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Abstract

Learning novel concepts, remembering previous knowl-
edge, and adapting it to future tasks occur simultaneously
throughout a human’s lifetime. To model such comprehensive
abilities, continual zero-shot learning (CZSL) has recently
been introduced. However, most existing methods overused
unseen semantic information that may not be continually
accessible in realistic settings. In this paper, we address the
challenge of continual zero-shot learning where unseen infor-
mation is not provided during training, by leveraging genera-
tive modeling. The heart of the generative-based methods is
to learn quality representations from seen classes to improve
the generative understanding of the unseen visual space. Mo-
tivated by this, we introduce generalization-bound tools and
provide the first theoretical explanation for the benefits of
generative modeling to CZSL tasks. Guided by the theoret-
ical analysis, we then propose our learning algorithm that
employs a novel semantically guided Generative Random
Walk (GRW) loss. The GRW loss augments the training by
continually encouraging the model to generate realistic and
characterized samples to represent the unseen space. Our
algorithm achieves state-of-the-art performance on AWA1,
AWA2, CUB, and SUN datasets, surpassing existing CZSL
methods by 3-7%. The code has been made available here
https://github.com/wx-zhang/IGCZSL .

1. Introduction
Researchers have devoted significant effort to developing

AI learners to mimic human cognition. One such endeavor
is zero-shot learning (ZSL), which aims to identify unseen
classes without accessing any of their images during train-
ing. However, human zero-shot learning abilities improve
dynamically over time. As individuals acquire more knowl-
edge of seen tasks, they become better at recognizing unseen
tasks. To evaluate the zero-shot learning in such a dynamic
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seen-unseen distribution, the continual zero-shot learning
problem (CZSL) has been proposed [53]. CZSL emulates
the continuous learning process of a human’s life, where the
model continually sees more classes from the unseen world
and is evaluated on both seen and unseen classes. This CZSL
skill, may it get maturely developed to the world scale, has
the potential to accelerate research in species discovery, for
example, as known species grow continually, but close to
90% of the species are not yet discovered[55].

Generative models (e.g., GANs[26]) have made signifi-
cant progress in producing photorealistic images by learning
high-dimensional probability distributions. This ability moti-
vated researchers to adapt GANs to ZSL to generate missing
data of unseen classes conditioning on unseen semantic infor-
mation, known as generative-based ZSL. Training the classi-
fier on synthetic unseen samples can reduce model predic-
tion bias towards seen classes and thus achieves competitive
zero-shot learning performance [38, 58, 42]. Some CZSL
works directly adopt this framework continually, known as
transductive continual zero-shot learning [25, 36]. How-
ever, in CZSL, the unseen world changes dynamically and
unexpectedly, making it unrealistic to use prior knowledge
about unseen classes[53]. When we do not assume access
to unseen semantic information in the CZSL setting, which
is known as inductive continual zero-shot learning, most
existing methods struggle to perform well, as we show in
our experiments. Furthermore, the theoretical understanding
of how zero-shot learning benefits from synthetic data is lim-
ited, which poses an obstacle to developing purely inductive
continual zero-shot methods. Recent analyses of training
generative models with synthetic data [8] provide a possible
avenue for developing the desired theoretical explanation.
This led us to develop a generalization-bound tool to under-
stand the learning mechanism in generative-based CZSL and
further develop inductive methods based on it.

In our analysis, we have identified it is crucial to reduce
the distance between the generated and actual visual space of
unseen classes. This requires the model to generate realistic
samples to represent unseen space to augment the training
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Figure 1. Semantically guided generative random walk (GRW): At each time step, new classes are added to the seen classes space,
and the random walk starts from each seen class center (in green) and transitions through generated samples of hallucinated classes (in
orange), then the landing probability distribution over the seen classes is predicted. The GRW loss encourages the generated samples from
the hallucinated classes to be distinguishable from the seen classes by encouraging the landing probability over seen classes starting from
any seen center to be uniformly distributed, and hence hard to classify to any seen class.

of the classifier. However, the lack of ground truth semantic
descriptions for unseen classes and the lack of previously
seen classes data often leads to the generated samples col-
lapsing to the seen classes. A similar problem has been
addressed in generating novel style artworks, where GAN
training is augmented to encourage the generated styles to
deviate from existing art style classes [15, 51, 27, 30, 28, 31].
Drawing inspiration from the improved feature representa-
tion achieved by generative models in producing novel art,
and the connection between the ability to generate novel
styles in art generation and to generate samples to represent
the unseen space in generative-based CZSL, we propose a
purely inductive, Generative Random Walk (GRW) loss,
guided only by semantic descriptions of seen classes.

In each continual learning task, we first hallucinate some
classes by interpolating on or sampling from a learnable
dictionary based on the current and previous classes, with
the belief that the realistic classes, both seen and unseen,
should be relatable to each other [16, 17]. We then gener-
ate samples from the hallucinated classes. To prevent the
generated samples of hallucinated classes from collapsing
to the seen classes, we apply the GRW loss, as illustrated
in Figure 1. We perform a random walk starting from the
seen class and moving through generated examples of hal-
lucinated classes for R steps, as described in detail later in
Section 5.2.2. The GRW loss encourages high transition
probabilities to the realistic unseen space by deviating from
the visual space of the seen classes and avoiding less real-
istic areas. The resulting representations are both realistic
and distinguishable from seen classes, which enhances the
generative understanding of unseen classes. This approach is
particularly effective when the model is updated continually,

as it enables the model to use the newly learned knowledge
to improve further the generated examples of hallucinated
classes. Our contributions lie in

• We provide a theoretical analysis of continual zero-
shot learning. This analysis guides us to use proper
signals to make up for the missing unseen information.
We present these generalization-bound tools for the
analysis in Section 4.

• Guided by the analysis, we develop a method for purely
inductive continual zero-shot learning; described in
detail in Section 5. Our method, ICGZSL, first provides
two ways to hallucinate classes, i.e. interpolation of
two seen classes and learning a dictionary based on
the seen classes. Then, we integrate our introduced
semantically guided Generative Random Walk (GRW)
loss to generate distinguishable and realistic samples to
represent unseen classes.

• We performed comprehensive experiments (Section
6) that demonstrate the effectiveness of our approach.
Specifically, our model achieves state-of-the-art results
on standard continual zero-shot learning benchmarks,
AWA1, AWA2, CUB, SUN, and performs often better
than transductive methods

2. Related Works
Inductive and Transductive Zero-Shot Learning.

There are varying degrees of accessibility to unseen informa-
tion in zero-shot learning. Transductive methods use both
unlabeled samples and attributes of unseen classes during
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training [44, 48]. Semantically transductive methods, on the
other hand, only use attributes of unseen classes in train-
ing [63, 60]. In the inductive setting, however, no unseen
information is allowed to be used(e.g., [69, 16, 41, 64]). This
can result in a bias towards seen classes [45]. Generative
methods, such as those used by [69, 41, 16], can produce
unseen samples using only seen class information during
training to solve this issue. For example, [16] relate zero-
shot learning to human creativity to generate images that
deviate from seen classes during training. [7] used unlabeled
samples from out-of-distribution data to gather knowledge
about unseen data. [54] utilize two variational autoencoders
to generate latent representations for visual and semantic
modalities in a shared latent space. In contrast, our approach
focuses on investigating the relationship between the gen-
erated samples of hallucinated classes and the seen classes,
which leads to GRW loss.

Continual Learning. The majority of continual learn-
ing works aim to tackle the problem of catastrophic forget-
ting, where the data representation becomes biased towards
the most recent task in sequential learning. Regularization-
based methods [39, 4], structure-based methods [49, 13],
and replay-based methods [52, 65] have been proposed to
resolve this problem. More recently, research has explored
forward transfer in continual learning, with the belief that as
knowledge accumulates, higher next-task transferability, as
measured by zero-shot assessment, should be attained. Their
evaluation space either includes the next task [40] or the
whole class space [12]. However, compared to our setting,
[40] did not evaluate the model in a generalized manner, and
[12] only paid attention to the seen accuracy.

Continual Zero-shot learning. [11] introduced A-GEM
for continual learning, which was later applied to deal with
zero-shot tasks sequentially, laying the foundation for the
initial work on CZSL. [53] proposed the inductive CZSL
scenario and demonstrated that a class-based normalization
approach can improve performance in continual zero-shot
learning. Both [21] and [24] explore the CZSL problem, but
rely on unseen class descriptions to train a classifier before
inference. [36] proposed a generative adversarial approach
with a cosine similarity-based classifier that supports the
dynamic addition of classes without requiring unseen sam-
ples for training. Their approach also relies on unseen class
descriptions for seen-unseen deviation, making it a seman-
tically transductive method. This motivated us to explore a
purely inductive method for handling seen-unseen deviation
and improving the realism of unseen samples.

3. Problem Setup and Notations
3.1. Formulation

We start by defining our problem and notations. A la-
belled dataset is defined as a tuple D = {(x,a, y)|y =

f(x), (x,a, y) ⇠ D}, where D represents the data distribu-
tion. Each data point is a tuple of image feature x 2 Rdx ,
class attribute a 2 Rda , and a class label y. Here dx is the
dimension of the visual feature space, and da is the dimen-
sion of the attribute space. Each distribution has a specific
labeling function f . Our goal is to learn a model f̂ on top of
D to estimate f . We study the continual zero-shot learning
setting proposed by [53], where we seek to learn the model
f̂ on a stream of tasks. In each task t, the model is learned
on the seen dataset Dt

s
, and is evaluated on both the seen

distribution D
t

s
and unseen distribution D

t

u
. Moreover, we

assume that the set of seen class and unseen class are disjoint,
that is Ds \ Du = �. This procedure is illustrated in the
bottom part of Figure 2.

We use generative models as the backbone. During the
training time, the model f̂ is trained on the seen dataset Ds

as well as the synthesized dataset Dh. Dh is generated by
conditioning on hallucinated attributes ah and prior Z ⇠

N (0, 1). The labeling function fh of the generated dataset
is a look-up table of the generated features x 2 Xh and the
corresponding attribute condition ah.

3.2. Notations.
In our theoretical analysis, we use the following notations:

1) We discuss the relationship between the three types of
variables, namely, real seen sample, real unseen samples,
and generated samples from the hallucinated classes. To
specify the variables related to these types of samples, we
use subscripts ·s, ·u, ·h respectively, e.g., fs, fu, fh ; 2) We
denote the values and model empirically computed by a
variable with a hat, e.g., f̂ ; 3) We use superscripts ·t or ·1:t
to indicate that a variable is for task t or for tasks 1 : t

respectively, e.g., f t

s
, f

1:t
s

; 4) D is used for the empirical
sample set, and D is used for the distribution; 5) We use Ns

and Nu to denote the number of seen and unseen classes.
In practice, the unseen information, i.e., au,Du, Nu, is

not available. Therefore, we hallucinate some classes de-
noted by ah and generate samples Dh = {(xh,ah)} by
conditioning on these attributes. We use Nh to represent
the number of hallucinated classes. Additionally, we do not
have access to all the previous data , so X1:t refers to the
current samples as well as the previous ones in the buffer.
We also use generated seen samples ·sg for GAN training.

4. Theoretical Analysis
As mentioned in the introduction, we propose using hal-

lucinated classes to represent the unseen space. By training
our model on synthetic samples generated from these classes,
we improve the model’s generalization ability to the actual
unseen classes during the testing time of continual zero-shot
learning. In this section, we quantify the model’s generaliza-
tion ability by measuring the distance between the synthetic
samples that represent the unseen space and the actual un-
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seen samples. Additionally, we explain our motivation for
using a random walk-based method to reduce this distance
when no information about the unseen space is available.

4.1. Generalization Bound Inductive Continual
Zero-Shot Learning

In this section, we present a generalization bound for
a continual zero-shot learning algorithm. Given the entire
training distribution, a learning algorithm can output an op-
timal hypothesis h that estimates the ground truth labeling
function f . However, since the learning algorithm can only
be trained on a finite sample from the training set, it outputs
an empirical hypothesis ĥ to estimate the ground truth la-
beling function. We define the generalization error [33] for
these two types of hypotheses. We define the actual risk,

✏(h, f) = E(x,a)⇠D[ f(x) 6=h(x,a)] , (1)

which measures the expected probability of a disagreement
between the ground truth and the optimal hypothesis. We
also define the empirical risk on the finite sample set D,

✏̂(ĥ, f) =
1

|D|
X

(x,a)2D

f(x) 6=ĥ(x,a) , (2)

which measures the probability of a disagreement between
the ground truth and the empirical hypothesis.

In a continual zero-shot learning algorithm, given a train-
ing set Dt

s
, the algorithm outputs ĥ to estimate f

1:t
s

[ fu

instead of the ground truth labeling function fs. To begin our
analysis, we propose a distance measure between the gen-
erated unseen distribution1 and the real unseen distribution
d̄GDB(Dh,Du) as follows:

Definition 4.1 (Empirical Generative distance). Given the
training set Ds and the synthetic set Dh , the ground truth
labeling functions fs, fh, and fu, and the optimal hypothesis
ĥ
⇤ = argmin

h2H
✏̂s(h, fs) + ✏̂h(h, fh) obtained by train-

ing the model on Dh and Ds, we can define the distance
between Dh and Du as follows:

d̄GDB(Dh,Du) = |✏̂(ĥ⇤, fu)� ✏̂(ĥ⇤, fh)| . (3)

Our proposed d̄GDB is a feasible distance measure that
satisfies the properties of a pseudo-metric. In the following,
we present our generalization bound following [8] for the
continual zero-shot learning algorithm, which shows how
the generalization ability of the zero-shot learning algorithm
is mainly influenced by this distance.

Theorem 4.2 (Generalization bound of the generative-based
CZSL). Given the CZSL procedure described in section 3.1,

1In the transductive setting, the unseen distribution is generated by
conditioning on the unseen semantic information. In our work, we utilize
generated samples from hallucinated classes to represent the generated
unseen distribution.

with confidence 1� � the risk on the unseen distribution is
bounded by

✏(h, f t
u) ✏̂(ĥ⇤

, f
1:t
s ) +

1

2
dH�H(D1:t

s ,Dt
u) + �̄

+
1

2
d̄GDB(Dt

u,D
t
h) + C(

1

m
+

1

�
)

(4)

where ĥ
⇤ = argmin

h2H

P
t

i=1 ✏̂(h, f
i

s
) + ✏̂(h, f t

h
), �̄ =

✏̂(ĥ⇤
, f

1:t
s

) + ✏̂(ĥ⇤
, f

t

h
).

In Equation 24, measurement dH�H [6] is used to quan-
tify the difference between two distributions for domain
adaptation based on the type of model, and is fixed for a
specific problem. �̄ and ✏̂s(h, fs) are highly depended on
the optimization algorithm. However, if we hallucinate a
diverse set of classes, fu can be compactly supported by
fh. If we further generate realistic samples for each of the
hallucinated classes, the optimal solution trained on the syn-
thetic set, ĥ⇤ = argmin

h2H
✏̂s(h, fs) + ✏̂h(h, fh), should

perform well on the real unseen dataset. This can lead to a
reduction in d̄GDB(Du,Dh) in Equation 3. We will discuss
this further in the following section. The detailed derivation
of this theorem can be found in Appendix A.1.

4.2. Reducing the bound using Markov Chain.
To reduce d̄GDB(Dh,Du) in Equation 24, we need to

decrease the difference between Du and Dh. One approach
proposed by [16] is to hallucinate ah as a compact support
of au. Once we have achieved this, we can further generate
high-quality samples to increase P[Du ⇢ Dh], where the
probability is taken over all possible generations.

To quantify the probability value P[Du ⇢ Dh], we fol-
low the approach of [57] and view the generations as nodes
in a Markov chain. We define the transition probability be-
tween two states as the probability with which one sample is
classified as another. Then, we can bound P[Du ⇢ Dh] by
the self-transition probability using a generalization bound.
When the self-transition probability is the same in two sets
of generations, we prefer the one with higher diversity quan-
tified by DDP, as suggested by [32] and [14].

For detailed explanations, please refer to Appendix A.2.
Here, we provide an informal statement.

Statement 4.3. Finding generated samples from halluci-
nated classes to “carefully” increase the determinant and
the diagonal entries of the transition matrix of the above
described Markov Chain can reduce d̄GDB .

We can now design an algorithm that first hallucinates
classes and then generates diverse samples from these classes
to represent the unseen space that follows Statement 4.3.
However, the transition matrix of the Markov chain described
above is intractable to compute in practice. To quantify
the transition probability, we adapt the random walk frame-
work [29, 5] originally used in semi-supervised few-shot
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learning to generative zero-shot learning with a few yet im-
portant changes. Please refer to Appendix B.4 the relation
between our work and previous work.

We also make the following two adjustments to the
statement to encourage the generated samples from hal-
lucinated classes to be consistently realistic like the real
samples. Firstly, we represent the transition matrix among
hallucinated classes (noted as PXhXh 2 RNh⇥Nh) in
the seen class space using a congruent transformation
PCsXhPXhXhPXhCs , where PCsXh 2 RNs⇥Nh is the
transition probability matrix from seen prototypes to gener-
ated samples from hallucinated classes, and PXhCs is the
opposite. Secondly, hallucinating a compact support of un-
seen class attributes and encouraging the transition matrix
to be diagonal requires a huge number of generations. To
reduce this number, we encourage the generated samples of
hallucinated classes to have a "relatable deviation" to the
seen classes. The relationship between the two types of
samples is that both should be realistic. This means that the
transition matrix PXhXh may not be strictly diagonal, and
our goal is to reduce the non-diagonal entries, i.e., to reduce
the transition probability between different generated sam-
ples of hallucinated classes. We further repeat the transition
among generated samples of hallucinated classes to further
reduce the non-diagonal entries.

In conclusion, our transitions start from the seen proto-
types to generated samples of hallucinated classes for R

steps and back to seen prototypes, the transition matrix of
which is PCsXh(PXhXh)RPXhCs 2 RNs⇥Ns . To encour-
age“relatable deviation” of the generated samples of hal-
lucinated classes from seen classes, we aim to reduce the
non-diagonal entries of the transition matrix , as detailed
later in Section 5. This approach intuitively prevents the
generations from being attracted by any seen classes, and
theoretically can reduce the distance d̄GDB . Intentionally,
this method also transfers knowledge between seen and hal-
lucinated classes, which is useful for generating realistic
images.

5. Generative-based Inductive CZSL Approach
Method overview. Generative-based inductive CZSL

algorithms adopt generative models as their architecture,
where seen samples are used to train the classifier to cor-
rectly classify seen classes, and generators are trained to
generate realistic samples. At the same time, the generator is
encouraged to synthesize samples to represent unseen classes
to train the classifier to perform classification on these sam-
ples. In our work, we can only hallucinate some classes
to represent the actual unseen space and generate samples
from the hallucinated classes. As guided by our analysis,
the key point of inductive zero-shot learning is to generate
realistic and diverse samples from hallucinated classes that
are deviated from the real seen space. We introduce the gen-

Figure 2. The discriminator embeds attributes a1:t
s into the real

feature space to perform classification with real samples xt
s, while

the generator produces features xt
h and xt

sg conditioning on the
corresponding attributes. The real-fake loss and classification loss
encourage the generated sample distribution consistent with the
real samples. Then the inductive loss applied to the generated
feature space, which encourages the characterization of generated
samples from hallucinated classes, can reduce the bias towards the
current seen classes of the classifier and improve continual zero-
shot learning performacne.

erative model backbone in Section 5.1, and how we generate
the abovementioned samples in Section 5.2. The overall
procedure is shown in Algorithm 1 in Appendix.

5.1. Generative-based CZSL baseline
We follow [36] as our baseline. The model contains a

generator G(a, z) : Rda+dz ! Rdx and a discriminator
D(a) : Rda ! Rdx . The generator takes the semantic infor-
mation (denoted by a) and the prior (denoted by z) sampled
from a standard normal distribution Z as input and outputs
visual features. Discriminator projects semantic information
a into visual space. The conditional adversarial training can
be illustrated by the discriminator loss and generator loss as:

LD = �Lreal-fake + �clsLclassification + �rdRD,

LG = Lreal-fake + �clsLclassification + Linductive + �rgRG.
(5)

As shown in Figure 2, we use Lreal-fake to denote the GAN
loss that discriminates between the real and fake samples
for the current task, and Lclassification to denote the entropy
loss based on cosine similarity that is used to perform the
classification of all seen classes up to the current task. The
equations for Lreal-fake and Lclassification are shown below

Lreal-fake = E(x,a)⇠Dt
s

⇥
loghx, D(a)i

⇤

� Ez⇠Z,(a,x)⇠Dt
s

⇥
loghG(z,a), D(a)i

⇤

Lclassification = E(x,y)⇠D1:t
s

⇥
Le(hx, D(A1:t

s )i, y)
⇤

+ Ez⇠Z,(x,a,y)⇠D1:t
s

⇥
Le(hG(z,a), D(A1:t

s )i, y)
⇤

(6)
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where h·, ·i represents the cosine similarity, A1:t
s

is a matrix
of attributes of seen classes up to the current task, and Le

is the cross-entropy loss. In practice, D1:t
s

consists of the
current samples and previous samples in the buffer. We fol-
low [36] for regularization terms RD,RG and �c,rd,rg . See
Appendix B.1 for more details about the baseline algorithm.
Linductive with its corresponding �i is the main component to
improve inductive continual zero-shot learning, which will
be described in detail in section 5.2.

5.2. Inductive Loss
5.2.1 Hallucinate Attributes

To begin our method, we first hallucinate classes to represent
the unseen space. During this procedure, we aim to generate
a diverse and compact set of attributes without using any
information from the unseen test set.

Interpolation-based method. When the attributes are
distributed uniformly in the attribute space, which can
be compactly supported by the seen attribute, we use
interpolation-based method. To hallucinate the attributes
at every mini-batch, we use an interpolation-based method
that was introduced by [16]. Hallucinated attributes are gen-
erated using the formula aug = ↵as1 + (1� ↵)as2 , where
↵ is drawn from the uniform a distribution U(0.2, 0.8), and
as1 and as2 are two randomly chosen seen attributes. The
sample interval is chosen to be (0.2, 0.8) to ensure that the
interpolated attributes are not too close to the seen attributes.

Dictionary-based method. We further propose to learn
an attribute dictionary containing N

t

s
attribute vectors dur-

ing training. The use of a learnable dictionary allows the
attributes to change more freely in accordance with the loss
function. The dictionary is randomly initialized by interpo-
lating seen attributes, and during the computation of GRW
loss, we randomly pick attributes from it. This approach is
particularly useful for classification at a finer level, where
the attributes are more specific.

If the hallucinated class can accurately represent the ac-
tual unseen space, which is only accessible during the test
time, then the model will have good generalization ability on
the test set. We visualize the hallucinated classes to examine
if this assumption holds. Please refer to Appendix B.2 for
the visualization of our hallucinated attributes.

5.2.2 Improve Generation Quality by Inductive Loss

As we discussed in Section 4.2, we use GRW loss to improve
the generation quality such that the generated samples are
realistic, diverse and characterized. To encourage diversity
of the samples generated from the hallucinated attributes,
we firstly generate only one sample for each hallucinated
attribute. And then, we perform a random walk to compute
the transition probability using generated seen samples Xsg

and generated samples from hallucinated samples Xh. The

random walk starts from each generative seen class center
Cs 2 RN

1:t
s ⇥dx computed by the mean of generated seen

samples from the corresponding class attributes, where N1:t
s

are the number of seen classes until step t. Then we take
R steps of transitions within generated samples of halluci-
nated classes Xh with the final landing probability over seen
classes so far. The transition probability matrix from seen
class centers to generated samples of hallucinated classes is
defined as

PCsXh = �(hCs,X
>

h i) , (7)

where h·, ·i is a similarity measure, and �(·) is a softmax
operator applied on rows. In practice, we use negative Eu-
clidean distance for similarity, that is, suppose xh is the row
i of Xh and c is the class center j,

hCs,X
>

h ii,j = �kxh � ck2 . (8)

Similarly, the transition probability matrix within generated
samples of hallucinated classes and from generated samples
of hallucinated classes to seen class centers are defined as

PXhXh = �(hXh,X
>

h i),PXhCs = �(hXh,C
>

s i) . (9)

Then the random walk staring from each seen class center
and transiting R steps within generated samples of hallu-
cinated classes and back to seen centers are computed by

P
CsXhCs (R) = PCsXh (PXhXh )RPXhCs (10)

In practice, we set the diagonal values of PXhXh to small
values and hope to reduce the non-diagonal values. This
equals to encourage the probability P

CsXhCs(R) to be uni-
formly distributed over all the seen classes. We further
encourage the probability PCsXh 2 RN

1:t
s ⇥Nh to be uni-

formly distributed over all the generated examples to encour-
age as many generations to be visited in the random walk,
and hence encourage the diversity. Hence, our Generative
Random Walk (GRW) loss is defined by

LGRW =
RX

r=0

�rLe(P
CsXhCs(r),U) + Le(Pv(Cs, Xh),Uv) ,

(11)
where Le(·, ·) is the cross-entropy loss, U 2 RN

1:t
s ⇥N

1:t
s

is uniform distribution, R is the transition steps, and � is
exponential decay. We compute the probability that each gen-
erated point be visited by any seen class as Pv(Cs, Xh) =

1
˜N1:t
s

PN
1:t
s

i=0 PCsXh
i

, where PCsXh
i

represents the ith row of

the PCsXh matrix. The visit loss is then defined as the cross-
entropy between Pv and the uniform distribution Uv 2 RNh ,
encouraging all the generated examples to be visited. In addi-
tion, we empirically found that the GRW loss can also work
as a regularizer to encourage the consistency of generated
seen visual space as well, which we defined as

RGRW =
RX

r=0

�
r
Le(P

CsXsgCs (r), I) + Le(Pv(Cs, Xsg),Uv),

(12)
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Dataset AWA1 AWA2 CUB SUN

Metric mSA mUA mHA mSA mUA mHA mSA mUA mHA mSA mUA mHA

EWC (cl) [34] 29.4 9.0 13.8 30.8 10.5 15.8 12.2 0.8 1.3 11.6 2.6 4.1
A-GEM (cl) [11] 64.2 3.9 7.2 65.8 6.7 11.9 14.4 0.4 0.8 8.6 3.0 4.2

Tf-GZSL (tr) [22] 70.8 27.4 37.9 78.6 28.7 41.1 46.3 30.8 35.3 15.3 30.7 18.7
DVGR (tr) [25] 65.1 28.5 38.0 73.5 28.8 40.6 44.9 14.6 21.7 22.4 10.7 14.5
A-CGZSL (tr) [24] 71.0 24.3 35.8 70.2 25.9 37.2 34.3 12.4 17.4 17.2 6.3 9.7
BD-CGZSL (tr) [36] 62.9 29.9 39.0 68.1 33.9 42.9 19.8 17.2 17.8 27.5 15.9 20.0

CN-CZSL (in) [53] - - - 33.6 6.4 10.8 44.3 14.8 22.7 22.2 8.2 12.5
BD-CGZSL-in (in) [36] 62.1 31.5 40.5 67.7 32.9 42.3 37.8 9.1 14.4 34.9 14.9 20.8
CARNet (in) [23] 67.6 27.4 37.0 - - - 42.4 12.4 18.8 31.5 15.9 20.9

ours + interpolation 67.0 34.2 43.4 71.1 34.9 44.5 42.2 22.7 28.4 36.0 21.6 26.8
ours + dictionary 67.1 33.5 41.6 70.2 35.1 44.6 42.4 23.6 28.8 36.5 21.8 27.1

Table 1. Our proposed method achieves state-of-the-art results when compared with traditional continual learning method (cl) recent
inductive (in) methods and even shows competitive results in mHA with recent semantic transductive methods (tr).

where I is identity distribution, and Dsg represents the ma-
trix for generated seen samples.

We numerically show that the random walk-based penalty
can reduce d̄GDB (Def 4.1) by the relationship between
d̄GDB and LGRW . Details are shown in Appendix B.3.

We also adapt the loss proposed in [16] to directly prevent
the generated unseen samples from being classified into seen
classes, i.e.,

Lcreativity = Ez⇠Z,ah⇠Dh
DKL

�⌦
G(z,ah), D(A1:t

s )
↵
kU

�
, (13)

where DKL(·k·) is the KL divergence, A1:t
s

2 RN
1:t
s ⇥da

is the matrix of seen classes attributes vectors until task
t, ah is hallucinated attributes according to Section 5.2.1,⌦
G(z,aug), D(A1:t

s
)
↵

2 RN
1:t
s are the logits over seen

classes so far for a given G(z,ah), U is the uniform dis-
tribution.

Inductive loss Combining Equation 11, 12 and 13 our
final inductive loss is

Linductive = �cLcreativity + �iLGRW + �iRGRW (14)

where �i is the scaling weight for both the GRW loss term
and regularization term.

6. Continual Zero-Shot Learning Experiment
6.1. Experiment Setup

Data Stream and Benchmarks: We adopt the contin-
ual zero-shot learning framework proposed in [53]. In this
setting, a T -split dataset D1:T forms T � 1 tasks. At time
step t, the split D1:t is defined as a seen set of tasks, and the
split Dt+1:T is an unseen set of tasks. We conduct experi-
ments on four widely used CGZSL benchmarks for a fair
comparison: AWA1 [37], AWA2 [67], Caltech UCSD Birds
200-2011 (CUB)[59], and SUN[43]. We follow [53, 36]
for the class split in the continual zero-shot learning setting.
More details can be found in Appendix D.

Baselines, backbone, and training: We use the method
proposed in [36] as the main baseline and compare it with re-
cent CGZSL methods in the setting we mentioned above, in-
cluding the transductive method Tf-GZSL [22], DVGR [25],
A-CGZSL [24], BD-CGZSL [36], and the inductive method
CN-CZSL [53], CARNet [23]. ‘BD-CGZSL-in’ denotes
our modified inductive version of [36] by naively remov-
ing unseen information. Following [36], we also compare
our baseline with the classical continual learning methods
EWC [34] and A-GEM [11]. We use vanilla GAN’s Gener-
ator and Discriminator, both of which are two-layer linear
networks. Image features are extracted by ResNet-101, pre-
trained on ImageNet 1k. The are attributes from [62] and
extracted features are used as our model input. We use a
replay buffer with a fixed size of 5k.

We run all experiments for 50 epochs and 64 batch sizes
with the Adam optimizer. We use a learning rate of 0.005
and a weight decay of 0.00001. Results reported in Table
1 are based on one NVIDIA Tesla P100 GPU. We select
our random walk steps R, weight decay � and coefficient
of inductive loss terms �i according to prior exploratory
zero-shot learning experiments shown in Appendix C.

Metrics: We use the mean seen accuracy, mean unseen
accuracy and mean harmonic seen/unseen accuracy [53] to
measure the zero-shot learning ability. These metrics are
defined as follows,

mSA =
1

T

TX

t=1

St(D
1:t),mUA =

1

T � 1

T�1X

t=1

Ut(D
t+1:T )

mHA =
1

T � 1

T�1X

t=1

H(St(D
1:t), Ut(D

t+1:T )),

(15)

where H(·, ·) is the harmonic mean and St, Ut are seen and
unseen per-class accuracy using the model trained after time
t. We also use the backward transfer [11, 66, 53] to measure
the continual learning ability, which is defined in [53]

BWT =
1

T � 1

T�1X

t=1

(ST (D1:t)� St(D
1:t)) . (16)

11580



Note that this should only be conducted on seen set, since
part of the early unseen set become seen set later. The BWT
on unseen set cannot reflect the knowledge retain ability of
the model.

6.2. Results

The mean harmonic accuracy of the four benchmarks is
shown in Table 1, and the task-wise mHA of the CUB dataset
is shown in Figure 3. In coarse-grained datasets AWA1 and
AWA2, our proposed learner achieves 43.4% and 44.6% in
mHA, respectively, surpassing all the current inductive and
transductive methods. In the fine-grained datasets and tasks
with long steps (CUB, SUN), our method achieves 28.8%
and 27.1%, surpassing all the current CZSL methods. We
observe that even though other methods have comparable
mSA, they have far lower mUA than ours. We believe that
our method achieves this improved knowledge transfer abil-
ity from seen visual space to unseen visual space through
the proposed inductive learning signals, i.e., Linductive. Table
2 displays the backward transfer of different continual zero-
shot algorithms, where higher results indicate better knowl-
edge retention. Our model exhibits a strong backward trans-
fer capability, particularly on longer task sequences where it
is needed the most. We achieved the highest BWT score of
0.19 on CUB. On SUN, negative BWT scores (i.e., forget-
ting) are observed in most other models, but our method can
still retain knowledge from the past. These results suggest
that the analysis tools we created allow us to identify the
critical factors for zero-shot learning, and the development
of tools for continual learning can improve our ability to
retain information.

6.3. Ablation Study

To assess the impact of our novel random walk-based
penalties, LGRW and RGRW , we conducted ablation ex-
periments; see Table 3. he results in Table 3 indicate that
the improvements are mainly attributed to LGRW , while
RGRW contributes an additional 1%. Lcreativity is also part
of the inductive loss. Additionally, removing Lcreativity
while using our GRW losses has little effect on the perfor-
mance, as shown in Table 3. More details can be found in

Dataset AWA1 AWA2 CUB SUN

DVGR [25] tr 0.09 0.10 -0.07 -0.20
A-CGZSL [24] tr 0.11 0.05 0.10 0.005
BD-CGZSL [36] tr 0.18 0.14 0.13 -0.02

CN-ZSL [53] in - - -0.04 -0.02
BD-CGZSL-in [36] in 0.18 0.15 0.14 -0.03

ours + interpolation in 0.12 0.10 0.19 0.01
ours + dictionary in 0.11 0.11 0.19 0.01

Table 2. Backward transfer of different CGZSL methods, where
higher results indicate less forgetting.

Figure 3. Mean Harmonic accuracy up to each task on SUN dataset.
Our method outperforms both transductive and inductive methods

Appendix D.

6.4. More CZSL settings
Our focus lies on assessing performance under varying

seen/unseen class ratios during knowledge accumulation,
which is proposed in [53] and referred to as static setting in
[36]. There are other continual zero-shot learning settings
proposed in [36], such as dynamic and online settings. In
the dynamic setting, the seen and unseen classes dynami-
cally increase, while in the online setting, certain unseen
classes are continually converted to seen classes. We find
our explored static setting a more informing benchmark for
the inductive CZSL skill, as the evaluation after every task
is always performed on all classes in the dataset and hence
is more challenging. Despite this, we still provide a compar-
ison between our method and the baseline methods on the
dynamic and online settings; see Table 4. The results show
that our method is superior to the baseline in the dynamic
and online settings in almost all datasets, and gains the most
improvements in the most challenging static setting.

6.5. Replay Buffer Analysis
Some existing methods [24, 25, 36] tend to use the gener-

ative replay method proposed by [21], where the correctly
predicted seen generated features from the previous task are

interpolation dictionary

with RGRW + LGRW 28.4 28.8
- Lcreativity 27.72 27.66

w/o RGRW, LGRW 19.07 20.75
- Lcreativity 14.43 14.43

with LGRW 26.73 27.39
Table 3. Effect of the random walk-based penalty with mH measure
on CUB dataset.
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setting AWA1 AWA2 CUB SUN

BD-CGZSL D 56.9/49.1 56.4 16.8 28.0
ours + inter. D 60.0 58.8 32.8 41.6
ours + dic. D 59.7 55.5 31.8 40.2

BD-CGZSL O 56.9/49.1 53.4 28.4 33.7
ours + inter. O 49.6 48.5 32.3 39.6
ours + dic. O 46.1 47.3 31.2 39.2
Table 4. mH in dynamic setting (D) and online setting(O)

Buffer
Size

Ours BD-CGZSL (tr)

BWT mHA mHA

generative 28.5k 0.14 21.06 17.76
real 10k 0.17 28.44 27.79
real 5k 0.19 28.8 26.55
real 2.5k 0.08 26.99 26.77

Table 5. Comparison of generative replay and real replay methods
on CUB [59]. Dictionary-based attribute generation is used

stored in buffers. However, the buffer size increases signifi-
cantly over tasks since a fixed number of samples for each
class is stored, and if the model struggles to make accurate
predictions for certain classes, samples from these classes
are absent in the buffer.

We empirically found that the class-balanced experience
replay method proposed by [46] can be extremely helpful.
At every task, we save the class attribute in A1:t, the class
center matrix C, and modify the buffer with current features
noted as D1:t

s
, such that the buffer is balanced across all the

seen classes.
In this comparison on the CUB dataset, we observe in

Table 5 that the method using real replay can achieve better
harmonic accuracy with a smaller buffer size (around 1/10 of
the generative replay buffer size) and comparable backward
transfer with a slightly larger buffer size (around 1/5 of the
generative replay buffer size). Moreover, the real replay-
based method is not as sensitive to the buffer size as the
generative replay-based methods. It is worth noting that
DVGR, A-CGZSL, and BD-CGZSL typically use generative
replay, while only CN-CGZSL uses real replay. In addition,
the last column in Table 5 shows that our proposed real
replay method can also improve the harmonic accuracy of
other methods.

To understand the real replay and generative replay, we
extend our analysis by visualizing the distribution of buffer
features across various classes in task 2 of the SUN dataset,
as illustrated in Figure 4. Real replay approach exhibits a
balanced allocation of features across all classes. Conversely,
the generative replay technique displays an intriguing pattern,
wherein certain classes lack a substantial number of stored
features, while others exhibit a twofold increase. Notably,
the classes with fewer stored features coincide with instances
where the model’s performance is suboptimal. This discrep-
ancy can be attributed to the generative replay method’s

Figure 4. Comparison of replayed number of features per class in
different replay method at task 2 in SUN dataset

propensity to store exclusively the accurately classified gen-
erated data. Consequently, this uneven distribution of stored
features could potentially lead to a compromised perfor-
mance in these classes during subsequent tasks.

7. Conclusion and Discussion
In this paper, we focus on inductive continual zero-shot

learning (CZSL) to eliminate the need of unseen information
for more realistic learning systems. To this end, we devel-
oped a framework for the theoretical analysis of generative
zero-shot learning, introducing a distance metric to measure
the ability of generated samples to represent the unseen space
when the unseen information is inaccessible during training.
We also proposed a continual zero-shot algorithm, ICGZSL,
which can reduce the distance without using unseen infor-
mation during training. We conducted experiments on four
popular continual zero-shot learning benchmarks: AWA1,
AWA2, CUB, and SUN. Our approach achieved around 3%
higher harmonic accuracy in the small dataset and around
7% in the larger dataset compared to previous inductive and
transductive methods. These results demonstrate that unseen
semantic information is not essential when a well-analyzed
seen distribution and method are used.

However, it is important to acknowledge certain limita-
tions in our work. While the developed theoretical bounds
and distance measures hold promise for methodical numeric
analysis, a more stringent alignment between empirical and
anticipated distance measures could substantially enhance al-
gorithmic design. Moreover, the consideration of multi-class
classification conditions warrants attention. Additionally,
the use of a frozen backbone for image feature extraction,
though effective, encourages further exploration into contin-
ual learning methods that facilitate viable zero-shot learning
capabilities while enabling the backbone to progressively
accumulate knowledge.
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