48.8 65.1 73.2 89.5 27.2 26.9 63.7 29.4 78.0 58.8

FCAF3D [28] 100% Full 87.6 53.9 70.0 81.6 91.9 35.6 38.4 70.1 34.9 76.1 64.0
FCAF3D [28] 5% Full 78.0 41.8 50.7 67.6 71.0 13.3 9.1 44.8 1.0 44.4 42.2
FCAF3D [28] 5% Full + 95% Weak 85.2 45.1 61.4 79.3 84.0 29.3 30.8 62.3 21.3 77.0 57.6
FCAF3D [28] 10% Full 79.3 42.8 56.3 72.0 81.0 17.8 18.0 53.7 15.4 54.5 49.1
FCAF3D [28] 10% Full + 90% Weak 87.0 48.5 66.8 80.4 89.5 32.1 31.5 69.2 26.5 77.0 60.8
FCAF3D [28] 20% Full 82.8 45.6 62.5 74.6 83.6 25.8 25.2 61.2 23.1 70.7 55.5
FCAF3D [28] 20% Full + 80% Weak 87.2 49.2 67.0 80.4 91.3 32.8 34.7 67.8 27.6 72.2 61.0

Table 5. The comparison results of 3DIoUMatch and our method
on SUN RGB-D val split. We take the VoteNet as the student and
report mAP@0.25.

Method Setting Overall.

VoteNet [25] 100% Full 59.8

VoteNet [25] 5% Full 36.5
3DIoUMatch [35] 5% Semi 40.0

Ours 5% Full + 95% Weak 52.4

VoteNet [25] 10% Full 40.7
3DIoUMatch [35] 10% Semi 45.0

Ours 10% Full + 90% Weak 57.0

VoteNet [25] 20% Full 47.4
3DIoUMatch [35] 20% Semi 48.8

Ours 20% Full + 80% Weak 58.8

Table 6. Ablation study of scene tokens number N on KITTI val
split. We report mAP40@0.7, mAP40@0.5, and mAP40@0.5 for
Car, Pedestrian and Cyclist under the moderate difficulty.

Scene Token Num N Student Car Ped. Cyc. Overall

1024
PointPillars [15] 72.8 44.1 43.7 53.5
PointRCNN [31] 74.9 53.4 57.3 61.9

2048
PointPillars [15] 74.7 45.8 55.4 58.6
PointRCNN [31] 79.2 59.4 63.2 67.2

3072
PointPillars [15] 74.8 47.1 56.2 59.4
PointRCNN [31] 79.4 59.5 63.8 67.6

5% and 2%) to evaluate the performance gain of students
brought by our method. We select four typical 3D detec-
tors as students on KITTI that utilize different represen-
tations: pillar-based PointPillars [15], voxel-based SEC-
OND [39], point-based PointRCNN [31] and hybrid-style
PVRCNN [29].

As shown in Tab. 2, competing with detectors that only
trained on a small amount of fully-labeled scenes, pseudo
labels generated from our method significantly boost the
performance of students. For example, under the 2%
full data setting and moderate difficulty, our method helps
PointPillars, SECOND, PointRCNN, and PVRCNN gain
23.9%, 6.0%, 7.6% and 8.1% mAP improvements of over-
all performance, respectively. Moreover, our method deeply
closes the gap between students and their 100% full data
counterparts. Note that students under 10% full with 90%
weak setting can achieve comparable performance with
100% full baselines, demonstrating the superior quality of
pseudo labels from our method.

For each category, we find that Pedestrian and Cyclist
are much more sensitive to the ratio of labeled data than
Car, and our method works better on these two categories.
On Pedestrian and Cyclist, our method greatly benefits all
four students. Note that under the 10% full data setting,
our method helps all of these detectors achieve comparable
or even better performance than baselines trained on 100%
fully-labeled data on Pedestrian. Even on less-sensitive Car,
our method can still boost all these detectors by a noticeable
margin, especially for neat PointPillars.

Furthermore, we conduct comparison experiments be-
tween our method and 3DIoUMatch [35], a recent SOTA
semi-supervised method on KITTI. We use our split lists
to reproduce the 3DIoUmatch. As Tab. 3 shows, there
is no significant difference on Car, while our method sur-
passes 3DIoUMatch conspicuously on data-sensitive Pedes-
trian and Cyclist. These improvements come from the con-
tribution of point annotations, which brings about a consid-
erable leverage effect with only marginal extra costs, show-
ing the superiority of our method.

SUN RGB-D. To verify the generality of our method,
we conduct experiments on the indoor SUN RGB-D
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dataset. We select two typical 3D detectors as students
on this dataset: point-based VoteNet [25] and voxel-based
FCAF3D [28]. Following [35], we use three ratio levels
of fully-labeled scenes (20%, 10% and 5%) to evaluate our
method on the indoor dataset.

As shown in Tab. 4, our method can essentially improve
the performance of students. Compared to labeled-data-
only detectors under 5%, 10%, and 20% full data settings,
VoteNet gains 15.9%, 16.3%, and 11.4% improvements,
and FCAF3D gains 15.4%, 11.7%, and 5.5% improvements
on mAP, respectively. Similar to the results on KITTI, our
method dramatically narrows the gap between students and
100% full data counterparts.

For each category, our method guides students to achieve
significantly better results, especially on data-sensitive cat-
egories. For example, when there is only 5% full data avail-
able, VoteNet and FCAF3D both only achieve single-digit
performance on dresser and bookshelf, while our method
doubles their performance several times over, dramatically
improving the overall mAPs.

When competing with 3DIoUMatch, the advantage of
our approach becomes more significant on SUN RGB-D,
shown as Tab. 5. Our method outperforms it by more than
10% mAP under all settings. This further validates that us-
ing point annotations with small costs is worthwhile, and
its benefits are universal, whether on indoor or outdoor
datasets. Note that the improvement from 3DIoUMatch is
minor when there are a large amount of fully-labeled data
(e.g., 20%), while our method still boosts students signifi-
cantly, indicating the superiority of our method.

4.4. Qualitative results

We visualize the pseudo labels from different meth-
ods for an intuitive comparison, shown in Fig. 3. On
outdoor KITTI, PVRCNN† outputs many false positives
(circled in bubbles), influencing the pseudo labels’ qual-
ity of 3DIoUMatch since the latter is built on PVRCNN.
It shows similar issues on indoor SUN RGB-D, where
VoteNet† misses some objects, making pseudo labels from
3DIoUMatch differs significantly (marked with arrows)
with GTs. The visualization demonstrates the better quality
of pseudo labels from our method.

4.5. Ablation study

We conduct ablation experiments on the KITTI dataset
under the 5% data setting. We choose PointPillars and
PointRCNN as the students of our method and report
mAP@0.7, mAP@0.5, and mAP@0.5 for Car, Pedestrian,
and Cyclist under the moderate difficulty, respectively.

Effects of the number of scene tokens. To figure out the
effects of different numbers of scene tokens N , we conduct
ablation experiments, and the results are listed in Tab. 6. It
is obvious that too few scene tokens will cause a notice-

Table 7. Ablation study of random disturbance R on KITTI val
split. We report mAP40 under the moderate difficulty.

Disturbance R Student Car Ped. Cyc. Overall

0
PointPillars [15] 75.2 47.1 55.9 59.4
PointRCNN [31] 79.9 60.5 63.4 67.9

0.05
PointPillars [15] 74.8 46.9 55.8 59.2
PointRCNN [31] 79.9 59.6 63.3 67.6

0.1
PointPillars [15] 74.7 45.8 55.4 58.6
PointRCNN [31] 79.2 59.4 63.2 67.2

0.15
PointPillars [15] 74.0 45.7 55.1 58.3
PointRCNN [31] 78.5 59.3 62.7 66.8

Table 8. Ablation study of different pre-trained ViT weights on
KITTI val split. We report mAP40 under the moderate diffi-
culty. Note that MAE [11] does not provide the official pre-trained
weight for ViT-S, so we use DeiT [33] instead.

Data Teacher Pre-trained Student Car Ped. Cyc. Overall

5%
ViT-S [5] -

PointPillars [15] 72.8 45.8 51.9 56.8
PointRCNN [31] 78.4 55.3 62.7 65.5

ViT-S [5] DeiT [33]
PointPillars [15] 74.7 45.8 55.4 58.6
PointRCNN [31] 79.2 59.4 63.2 67.2

10%
ViT-B [5] DeiT [33]

PointPillars [15] 74.9 46.8 57.2 59.6
PointRCNN [31] 79.2 59.8 62.3 67.1

ViT-B [5] MAE [12]
PointPillars [15] 75.7 47.4 57.9 60.4
PointRCNN [31] 79.4 61.0 68.7 69.7

able performance drop despite what the student is. When
using N = 1024, the performance drop is up to 5.4% over-
all mAP, compared to N = 2048. It also depicts that more
scene tokens do not necessarily mean much better perfor-
mance. Using N = 3072 only brings marginal improve-
ments (e.g., 0.4% for PointRCNN) while consuming more
computing resources. Thus, N = 2048 is a sweet point that
balances the performance and resource consumption.

Effects of random disturbance. As Sec. 3.1 describes,
we add random disturbances R to the gravities of the 3D
bounding boxes to simulate the noisy point annotations. We
conduct experiments to study the effects of random distur-
bance, and results are shown in Tab. 7. The performance
of students drops when a greater disturbance is involved in
the point annotations, but the slope is slight. Concretely,
when R ≤ 0.15m, the performance drop of both students
is no more than 1.1% overall mAP, compared to R = 0m
(i.e., no disturbance) counterparts. The results show that our
method is robust and can still achieve stable and favorable
performance with noisy point annotations, further loosening
the labeling requirements restrictions.

Effects of 2D pre-training. Although 2D images and
3D point clouds are different modalities, they may share
some visual concepts. We argue that 2D pre-training can in-
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Figure 3. The visualization of pseudo labels from different methods. (a) 2% full data on KITTI. (b) 5% full data on SUN RGB-D. † means
training detectors on fully-labeled data and then use them to infer pseudo boxes. The qualitative results demonstrate the better quality of
pseudo labels from our method.

ject visual priors into our method and thus help to produce
high-quality pseudo labels. Fortunately, our elegant ViT-
style architecture makes it feasible to leverage 2D ViT pre-
training without modification. We conduct ablation studies
using different pre-trained weights. Note that we use ViT-
S for the 5% setting and ViT-B for the 10% setting since
the larger transformer encoder is more powerful and more
likely to overfit. In Tab. 8, it shows that using 2D ViT
pre-trained weights brings significant improvements. Under
the 5% full data setting with ViT-S, pre-trained DeiT [33]
weight helps PointPillars and PointRCNN gain consider-
able performance. We can also find that using better pre-
trained weight means better student performance, especially
on categories with fewer data. Under the 10% full data set-
ting with ViT-B, using pre-trained MAE [12] weight is way
better than using DeiT weight for PointRCNN on Cyclist,
outperforming by 6.4% mAP. The results indicate that our
method has the potential to benefit from the advancement
of 2D ViT (e.g., 2D ViT pre-training), which brings sus-
tainability to our approach.

4.6. Limitation

The main limitations are from two aspects: 1) our
method can not work well in the few shot scenes, e.g., only
0.5% full labeled data on KITTI (about 18 frames), since
the transformer usually requires a certain amount of data
to learn. 2) Due to directly transforming the original point
cloud into a series of tokens, it may be inefficient to pro-
cess the large-scale point cloud scenes. In the future, we
would like to explore the few-shot WSS3D task and design
efficient point tokenization.

5. Conclusion

In this paper, we present the weakly semi-supervised
3D object detection setting (i.e., WSS3D), which supposes
the datasets consist of a small number of fully labeled and
massive point-labeled data. To fully leverage the point an-
notations, we propose a simple yet effective transformer
baseline named ViT-WSS3D. It employs a plain and non-
hierarchical vision transformer to construct global interac-
tions between scene point clouds and point annotations. As
a result, high-quality pseudo-bounding boxes are generated,
which can be fed into any 3D detectors without extra modi-
fication. Extensive experiments on the indoor SUN RGB-D
and outdoor KITTI datasets demonstrate the effectiveness
and superiority of the proposed ViT-WSS3D.
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