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Figure 1: Exemplar 3D face reconstruction results of our method named TokenFace (first row: inputs, second row:
results). Our approach achieves faithful reconstruction results for challenging cases, including varying sizes, ages, poses, races,
and partial occlusions. Additionally, our method enables accurate transferring a target expression to the persons (third row).

Abstract

Accurately reconstructing 3D faces from monocular im-
ages and videos is crucial for various applications, such as
digital avatar creation. However, the current deep learning-
based methods face significant challenges in achieving ac-
curate reconstruction with disentangled facial parameters
and ensuring temporal stability in single-frame methods for
3D face tracking on video data. In this paper, we propose
TokenFace, a transformer-based monocular 3D face recon-
struction model. TokenFace uses separate tokens for differ-
ent facial components to capture information about different
facial parameters and employs temporal transformers to
capture temporal information from video data. This design
can naturally disentangle different facial components and is
flexible to both 2D and 3D training data. Trained on hybrid
2D and 3D data, our model shows its power in accurately re-
constructing faces from images and producing stable results
for video data. Experimental results on popular benchmarks
NoW and Stirling demonstrate that TokenFace achieves state-
of-the-art performance, outperforming existing methods on
all metrics by a large margin.

*This work was done while Tianke Zhang was interning at IDEA.
fCorresponding authors.

1. Introduction

The analysis and reconstruction of human faces from
images are critical research topics in computer vision due
to their vast range of applications. A vital technology is
the creation of a detailed 3D model that accurately captures
both the geometry and appearance of the face from visual
data. However, creating such a model is challenging when
working with monocular input where there is no access to
3D information from multiple views or sensors.

In this work, we focus on the task of 3D face reconstruc-
tion using a 3D deformable face model where the problem
can be expressed as estimating the parameters of the 3D face
model. While optimization-based approaches have been pro-
posed to solve this model-fitting problem, recent advances
in deep learning have facilitated that neural network-based
methods can predict these parameters from training data.
However, unlike 2D tasks that are easy for annotation, the
lack of 3D ground truth data makes 3D face reconstruction
challenging. As a result, many existing methods [17, 14, 50]
only supervise the 2D rendering results during training,
leading to sub-optimal performance in 3D space. For in-
stance, DECA [17] and Deep3dFaceRecon [14] leverage
self-supervised training on 2D images, while MICA [50]
uses 2D-3D data pairs but only reconstructs the face shape
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without expression, pose, and other information. Dense
Landmark [43], on the other hand, requires a large amount
of annotated data for training and relies on a dense landmark
for 3D face fitting.

Most of the previous deep learning-based methods use
Convolutional Neural Networks (CNNs) to regress the pa-
rameters together as one vector from the input image. How-
ever, these approaches suffer from entanglement between dif-
ferent facial parameters, hindering the ability to improve per-
formance.In addition to this, there are some methods [ 10, 4]
that have tried transformer models for face reconstruction.
However, they either rely on conditional GANs or follow
the original transformer structure, making the reconstruction
results not highly reflective of the original. In this work, we
propose TokenFace, a transformer-based 3D face reconstruc-
tion model that utilizes six tokens, including shape, expres-
sion, jaw pose, camera, texture, and lighting, to effectively
distinguish different image features and decouple various
parameters. This helps to improve the disentanglement of in-
dividual components for more accurate reconstruction. Our
model is trained with large-scale hybrid datasets consisting
of both 3D scanned data and 2D in-the-wild face images with
a multi-stage training pipeline. During the training phase,
we can flexibly train our model based on the data type, us-
ing rendered 2D images for the 2D image dataset and mesh
vertex supervision for datasets with 3D ground truth. To
capture temporal information in video datasets, we introduce
a temporal transformer between adjacent frames. Our loss
functions are designed to address specific data types and
focus on dimensions of vertices, identity, image consistency,
and other factors. Our proposed method outperforms pre-
vious methods and demonstrates excellent performance in
3D face reconstruction, as evidenced by its performance in
NoW Benchmark and Stirling Benchmark, with a minimum
of 10 % improvement in accuracy. Example results of our
method are illustrated in Fig. 1. Our model also exhibits sta-
ble performance in video reconstruction using our temporal
modeling. Our methods enable many practical applications
like facial expression transfer between different avatars as
shown in the last row in Fig. 1.

Our contribution can be summarized as follows.

* We present a framework for 3D face reconstruction
from monocular images based on transformers. Our
approach uses separate tokens to improve the disentan-
glement of individual components for more accurate
reconstruction.

* We train our network on large-scale hybrid dataset of
both 2D and 3D data containing a large variety of faces
and expressions using our training pipeline.

* Our framework can be naturally extended to 3D face
reconstruction in videos with straightforward temporal
modeling to improve temporal stability.

e Our model surpasses other methods by achieving no-

tably lower reconstruction errors on benchmarks. For
example, we achieve mean errors of 0.95 on NoW
benchmark (previous best is 1.11) and 0.95 on Stirling
benchmark (previous best is 1.16).

2. Related Work

3D Face Morphable Model. The 3D face morphable model
(BDMM) [5, 32, 6, 7, 28, 45, 3, 27] has been studied for
a long time in 3D face research field, which usually de-
fines a linear model to represent the geometric structure
and texture of a human face. Recently, more and more 3D
face datasets were proposed, which provide more identities
and expressions. These data make it possible to construct
3DMM models with better generalization ability [6] and
better expression deform-ability [41, 7, 28, 45, 3]. Also,
some 3DMM methods [27, 45, 3] also obtained higher re-
construction accuracy with the development of data cap-
turing system. Besides the increasing quality of data, many
works [41,7,45,31,1,38,27,20] try to improve the 3DMM
models from other aspects. These works [7, 45, 41] design
bi-linear or multi-linear models that decompose the iden-
tity and expression of faces. Nonlinear models have also
been used to improve the accuracy of facial deformation.
Neumann et al. [31] decomposes the captured face mesh se-
quences into sparse and localized deformation components.
Furthermore, generative adversarial networks (GAN) were
also used to build the non-linear 3DMMs [ 1, 38, 27, 20].

Monocular Face Reconstruction Based on 3DMM.
3DMM-based reconstruction methods play a crucial role in
the field of 3D reconstruction of monocular images. Along
with the proposal of the FLAME model [28], many recon-
struction methods [ 18, 49, 14, 21, 17, 50] based on FLAME
achieve promising results of monocular face reconstruction.
These methods generally follow a self-supervised or weakly
supervised training framework and the 3D face reconstruc-
tion task is reduced to a model-fitting problem with the help
of 3DMM. Among them, the early methods [34, 32, 37]
try to regress the parameters of 3DMM using the facial
landmarks. The current deep models [9, 45, 17, 3] usu-
ally predict the parameters directly from the input image.
Furthermore, to achieve a more accurate reconstruction of
facial details which are not parameterized by 3DMM, some
works [9, 23, 45, 17, 3] use a two-stage framework, which
firstly predicts a rough face mesh and then refined the facial
details through depth and displacement map.

Transformer for Face Analysis. Following the success of
transformers in natural language processing (NLP) tasks [40,
15], vision transformers [ 16, 29] have also achieved the state-
of-the-art performance in many computer vision tasks. ViT
[16] splits an image into patches and flattens the patches as
a token sequence. Zhong et al. [48] modifies ViT and shows
competitive performance on face recognition. Based on the
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Figure 2: A comparison of existing methods and ours.
Previous works typically rely on a CNN to predict a single
1D vector and segment it into different facial model param-
eters (colored boxes). Instead, we use separate tokens to
encode independent facial components and aggregate this
information with image data to obtain updated tokens, which
are then used to predict the face parameters.

large-scale pre-training and transfer ability of transformers,
FaRL [47] achieves superior performance on facial analysis
tasks including face parsing and face alignment.

3. Method
3.1. Building TokenFace

Traditional methods for 3D face reconstruction typically
rely on Convolutional Neural Networks (CNNs) to extract
facial features and recover 3D information. These methods
take a face image as input and regress a 1D vector, which
is later segmented into different facial model parameters
such as shape, expression, and pose, as shown in Fig. 2
(left). However, these approaches interleave the different
facial components from the beginning, making it difficult
to disentangle their effects and hindering the performance
in accuracy. This is because CNNs can only extract these
features from the last layer using global pooling and linear
layers. As aresult, the coupling between pose and expression
can lead to inaccurate 3D face reconstruction.

To improve the disentanglement between different facial
components in 3D face reconstruction, we propose a novel
network structure based on the Vision Transformer (ViT) ar-
chitecture [16]. Recent studies have shown that ViT’s feature
extraction ability often outperforms that of CNN networks
when trained on large-scale data. We directly replace the
ResNet50 backbone used in [17] with ViT-Base [16] and use
a global token, i.e. a vector, as the task token to predict the
facial parameters, similar to the behavior of the CNN-based
model. As shown in Table 1, changing the backbone does
improve reconstruction accuracy, but only marginally (the
test setup is the same as the ones in our ablation study whose
details are presented later in Sec. 5). Therefore, simply re-
placing the backbone is insufficient to achieve significant
improvements in results.

To adapt ViT to 3D face reconstruction task, we introduce
six tokens to represent shape, expression, jaw pose, camera
pose, texture, and lighting, respectively. These tokens are
combined with image tokens to create a comprehensive input,

Reconstruction Error
Backbone

Median Mean Std
ResNet50 [22 1.10 1.41 1.19
ViT-Base [ 16] 1.08 1.35 1.15

Table 1: Results of naively changing backbone from CNN
to ViT. We test the same training and testing scheme using
both ResNet50 and ViT-Base. The model with ViT-Base
achieves slightly better performance.

which enables greater independence between different facial
component parameters, reducing mutual influence. Fig. 2
(right) illustrates our method, while Fig. 3 shows the main
structure of our TokenFace. We first divide the input image
into patches, flatten them, and add position embeddings to
build image tokens. Then, we append the six learnable facial
component tokens to the image token and feed them into the
transformer blocks together. Specifically, the six tokens are
denoted as: 3 for shape, v for expression, 6 for jaw pose, C
for the camera’s affine matrix, « for texture, and ¢ for light.
We use six FLAME headers corresponding to our FLAME to-
kens to estimate the FLAME parameters after encoding. The
resulting output comprises 300-dimensional shape parame-
ters, 100-dimensional expression parameters, 3-dimensional
jaw pose parameters, 7-dimensional camera parameters, 50-
dimensional texture parameters, and 27-dimensional light
parameters. The camera parameters C' consist of scale (1-
dim), rotation (3-dim), and translation (3-dim). Finally, we
reconstruct the 3D face mesh based on the FLAME model
and our predicted parameters.

There are two more interesting advantages of using in-
dividual face component tokens. First, we can generate a
metrical face in 3D using shape, expression, and jaw pose
and set other tokens to zero. With additional camera pose,
texture, and lighting, the face can be projected into the 2D
image plane. This is particularly useful when training on
a large-scale hybrid dataset of both 2D and 3D data. This
hybrid dataset can contain a larger variety of faces and facial
expressions, allowing for training a better 3D face recon-
struction model. The second advantage of using separate
tokens for each facial component is the ability to create a
simple temporal modeling. This approach can be used to
build a temporal transformer on top of our TokenFace model,
which can aggregate temporal information from different
frames at token level and generate more stable results for
video prediction.

3.2. Hybrid Training Strategy

To take full advantage of publicly available 2D and 3D
datasets, we design a hybrid training strategy that enables
model learning on different types of data. Specifically, 3D
data provide precise FLAME meshes for full supervision.
Meanwhile, 2D images provide a large amount of photo-
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Figure 3: Illustration of our pipeline. We partition input image into patches, flatten them, and add position embedding
to build the image tokens. The learnable facial component tokens, including shape, expression, jaw pose, camera pose,
texture, and lighting, are appended to the image token sequence and fed to the transformer blocks together. The output facial
component tokens at the end of the transformer are converted to FLAME parameters using FLAME heads (FC layers). 3D
face mesh is recovered from the FLAME model and our predicted parameters. For 2D and 3D data, different losses are used.

metric information (e.g., texture, lighting, etc.) for self-
supervision. Our main motivation is to simultaneously learn
these two types of supervision for a better 3D face recon-
struction. Mathematically, the overall training target is to
minimize

Lo = X3p - L3p + Aap - Lap, (D

where A\3p, A2p are two hyper-parameters to balance loss
terms. Lop and L3p denote the loss for 2D data and 3D
data, respectively.

3.2.1 Full Supervision for 3D Data

For the 3D dataset, we can fully supervise the vertex of mesh

directly. Therefore, the 3D-related loss L3p is defined as
Z:SD = )\meshcmesh + )\uc['vm (2)

where L,,sp, is mesh loss, £, is vertex consistency loss.

Mesh Loss. For the data with non-neural expressions, we
reconstruct the face based on the estimated shape 3, expres-
sion 1) and jaw pose 6 parameters, while for the data only
with neural expressions, we reconstruct the face using the
shape parameters 3. The £, is defined as

Lmesh = w|vz - V;t‘la (3)

where w is the region-dependent weight of FLAME vertices.
V;t is the ground truth 3D vertices. V is extracted from face
mesh M, which is

M = FLAME(B, 4, 6). )

Vertex Consistency Loss. In order to further disentangle
the shape and expression parameters, we train our model
on the meshes with the same identity (i.e., which should
share the same shape parameter) and different expressions.
Similar to DECA [17], we adopt vertex consistency loss L.
to constrain the objectiveness. L, is defined as

M
Loc= Y w7 = Vo, (5)
MP7% = FLAME(B,, ¥, 6)),

where V27 is the generated vertices with exchanging shape
By to B,. M denotes the number of samples from the same
identity. Besides, these shapes, expressions, and jaw poses
are from different images with the same identity.

3.2.2 Self-Supervision for 2D Data

For the 2D Dataset, we need to perform self-supervised
training at the image level. The 2D-related loss Lop is
defined as

['2D = /\eyesﬁeyes + )\lips‘clips + >\sc£sc + )\id['id
+wlmk£lmk¢ + wphoto‘cphoto + £7'eg~,

(6)

which includes 7 loss terms. Here we introduce each of the
loss terms in Lop for learning on 2D data.
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Landmark Loss. We calculate the L1 distance between
the projected landmarks of the mesh and the pre-processed
ground-truth landmarks. Note that the non-visible key points
will not be involved in landmark loss.

Eyelids & Lips Loss. Inspired by DECA [17], we also intro-
duce eyes & lips loss function to add additional constraints
on the lip and eye region. It could make the model perform
better in scenes such as video. :

Leyes = Z Hkl - kj - bH(V; - ‘/3)||17
(i,5)€E

Ligs = Y ki =k — sTI(V; = Vi),
(i.d)EL

O]

where £ and L are the set of upper/lower eyelid and lips
landmarks pairs respectively. k; and k; mean 2D keypoints,
which are detected by face landmark detector *. V; and V}
denote the 3D face landmarks in the reconstructed mesh. s is
the scale parameter of the camera parameters, and sII means
projecting the 3D points to the image coordinate.

Image Photometric Loss. As a two-dimensional visual su-
pervision, we also add supervision to ensure the consistency
between the rendered image 7, and input image Z:

£photo = ||7”I . (I - IT)H17 ®)
where Z, = FLAME-Render(3,,0,C, a.) and mz is
the mask of the face.

Shape Consistency Loss. As with the 2D-3D datasets, on
2D datasets, we also need to keep the consistency of the
shape in different images of the same identity, i.e. the shape
parameter in FLAME. In contrast to the above, we define
L. with the following equation:

M

Lo =Y mzl|Z7" =T} [h, )
7Ib7% = FLAME-Render(8,, ¥, 8y, Cy, ap.1p),

where m7 is the face mask of the image Z, and Z0= is the

rendered image with exchanging shape 3 to 3,. M denotes
the number of images from the same identity.

Identity Loss. To better reconstruct the details of the input
image, we optimize our model with a perceptual loss based
on an advanced face recognition model [13]:

@I
GRS

where f(-) is the feature extractor.

Lig=1 (10)

Regularization. To avoid over-fitting of the facial parame-
ters, we add a regularization loss to the 3DMM coefficients
of the regression:

Lreg = wa - lafl* +wa - [BI° +wy - []°, (A1)

*http://dlib.net/
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Figure 4: Temporal model of our method. We obtain facial

component tokens for each frame independently and append
them together and send to an additional temporal transformer
to predict the aggregated facial component tokens for the
middle frame.

where «,(3,1 are estimated flame parameters, and
W, W3, Wy are hyper-parameters to balance the loss scale.

Pose-Aware Loss Function. In order to solve the problem
of inaccurate landmark estimation in large head pose, we
propose the Pose-Aware Loss (PAL) function to adaptively
balance the weights of Ly, and Lphoto in Eq.(6). In detail,
We first pre-process the training data to obtain the face ori-
entation, where x and z represent the pitch and yaw angle of
the face, respectively. Then we judge the degree of the large
pose of a human face by the maximum value of azimuth and
elevation angles, i.e. £ = max((1,(2) — 7/4, where ¢; and
(o denotes the azimuth and the elevation respectively. Next,
we take ¢ as input and adjust the values of w;p,, and wWphoto
using a designed linear function:

I 1.6, ¢£<0, (12)
T Y ag 4 b 0.

L] 22 es )
Photo = ce 4 d. € > 0.

3.3. Temporal Supervision for Video Data

In addition to monocular image reconstruction, we aim
for our model to perform well on videos. However, existing
methods often require additional smoothing processing after
frame-by-frame reconstruction to reduce jitters in videos.
Instead of relying on additional processing, we propose an
end-to-end method that achieves superior results on videos.
By inputting three adjacent frames ¢ — 1, ¢, and ¢ 4 1 into
a three-layer temporal Transformer, we obtain a set of es-
timated FLAME tokens. These tokens are then used to
reconstruct the face of frame ¢, improving the continuity of
facial motion between adjacent frames. The corresponding
framework is illustrated in Fig. 4.
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4. Experiment

In this section, we present the results of our method and
compare it with other approaches. Due to page limitations,
we provided additional content including more results and
video demos in our supplementary materials.

4.1. Datasets

3D Datasets. In order to reconstruct accurate metric 3D
faces, we collect the currently available open-source 3D
scan datasets (FLAME topology) for supervised learning
of estimating shape parameters from RGB images. As in
MICA [50], we use neutral face data (RGB images and
the corresponding neutral face shape parameters) in unified
metric space from Stirling [19], Florence [2], LYHM [12],
FaceWarehouse [7], and FRGC [33]. In addition, we include
3D face datasets with expressions from FaceWarehouse [7]
and WCPA [24].

2D Datasets. Besides 3D data, we use common 2D face
datasets (images only) in our self-supervised training, in-
cluding FFHQ [25], FaceScape [45], BUPT-Balanced [42],
and VoxCeleb2 [11], CelebA [30], VGGFace2 [8]. We adopt
AFLW2000 [46] as the validation set.

4.2. Implementation Details

Training Details. We implement our method with
PyTorch[14]. We use Adam [26] as the optimizer, in which
the learning rate is set to 1x10~*. We resize the input im-
age to the size of 224 x 224. The model is trained in 10
epochs with batch size 8. We use FaRL [47] as the pre-
trained weight to initialize the transformer backbone. The
facial component tokens are all initialized to 0. In our exper-
iments, we set hyper-parameters A3p = 0.6 and Aop = 0.4
in Eq. (1). We set \esn, = 2.0 and A, = 1.2/in Eq. (2). In
Eq. (6), we set Acyes = 0.8, Njips = 1.0. In Eq. (11), we set
Wa = wg = wy = 1x107% In Eq. (12) and Eq. (13), we
empirically set a = —0.76, b = 1.6, ¢ = 0.38, and d = 2.2.

Evaluation Dataset. In the field of monocular image 3D re-
construction, we usually use the median, mean and standard
deviation of the distance of each point to characterize the
performance of the reconstruction method, after aligning the
predicted mesh reconstructed from the specified image with
the meshes of the real scan. Among them, the two commonly
used benchmarks are NoW [35] and Stirling [19].

4.3. Comparison with Existing Methods

Quantitative Results. We conducted a quantitative evalua-
tion of our method over the NoW and Stirling benchmarks.
The results on the NoW benchmark are presented in Table 2,
while the results on the Stirling benchmark are shown in
Table 3. It is worth noting that we excluded the Stirling data
from our training in Table 3 and train a new model from the

beginning for a fair comparison. Our method achieves the
top performance with the least errors across all metrics on
both benchmarks, as demonstrated in the tables. Notably,
our method outperforms the previous best method (MICA)
by a remarkable margin.

Qualitative Results. In Fig. 5, we present a visual compar-
ison of 3D face reconstruction results from different repre-
sentative methods that are publicly available. Our method
demonstrates robustness in accurately reconstructing faces
across different shapes, races, and ages, as shown in the
figure. Notably, our method achieves the best mesh recovery
of face shapes and accurately captures expressions.

4.4. Face Tracking Results

We conducted a comparison on video data to validate
that our method can produce faithful 3D face reconstruction
and temporal coherent results with our temporal module.
Specifically, we select a sample video clip and compare the
photo-metrical reconstruction errors with the original video
frames. To ensure consistency in the comparison, we use
FLAME texture for mapping to compare the consistency of
the face at the mesh level and the coherence of movement.
Fig. 6 presents the error curves of video reconstruction for
different approaches. Our method outperforms the other
methods in terms of the accuracy and coherence of the re-
constructed video.

5. Ablation Study

To ensure a fair comparison of model performance in
our ablation experiments, we employ the validation dataset
of the NoW dataset [35] as quantitative test data to eval-
uate the reconstruction performance. We use the 3D face
reconstruction error as the evaluation metric.

Ablation Study on the Effect of Separate Tokens. Pre-
vious 3D face reconstruction models typically use a single,
long code and split it into different component parameters,
resulting in coupling between different parameters and de-
creased reconstruction accuracy. In our study, we investigate
the effectiveness of using separate tokens for different facial
parameters in our TokenFace model. We perform an ablation
study on the number of tokens by merging closely related
tokens, and present the results in Table 4. Our experiment
reveals that merging different parameter types into the same
token increases the coupling effect between parameters and
leads to poorer reconstruction. Conversely, increasing the
number of tokens improves decoupling and reconstruction
accuracy. Our findings demonstrate the strong decoupling
effect of TokenFace’s separate tokens for different FLAME
parameters, resulting in greater independence and specificity
in expressing different components.

Ablation Study of Dataset Types for Training. To take
advantage of the flexibility of our proposed network structure
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Method ] Non-Metrical ] Metrical

Median] Mean, Std] Median] Mean)], Std]
3DMM-CNN [39] 1.84 2.33 2.05 391 4.84 4.02 1007
FLAME 2020 template [28] 1.21 1.53 1.31 1.49 1.92 1.68
PRNet [18] 1.5 1.98 1.88 - - - 8
Deep3DFaceRecon [Tensorflow] [14] 1.23 1.54 1.29 2.26 2.90 2.51
RingNet [35] 1.21 1.53 1.31 1.50 1.98 1.77 g 60
Deep3DFaceRecon [PyTorch] [14] 1.11 141 1.21 1.62 221 2.08 % — TokenFace
MGCNet [36] 1.31 1.87 2.63 1.70 2.47 3.02 E 2 . ézl'f""e’;k; 92‘032"2]2"22]
3DDFA-v2 [21] 1.23 1.57 1.39 1.53 2.06 1.95 —— DECA [Feng et al. 2021]
SynergyNet [44] 1.27 1.59 1.31 228 2.86 239 " e e e Sao0)
DECA [17] 1.09 1.38 1.18 1.35 1.80 1.64 - ;::::: :ﬂ["z{'ﬂl‘;t;'yi:;?’
Dense Landmark [43] 1.02 1.28 1.08 1.36 1.73 1.47 —— PRNet [Feng et al. 2018]
MICA [50] 0.90 1.11 0.92 1.08 1.37 1.17 % 1 2 3 2 5 6 7
TokenFace (Ours) 0.76 0.95 0.82 0.97 1.24 1.07 Error [mm)

Table 2: Quantitative comparisons on NoW benchmark [35]. The metric is the 3D face reconstruction error. Best results

are highlighted in bold.

DECA

Ours

Figure 5: Visual comparison of 3D face reconstruction quality of ours and some other representative methods. From top
to bottom are input image, Deep3DFaceRecon [14], 3DDFAv2 [21], DECA [17], and TokenFace (Ours).

Method Median] Mean|  Std]
FLAME 2020 template [28] 1.22 1.55 1.35
RingNet [35] 1.15 1.46 1.27
Deep3DFaceRecon [TensorFlow] [ 14] 1.13 1.43 1.25
Deep3DFaceRecon [Pytorch] [14] 0.99 1.27 1.15
3DDFA-v2 [21] 1.20 1.55 1.45
DECA [17] 1.03 1.32 1.18
MICA [50] 0.92 1.16 1.04
TokenFace (Ours) 0.88 0.95 0.96

Table 3: Quantitative results on Stirling benchmark [19].

in selecting different types of tokens, we conducted mixed

training using a hybrid dataset that contains 2D and 3D data.

To investigate the impact of dataset type on performance, we
conduct ablation experiments using 2D-only, 3D-only, and
mixed datasets for training. In the case of 3D-only datasets,
we use a loss function at the vertex level, with camera pose,

texture, and light values set to zero in the six tokens. Results
presented in Table 5 show that the models trained using
only 3D data outperformed those trained using only 2D data
on the NoW validation set due to the higher accuracy of
ground truths at the vertex level. Moreover, models trained
with mixed datasets outperform those trained with only 3D
datasets, attributed to the increased quantity of data and the
multiple types of supervision provided by the mixed dataset.

Ablation Study on Weighting between 2D and 3D Data.
Since our training dataset consists of both 2D and 3D data,
we want to investigate the impact of adjusting the weight
between them. To this end, we conduct experiments with
different weightings while keeping other conditions fixed
and the results are shown in Table 6. As shown, the weight
balance between 2D and 3D data does have an effect on the
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. . Reconstruction Error
#Tokens | Merging Detail Median  Moan  Std
1 [S,E,J,C, T, L] 1.08 1.41 1.19
3 [S,E,J,C],T,L 1.05 1.31 1.10
5 [S,ELLJ,C, T.L 0.96 1.15 1.02
6 S,E,J,C,T,L 0.79 099 0.85

Table 4: Ablation study on the number of tokens. Re-
ducing the number of tokens by merging leads to a drop in
reconstruction performance. The six tokens, denoted as S
(shape), E (expression), J (jaw pose), C (camera pose), T
(texture), and L (lighting), derived from the specific parame-
ters of the FLAME model, are crucial for the model’s ability
to decouple different facial parameters and achieve accurate
reconstructions. [-] represents the merging operation.

Reconstruction Error

2b 3D Median] A Mean| A Std.| A

v 1.03  +0.24 131 +032 [1.11 +0.26
v 0.85 +0.06 1.08 +0.09 0.89 +0.04

v v 0.79 - 0.99 - 0.85 -

Table 5: Ablation study on using different types of
datasets. We train our model on three types of datasets:
2D data only, 3D data only, and hybrid datasets of 2D and
3D. The model trained on mixed datasets of 2D and 3D
outperforms those trained on either 2D or 3D data alone.

final results, and careful selection of the weight is required.
We found that using a weight of (0.4, 0.6) result in the highest
performance. This is our setting in reporting the main results.

Ablation Study on Adaptive Loss Function. To improve
the effectiveness of large pose face reconstruction during
training on 2D data, we introduce a pose-aware loss function
in Sec. 3.2.2. To demonstrate the effectiveness of this loss
function, we conduct an ablation study by comparing the
models trained with and without the proposed loss, and then
test the model on large pose examples. As shown in Fig. 7,

Reconstruction Error

W2p wsp

Median Mean Std
0.3 0.7 0.83 1.04 0.89
0.4 0.6 0.79 0.99 0.85
0.5 0.5 0.81 1.02 0.87
0.6 0.4 0.88 1.10 0.93

Table 6: Ablation study on different balance weights on
2D and 3D data. Based on this table, we select the best
weighting parameter (0.4, 0.6) in our experiments.

Input _w/o. PAL

with PAL

Figure 7: Visualization of Effects of using Adaptive
Weights. We test two large pose cases with side face and
head tilt. It can be seen that the model with adaptive loss
function weights has more accurate alignment for large pose
face reconstruction.

despite achieving similar reconstruction effects for shape and
expression, the model trained with adaptive loss function
weights produces more accurate reconstructions in pose for
faces with large poses, such as side faces and head tilts.

6. Conclusion

In this paper, we introduce TokenFace, a transformer-

based method for reconstructing 3D faces from monocular
images. By using six independent facial component tokens
to estimate six parameters that represent the reconstructed
face, we are able to disentangle the different parameters of
FLAME. Additionally, we design a temporal transformer
that captures temporal information in videos, resulting in
significantly improved accuracy and continuity in video face
reconstruction. Our TokenFace achieves state-of-the-art per-
formance in the challenging NoW Benchmark [35] and Stir-
ling Benchmark [19], with a large improvement over previ-
ous methods. Furthermore, our method demonstrates stable
and accurate performance in video face tracking with our
temporal modeling.
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