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Abstract

Recently, there has been a growing interest in learning-
based explicit methods due to their ability to respect the
original input and preserve details. However, the connec-
tivity on complex structures is still difficult to infer due to
the limited local shape perception, resulting in artifacts
and non-watertight triangles. In this paper, we present
a novel learning-based method with Delaunay triangula-
tion to achieve high-precision reconstruction. We model
the Delaunay triangulation as a dual graph, extract local
geometric information from the points, and embed it into
the structural representation of Delaunay triangulation in
an organic way, benefiting fine-grained details reconstruc-
tion. To encourage neighborhood information interaction
of edges and nodes in the graph, we introduce a local graph
iteration algorithm, which is a variant of graph neural net-
work. Moreover, a geometric constraint loss further im-
proves the classification of tetrahedrons. Benefiting from
our fully local network, a scaling strategy is designed to en-
able large-scale reconstruction. Experiments show that our
method yields watertight and high-quality meshes. Espe-
cially for some thin structures and sharp edges, our method
shows better performance than the current state-of-the-art
methods. Furthermore, it has a strong adaptability to point
clouds of different densities.

1. Introduction
Surface reconstruction from a given point cloud is a

long-standing problem in computer vision and graphics
[7, 1, 28, 27, 34, 59, 4, 60, 25, 21, 17, 36, 8]. A widely
used framework is to first compute an implicit representa-
tion and then extract the resulting surface using Marching
Cubes [37]. Implicit methods typically produce a water-
tight mesh and have the advantage of noise resistance, but
present over-smoothing and loss of detail in the face of fine
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Figure 1: A comparison of our approach with the two state-
of-the-art explicit methods on challenging sharp edges and
complex thin structures composed of sparse data.

structures [4]. On the other hand, some methods from com-
putational geometry [16, 5, 31, 22, 44, 33] construct explicit
meshes by point set triangulation, where the key feature is
that the vertices of the output mesh come from the input
point cloud. As an advantage, these explicit methods re-
spect the original point set to preserve sharp features and
fine structures.

More recently, several learning-based explicit methods
with point set triangulation have been proposed, which
demonstrate a good performance. A category of methods,
such as DSE [51], PointTriNet [52] and IER Meshing [35],
learn to generate connected triangles locally in an itera-
tive manner. They can preserve some linear structures to
some extent, but ensuring watertightness is a challenge for
them. Although DSE reports good results with few non-
watertight triangles, it still struggles with inferring trian-
gular connectivity on complex topologies. Another cate-
gory of method, DeepDT [38], learns the classification of
tetrahedrons from Delaunay triangulation. It improves upon
traditional approaches that use graph cuts and visibility in-
formation, by employing a multi-layer Graph Convolution
Network (GCN) [29] to break the limitation of visibility in-
formation. DeepDT achieves good results on objects with
hundreds of thousands of points, but struggles with recon-
structing sparse data, especially for complex thin structures
and sharp edges (see Figure 1). There are several impor-
tant reasons for this. 1) The tangent plane features used
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between points are inadequate for expressing the local dis-
tribution information of the point cloud, which leads to a
weak perception of the local geometry. 2) The simple com-
bination of point features without structural representation
results in ambiguous tetrahedral features for classification.
3) The employed graph neural network lacks a strong con-
nection to the Delaunay triangulation structure, providing
inadequate interaction with local information. Moreover,
dealing with large-scale data is also a tricky problem for
DeepDT.

Nonetheless, the application of Delaunay triangulation
without visibility information remains a topic worth ex-
ploring. In contrast to generating connected triangles lo-
cally, Delaunay triangulation pre-constructs global candi-
date triangles, containing a more accurate surface approx-
imation [2] and ensuring the watertightness and non-self-
intersection of the mesh. Additionally, Delaunay triangu-
lation possesses an excellent property of adapting to point
density, enabling it to strike a balance between resolution,
efficiency, and resource occupation. It suggests that further
exploration of the potential of Delaunay triangulation for
high-precision reconstruction is necessary to address some
of the challenges faced by current learning-based explicit
approaches, such as 1) high-quality reconstruction of thin
structures and sharp edges, 2) good compatibility with data
of different densities on a well-trained model, especially for
sparse data, and 3) efficient scalability to handle large-scale
data.

In this paper, we present Delaunay Meshing Network
(DMNet), a completely local approach for surface recon-
struction that captures fine details and scales efficiently. In
stark contrast to the previous approaches, each tetrahedron
and triangular facet in the Delaunay triangulation can be in-
dividually encoded in our method. To accurately perceive
local geometry, our graph feature encoder captures both
their morphological structure information and the neighbor-
hood points distribution information of their vertices. Ad-
ditionally, an offset position of the vertex is calculated to
enable the organic embedding of the vertex features into the
structural representation. This enables our method to bet-
ter capture geometric differences between tetrahedrons in-
side and outside the local surface for robust labeling. To
obtain more comprehensive neighborhood information, we
design a variant of the graph neural network called Local
Graph Iteration. As a form of local graph structure regular-
ization, it utilizes simple self-attention modules and MLPs
to iteratively process one-hop node features, without rely-
ing on a global adjacency matrix in GCN. Furthermore, we
take into account the connection relationship between nodes
and adjacent edges in the Delaunay triangulation structure,
incorporating edge features into the information interac-
tion. Compared to GCN, it provides a more powerful lo-
cal processing capability with only a few iteration layers.

To avoid large triangle artifacts, we further propose a shape
constraint loss to constrain the shape of the extracted tri-
angles. Benefiting from the local network processing, an
octree-based scaling strategy is proposed for separating the
dual graph, which allows our approach to handle large-scale
real data with millions of points like DTU [24]. Our exper-
iments demonstrate the superiority of our approach across
some challenging tasks. In summary, our contributions are
as follows:

1) Our graph feature construction integrates multi-
geometry information from Delaunay triangulation, allow-
ing our method to preserve rich fine-grained details, espe-
cially for thin structures and sharp edges.

2) Local Graph Iteration algorithm is tailored for De-
launay triangulation, promoting ample interaction among
neighborhood information. Both it and the geometric con-
straint loss allow better classification of tetrahedrons.

3) The robust local processing capability of our network
allows for a good generalization to data of varying densi-
ties, even sparse data. Additionally, the combination with
our scaling strategy enables efficient scalability with high
precision.

2. Related Work
2.1. Traditional Geometric Mesh Reconstruction

The traditional geometric methods mainly include im-
plicit methods and explicit methods. Implicit methods typ-
ically compute a field function to fit the point cloud and
then use Marching Cubes to extract isosurfaces [27, 28, 58,
9, 47, 26, 41, 45, 46, 18]. They are suitable for compact
point clouds with tight bounding boxes, but lead to expen-
sive voxelization and fail to preserve the given points in the
final mesh. [4] discusses in detail the over-smoothing and
loss of detail produced by implicit methods. Some explicit
methods estimate local surface connectivity and directly
connect the sampled points through triangles [57, 6, 30].
They respect the input data, i.e., the vertices of output sur-
face are the points in the input point cloud. For example,
Alpha shapes [16] and Ball pivoting [5] utilize the concept
of a rolling ball on the surface to derive local triangles. An-
other strategy is to apply Delaunay triangulation to the in-
put points [32, 44, 23, 62, 33]. L-Method [31] is a classic
method using graph cuts and visibility information to la-
bel tetrahedrons as inside/outside. By relying on visibility
constraints, this family of methods has achieved remarkable
performance in solving some challenging tasks. However,
they fail to handle point clouds without visibility informa-
tion.

2.2. Learning-based Mesh Reconstruction

The recent rapid development of deep learning has led to
the emergence of more solutions for surface reconstruction
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Figure 2: The pipeline of DMNet. Our network contains two main parts, one is the local feature construction of nodes and
edges in the dual graph, and the other is the Local Graph Iteration algorithm to exchange neighborhood information.

tasks. Many learning-based methods learn implicit repre-
sentations from voxels or octrees [12, 48, 20, 49, 36, 40, 39,
3, 14, 15, 19, 53, 55], facing similar problems as traditional
implicit methods. For example, ONet [42] and ConvONet
[50] learn continuous 3D occupancy functions. SAP [49]
employs a differentiable Poisson solver to quickly solve the
indicator function. NDC [11] directly predicts the position
of mesh vertices, improving the complex dual contouring
algorithm. SSRNet [43] and SSRNet+ [61] learn octree ver-
tex classification and takes advantage of the regular division
of octrees to achieve batch learning of large-scale data.

Some approaches focus on learning connectivity from
point set triangulation and creating explicit meshes directly
from input data. PointTriNet [52] uses a local patch-based
network for predicting connectivity. IER Meshing [35] se-
lects triangles in the candidate set by predicting the ratio
of the Geodesic distance to the Euclidean distance. DSE
[51] learns logarithmic maps and applies two-dimensional
Delaunay triangulation to pick connected triangles. These
methods respect the input points and have the potential to
retain rich details. However, the meshes they create are
typically non-watertight and lack proper triangles to effec-
tively represent sharp features. Moreover, the expensive
geometric calculations limit their application in large-scale
data. Building on the improvements of traditional graph

cuts, DeepDT [38] provides an approach that uses GCN to
label Delaunay tetrahedrons without the need for visibility
information. However, its over-reliance on tangent plane
features between points and neglect of structural represen-
tation make it only applicable to dense point clouds. On the
other hand, Sulzer et al. [54] also employ GCN to integrate
visibility information, which stands in a different perspec-
tive from our approach.

3. Method
Given a point cloud P = {pi | i = 1, ..., N} with N

points, where pi is the coordinate of one point with nor-
mal ni, we construct Delaunay triangulation structure D for
it, where D is the set of tetrahedrons and the four vertices
of each tetrahedron are 3D points in P . At the boundary,
there are some infinite tetrahedrons sharing an infinite ver-
tex. Such a setting ensures that each tetrahedron has four
neighbor tetrahedrons sharing common triangular facets.
We model the Delaunay triangulation structure D as a dual
graph G with tetrahedrons as nodes and triangles as edges.
Our aim is to combine the structural information of Delau-
nay triangulation and the neighborhood information in the
graph to achieve accurate labeling of tetrahedrons without
visibility information. The pipeline of our method is illus-
trated in Figure 2.a.
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Figure 3: 2D example of additional morphological feature
Angi for triangle Si. The red line represents the triangle
Si. The dashed lines represent the tangent planes of the
circumscribed spheres of its two adjacent tetrahedrons.

3.1. Graph Feature Extraction

In our approach, the local geometric information of each
node and edge in graph G is encoded separately, which is
completely different from previous methods. The combi-
nation of neighborhood points distribution information and
structural representation is a key insight in our approach.
Point Feature Encoding For each reference point pi in P ,
we search its K nearest neighbors pki , k = 1, ...,K with
normal nki . The relative position vector rki = pki − pi can
well express the relative geometric direction and the relative
geometric distance between pi and pki . We first take pi as
the center and aggregate rki and nki of the K nearest neigh-
bors as the initial feature of pi to represent the local point
cloud distribution. The normal nki is regularized as equation
(1). Afterwards, we apply a feature mapping function Fmap

implemented by a short MLP to process the local geomet-
ric information. Finally, a weight matrix Wi generated by
a simple self-attention module is used to pool the features.
As shown in Figure 2.b, the attention module uses a shared
linear layer represented by FC to perform the feature trans-
formation in the same dimension as the input, followed by a
softmax operation to compute the weight matrix. The total
process can be formulated as follows:

Hk
i = Fmap

((
pki − pi

)
⊕ nki

)
,

∥∥nki ∥∥ = 1 (1)

W k
i = Softmax

(
FC

(
Hk

i

))
(2)

Fi =

K∑
i=1

Hk
i ⊙W k

i (3)

where ⊕ represents the concatenation operation and ⊙ rep-
resents the product of elements. ∥·∥ represents the L2-norm
of one vector.
Structural Representation After extracting the local fea-
tures of each point, we further construct structural features
of the nodes and edges in G. In this process, we consider
morphological structure information and take the relative

distribution of vertices as one type of it. For a tetrahe-
dron Ti with four vertices vji (j = 1, 2, 3, 4), we first search
for a geometric center position oi, which can be obtained
by taking the average position of vji . An offset distance
odji = oi − vji is calculated as the abstract coordinate of
vji in tetrahedron Ti. Then we concatenate it to the indexed
feature Fvji from generated points features, and use an at-
tention module and a mapping function Gmap implemented
by a short MLP to automatically aggregate important ver-
tices features for tetrahedron classification. Moreover, to
capture more structural features of the tetrahedron, we cal-
culate the longest side length Li

max, the shortest side length
Li
min, the volume V oli and the radius Ri of the circum-

scribed sphere of Ti as additional manual features. These
features are sufficient to represent the structure of the space
occupied by a tetrahedron. The final feature F (Ti) of Ti is
calculated as follows:

Hj
i = Gmap

((
oi − vji

)
⊕ Fvji

)
(4)

Mi =

4∑
j=1

Hj
i ⊙W j

ti (5)

F (Ti) =Mi ⊕ Li
max ⊕ Li

min ⊕ V oli ⊕Ri (6)

where ⊕ represents the concatenation operation and W j
ti is

the weight matrix generated by the attention module. While
Hj

i and Mi are intermediate variables. In particular, for the
infinite tetrahedrons in the Delaunay triangulation D, we
adopt a padding strategy that sets these features to zero.

Similarly, we follow the above manner to construct the
features of the edges in graph G. In particular, for the i-th
triangle Si in D, we calculate its longest side length, short-
est side length and area as additional manual features. To
better represent the relationship between Si and its two ad-
jacent tetrahedrons, we construct a new feature Angi =
1 − min {cos θ, cosψ}, where θ and ψ are the angles be-
tween Si and the circumscribed spheres of its two adjacent
tetrahedrons, as shown in Figure 3. It represents a geomet-
ric association of one triangle with its adjacent tetrahedrons
in shape.

3.2. Local Graph Iteration

The raw node and edge features in graph G are con-
structed independently, thus they do not contain sufficient
neighborhood graph information. Inspired by GCN using
the global adjacency matrix and weight matrix for feature
aggregation of one-hop nodes, we design a variant con-
sisting of shared MLPs and self-attention modules to en-
hance local processing ability. Our graph iteration module
is shown in Figure 2.c, where each node can be processed
individually and the network parameters are shared across
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different nodes. In addition, since edges in G have a phys-
ical structure, it is meaningful to calculate their geometric
features as part of the graph features. Benefiting from our
well-designed edge features, the interaction of edges with
adjacent nodes is also considered to enhance the aggrega-
tion of neighborhood information, making our method dif-
ferent from the general graph algorithms.

In the l-th graph iteration layer, F l−1 (Si) ∈ R1×C is
the previous feature of triangle Si with two adjacent tetrahe-
drons T 1

Si and T 2
Si. F

l−1
(
T 1
Si

)
∈ R1×C and F l−1

(
T 2
Si

)
∈

R1×C are the features of T 1
Si and T 2

Si, respectively. By con-
catenating F l−1 (Si) in the manner of Equation (7), a new
feature El (Si) ∈ R2×2C is formed. Afterwards, we apply
a feature aggregation function Gagg consisting of a short
MLP and a self-attentive module to pool features. The en-
tire process can be formulated as follows:

El (Si) =[F l−1 (Si)⊕ F l−1
(
T 1
Si

)
,

F l−1 (Si)⊕ F l−1
(
T 2
Si

)
]

(7)

F l (Si) = Gagg

(
El (Si)

)
(8)

where ⊕ represents a concatenating operation in the second
dimension and [ , ] represents the concatenating operation
in the first dimension. The output pooling feature F l (Si)
of Si in the l-th layer has the same dimension as F l−1 (Si).

Furthermore, we aggregate the features of neighbor
nodes and edges to construct the enhanced node features.
For a tetrahedron Ti, we search for its four neighbor tetra-
hedrons T j

i (j = 1, 2, 3, 4), which share triangles Sj
T i with

Ti. Similar to the above manner of processing edges, we
concatenate the features of neighboring nodes and edges to
Ti in the form of Equation (9 - 10) and gain a new feature
El (Ti) ∈ R4×3C . A feature aggregation function is applied
once again to pool the feature.

F l
(
T j
i

)
= F l−1 (Ti)⊕ F l

(
Sj
T i

)
⊕ F l−1

(
T j
i

)
(9)

El (Ti) =
[
F l

(
T 1
i

)
, F l

(
T 2
i

)
, F l

(
T 3
i

)
, F l

(
T 4
i

)]
(10)

F l (Ti) = Gagg

(
El (Ti)

)
(11)

As the number of iteration layers increases, each node
is able to capture information from a larger receptive field.
However, benefiting from its powerful local processing ca-
pability, two layers are sufficient in our experiments and the
last layer finally outputs the probability of classifying the
tetrahedron as inside/outside.

3.3. Octree Based Scaling Strategy

The inconsistency of tetrahedrons presents a great chal-
lenge for the effective scaling of Delaunay triangulation-
based methods. However, partitioning the nodes in the form

(a) (b) (c) (d)

Figure 4: 2D example of an octree dividing the nodes of
graph G. (a) Setting the cubic bounding box for all nodes
of G. (b and c) Performing division operations. Voxels that
contain no nodes of G or have a number of nodes less than
the given threshold are retained, and the division contin-
ues for the remaining voxels until the number of nodes in
all voxels is less than the threshold. These voxels are re-
ferred to as leaves of the octree. (d) Tetrahedrons corre-
sponding to the nodes of G that are contained within one
leaf are grouped into one batch of data.

of a dual graph provides a feasible solution. In our method,
the structural features that we construct for nodes are specif-
ically designed to be computed around the geometric cen-
ter of the tetrahedrons. This means that the feature of one
tetrahedron is aggregated on its geometric center, allowing
us to instantiate our graph model, i.e., the location of one
geometric center can be taken as the location of the corre-
sponding node. Benefiting from the fact that our network
is fully local, we employ an octree structure to divide the
nodes and process the tetrahedrons represented by the nodes
inside the same leaf in batches. We set a maximum thresh-
old for the number of nodes inside each voxel of the octree,
which can be adjusted according to the size of the device’s
video memory. The division process is illustrated in Figure
4. To ensure feature integrity, the neighborhood point in-
formation of all tetrahedrons and triangles is pre-computed
before dividing. Such a scaling strategy allows our DMNet
to be capable of handling points on the order of millions.

3.4. Loss Functions

Multi-label Supervision We use a multi-label supervision
loss Lm and a neighborhood smoothing loss Ln [38] as
Equation (12-13) to supervise the labeling of tetrahedrons.
We randomly sample Nref reference locations inside each
tetrahedron and get their inside/outside labels. Cij is the
cross-entropy loss between the prediction probabilities of a
tetrahedron Ti and its j-th sampling label of reference loca-
tion. Rij is the cross-entropy between the predicted proba-
bilities of Ti and its j-th neighbor tetrahedron T j

i . N is the
number of tetrahedrons.

Lm =
1

N ×Nref

N∑
i=1

Nref∑
j=1

Cij (12)
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Ln =
1

4N

N∑
i=1

4∑
j=1

Rij (13)

Shape Constraint In order to obtain higher-quality meshes,
we propose a geometric constraint loss, making our final ex-
tracted triangles as uniform in shape as possible and avoid-
ing creating large artifacts. Specifically, the extraction prob-
ability Pi of one triangle Si (i = 1, ..,M) can be trans-
formed by the predicted probabilities PT1

i and PT2
i of its

two neighboring tetrahedrons in a differentiable manner as
Equation (14). Then we perform a softmax operation on the
extraction probabilities of triangles, using the results as a
weight of the longest side length to constrain shape. This
loss function is advantageous for the classification of large
tetrahedrons, ultimately leading to an improvement in re-
construction accuracy.

Pi = PT1
i

(
1− PT2

i

)
+ PT2

i

(
1− PT1

i

)
(14)

Ls =

∑M
i=1 Softmax(Pi) × Ei

E
(15)

where Ei is the length of the longest side of Si, and E is the
average length of Ei.

Then our total loss function can be summarized as:

L = λ1Lm + λ2Ln + λ3Ls (16)

4. Experiments
4.1. Setup

Dataset and Metric We use three datasets to evaluate our
method from different perspectives. The first is ShapeNet

Method C-L1 ↓ F(1%) ↑ F(0.3%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k)

Alpha shapes [16] 0.058 0.835 0.601 0.880 0.991 - 15.32
Ball pivoting [5] 0.026 0.965 0.754 0.954 0.879 - 17.57
ONet [42] 0.077 0.813 0.338 0.918 1.0 0.803 59.91
ConvONet [50] 0.052 0.942 0.368 0.934 1.0 0.848 55.95
PointTriNet [52] 0.0215 0.9975 0.783 0.965 0.910 - 19.19
IER Meshing [35] 0.028 0.977 0.746 0.954 0.937 - 20.03
SAP [49] 0.031 0.981 0.675 0.950 1.0 0.930 45.54
NDC [11] 0.047 0.947 0.696 0.954 0.992 - 65.79
SSRNet+ [61] 0.030 0.983 0.571 0.958 0.989 - 59.53
DSE [51] 0.0215 0.9968 0.786 0.962 0.986 - 19.99
DeepDT [38] 0.027 0.973 0.747 0.948 0.983 - 18.50
Poisson [27] 0.023 0.9942 0.775 0.966 1.0 0.970 38.57
Ours 0.0206 0.9983 0.804 0.973 1.0 0.983 20.24

Table 1: Quantitative comparison on ShapeNet. ’-’ means
that the data is not evaluated due to the limitation of water-
tight meshes.

[10]. Following ConvONet [50], we use a subset and se-
lect the same four metrics including Normal Consistency
(NC), Chamfer-L1 Distance (C-L1), F-Score (F), and IoU
for evaluation. For the threshold of F-Score, we use 1%
and 0.3% to make some comparisons more obvious. Addi-
tionally, we add the Percentage of Watertight Edges (WE)
and the Average Number of Triangles (N.T) to evaluate
the watertightness of meshes and the number of triangles
contained in meshes, respectively. The second is FA-
MOUSTHINGI dataset [51] and we use it to perform gener-
alization experiments. Following DSE [51], we use Cham-
fer Distance (CD), Normal Reconstruction Error (NR) and
WE as metrics. Since models in this dataset have a large
number of sharp edges, we additionally add Edge Chamfer
Distance (ECD) and Edge F-Score (EFS) [13] to evaluate
the preservation of sharp edges. The last is DTU [24]. Fol-
lowing SSRNet [43], we use CD, DTU Accuracy, and DTU
Completeness [24] as metrics. A detailed description can
be found in the supplementary.
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5K 3K 1K

Method C-L1 ↓ F(1%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k) C-L1 ↓ F(1%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k) C-L1 ↓ F(1%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k)

Alpha shapes [16] 0.065 0.824 0.873 0.990 - 7.93 0.072 0.817 0.865 0.988 - 4.93 0.063 0.810 0.818 0.975 - 1.75
Ball pivoting [5] 0.031 0.947 0.934 0.877 - 8.81 0.036 0.929 0.915 0.877 - 5.31 0.052 0.862 0.872 0.878 - 1.78
ONet [42] 0.079 0.812 0.909 1.0 0.797 59.50 0.080 0.811 0.905 1.0 0.791 59.07 0.082 0.799 0.892 1.0 0.773 57.60
ConvONet [50] 0.052 0.943 0.934 1.0 0.849 55.45 0.052 0.940 0.933 1.0 0.846 54.92 0.063 0.900 0.917 1.0 0.810 53.39
PointTriNet [52] 0.024 0.992 0.952 0.903 - 9.59 0.027 0.981 0.937 0.891 - 5.75 0.042 0.906 0.886 0.845 - 1.89
IER Meshing [35] 0.036 0.957 0.900 0.800 - 12.43 0.043 0.925 0.875 0.717 - 9.29 0.063 0.810 0.803 0.737 - 5.50
SAP [49] 0.032 0.977 0.947 1.0 0.924 45.73 0.034 0.966 0.940 1.0 0.910 46.18 0.069 0.824 0.851 1.0 0.727 47.18
NDC [11] 0.049 0.943 0.948 0.986 - 64.92 0.053 0.933 0.938 0.974 - 60.97 0.076 0.822 0.894 0.892 - 34.48
SSRNet+ [61] 0.031 0.982 0.955 0.974 - 57.07 0.032 0.977 0.951 0.953 - 55.02 0.045 0.897 0.919 0.851 - 33.74
DSE [51] 0.024 0.991 0.947 0.974 - 9.99 0.027 0.980 0.930 0.957 - 5.99 0.044 0.898 0.894 0.901 - 1.98
DeepDT [38] 0.030 0.966 0.940 0.980 - 9.46 0.034 0.956 0.931 0.978 - 5.69 0.058 0.896 0.893 0.973 - 1.88
Poisson [27] 0.026 0.987 0.956 1.0 0.955 19.94 0.031 0.972 0.946 1.0 0.935 13.51 0.056 0.875 0.901 1.0 0.849 4.59
Ours 0.022 0.996 0.965 1.0 0.977 10.04 0.024 0.990 0.956 1.0 0.967 6.02 0.042 0.937 0.914 1.0 0.912 2.00

Table 2: Quantitative comparison for data with different densities on ShapeNet. ’-’ means that the data is not evaluated due
to the limitation of watertightness.

Implementation Details Unless otherwise stated, the num-
ber of reference locations (Nref ) in our approach is set to 3,
and the λ1, λ2, and λ3 in loss function are set to 0.9, 0.1 and
1, respectively. In our point encoder, the number of nearest
neighbor points searched is set to 32. The learning rate is
set to 0.001 and decreases tenfold after 5 epochs.

4.2. Results

Reconstruction of Details ShapeNet contains a rich set of
models, and we sample 10K points uniformly on each of
them. We retrain all learning-based methods, but for ONet
and ConvONet, we use their given models because we can-
not train a better one.

Table 1 presents the quantitative evaluation results. As
an advantage of explicit methods respecting the input
points, they typically yield superior results in distance met-
rics and produce fewer triangles compared to methods based
on implicit representation. However, the inability to guar-
antee a watertight mesh remains a significant limitation. In
contrast, our DMNet well inherits the advantages of both
explicit methods and Delaunay triangulation, achieving the
best results across all performance metrics and ensuring wa-
tertight output meshes. The highest IoU value and the best
distance values represent the superior ability of our method
to reconstruct details.

Figure 5 presents a qualitative comparison of our method
with some state-of-the-art methods. Implicit representation
based methods, such as Poisson, ConvONet, SAP and SS-
RNet+, show great shortcomings in perceiving thin struc-
tures, while explicit methods tend to better preserve de-
tails. However, a significant number of artifacts are also
created by these explicit methods. Due to the limited local
shape perception, the lines generated by DSE are typically
open structures composed of discrete triangles, rather than
closed columnar structures. For similar reasons, DeepDT
generates many misclassifications of tetrahedrons in the de-
tails, resulting in numerous visually corrupting artifacts. In
contrast, our approach addresses these drawbacks by fo-

GTConv
ONet

Ball 
pivoting

DS
E

Poiss
on

Deep
DT++

PointT
riNet

IER 
Meshing

GTOursPoissonDSEIRE MeshingPointTriNetConvONet Ball Pivoting

GTOursPoissonDSEDeepDTNDCSSRNet+

Figure 6: Comparison on sparse 1K points. Our results
performs better reconstruction accuracy and completeness.

cusing on the learning of local structural representation.
This allows our approach to robustly distinguish geomet-
ric information between tetrahedrons inside and outside
the thin structures. Meaningfully, our approach learns to
pick some narrow acute triangles to aid in reconstructing
smooth columnar structures and edges. As a result, our
method reconstructs more complete models and smoother
lines without any smoothing post-processing. Furthermore,
our method has a fast running time (3.64s), which is one-
ninth of DSE (32.8s), and also achieves the best results for
non-uniformly sampled data. These are shown in the sup-
plementary.

Compatibility with Data of Various Density Adapting
point clouds of varying densities is also a great challenge
for a learning-based algorithm, especially for sparse point
clouds. We sample 5K, 3K, and 1K points on ShapeNet to
evaluate the compatibility with point density variations. In-
terestingly, all learning-based methods are trained on 10K
sampled points without retraining in the comparison, which
makes it difficult to challenge classical geometric algo-
rithms. Table 2 shows the quantitative comparison result,
where our method achieves the best results in almost every

14424



GTL-Method SSRNet+ Poisson Ours

Sc
an

 4
4

Sc
an

 4
4

_l
oc

al
Sc

an
 4

6
Sc

an
 4

6
_l

oc
al

Sc
an

 1
27

Sc
an

 1
27

_l
oc

al

DeepDT

GTSSRNet+ Poisson Ours

GTSSRNet+ Poisson Ours GTSSRNet+ Poisson Ours

Figure 7: Qualitative comparison results on DTU. For one
scene, we show two rows of results, where the lower row is
the clear local result of the upper row.

Method CD ↓ NR ↓ ECD ↓ EFS ↑ WE ↑
Alpha shapes [16] 1.064 17.69 0.854 0.153 0.983
Ball pivoting [5] 0.524 6.59 0.746 0.289 0.743
ConvONet [50] 2.436 24.13 2.210 0.004 1.0
PointTriNet [52] 0.331 5.54 0.443 0.338 0.917
IER Meshing [35] 0.343 6.30 0.445 0.335 0.947
SSRNet+ [61] 0.438 9.95 1.105 0.027 0.978
DSE [51] 0.329 5.34 0.726 0.342 0.996
DeepDT [38] 0.554 8.61 0.566 0.235 0.972
Poisson [27] 0.347 7.44 5.357 0.015 1.0
Ours 0.338 4.74 0.270 0.386 1.0

Table 3: Quantitative comparison on FAMOUSTHINGI.
The units of CD and ECD are both 10−2.

DA ↓ DC ↓ CD ↓
Method Mean Var. Mean Var. Mean RMS

L-Method [31] 0.524 1.612 0.377 0.596 0.745 35.840
DeepDT [38] 0.734 0.634 0.383 0.207 0.293 10.277
SSRNet [43] 0.321 0.285 0.304 0.0888 1.46 4.42
SSRNet+ [61] 0.310 0.236 0.335 0.105 1.29 3.97
Poisson [27] 0.330 0.441 0.345 0.438 1.17 4.49
Ours 0.272 0.114 0.259 0.054 0.025 0.363

Table 4: Quantitative results on DTU. DA = DTU Accuracy,
DC = DTU Completeness. CD is in units of 10-6.

metric. The qualitative results on 1K points are shown in
Figure 6. It can be seen that our DMNet is able to recon-
struct a structurally complete model even for sparse data.
This demonstrates an outstanding ability to adapt to point
density variations, which is difficult to achieve even for
geometric methods. More meaningfully, the reconstructed
smooth surfaces show that explicit methods have the poten-
tial to produce high-quality meshes without requiring any
smoothing post-processing, even if very few triangles are
used for sparse data (see N.T in Table 2).

Generalization Capability and Edge reconstruction We
generalize various methods over FAMOUSTHINGI dataset
to further investigate the ability of preserving sharp edges,
especially for unknown shapes. We sample 10K points uni-
formly for each model and all learning-based methods are
trained on ShapeNet. The comparison results are shown in
Table 3 and Figure 1. Satisfactorily, our method exhibits
an outstanding performance in preserving edge sharpness,
as demonstrated by ECD and EFS values that significantly
outperform those of other methods. While Poisson, SSR-
Net+ and ConvONet exhibit a significant gap with the ex-
plicit methods. The inherent smoothness of these implicit
methods makes it challenging for them to retain sharpness.
More visual comparisons are shown in the supplementary.

Challenging Large-scale Real Data We evaluate the scala-
bility of our method on the DTU dataset, where each scene
contains millions of scanned points. We use the first 30
scenes for training, 10 scenes for validation, and the rest
for testing. The maximum capacity of an octree leaf in our
method is set to 60K tetrahedrons. We impose a slight
Laplacian smoothing [56] like SSRNet and SSRNet+ in
this experiment, which does not increase the details our
method preserves, simply to get a better visual effect. We
still add DeepDT as a comparison, although it has no scal-
ability. Therefore, for consistency with its paper [38], each
point cloud is downsampled to 200K points for its training
and testing. Table 4 reports the quantitative results, where
our method outperforms SSRNet and SSRNet+, the state-
of-the-art learning-based methods we know for processing
large-scale data. Figure 7 shows the qualitative results.
Benefiting from our scaling strategy, our method exhibits
exceptional performance in handling scans with millions of
points, retaining rich fine-grained details. In contrast, Pois-
son presents an overly smooth surface that results in loss
of many details, such as columns on the windows, due to
the inherent smoothness of implicit function. Our excel-
lent results on large-scale real data further illustrate that our
method well explores the reconstruction potential of Delau-
nay triangulation.

4.3. Analysis

Ablation Studies In this section, we evaluate the perfor-
mance impact of each major module in our approach, as
presented in Table 5. Firstly, we consider the performance
improvement that the proposed local graph iteration algo-
rithm brings in comparison to GCN [29]. Following the
replacement, the performance of our method significantly
declines, indicating that edge information in the graph is im-
portant and that node-edge interaction aids in effective ag-
gregation of neighborhood information by nodes. Secondly,
we construct multi-level geometric features for the graph by
combining points, triangles, and tetrahedrons in a fully local
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w/o LGI
w/ GCN

feature
encoder*

w/o offset
distance

w/o manual
features

w/o shape
constraint base

C-L1 ↓ 0.0230 0.0252 0.0221 0.0214 0.0210 0.0206
F(0.3%) ↑ 0.776 0.758 0.787 0.798 0.801 0.804

Table 5: Ablation experiments of our method on ShapeNet.
LGI represents our Local Graph Iteration algorithm. * rep-
resents the module replacement with DeepDT.

manner. In contrast, DeepDT focuses on tangent plane fea-
tures between points. To compare the two manners of graph
feature encoding, we replace our method’s feature encoder
with that of DeepDT. The result shows an even greater per-
formance decline, indicating that focusing on structural rep-
resentation can capture more local geometric information
and contribute to better tetrahedron classification. Thirdly,
to assess the significance of the local coordinate transforma-
tion in our structural feature encoder, we replace the offset
distances of vertices with their original coordinates. The
resulting performance degradation demonstrates the impor-
tance of this transformation in effectively embedding ver-
tex features into the structural representation. Finally, we
remove the designed manual features in our structural en-
coder and the shape constraint loss, respectively. We ob-
serve that each of these changes leads to a degradation in
performance.

Limitations We show the experiments for noisy data with
two standard deviations including 0.5% and 1% in the
supplementary. Although the results demonstrate that our
method remains robust in maintaining model integrity in
the face of noisy data, it inevitably requires a smoothing
post-processing to produce better visual results when deal-
ing with high-intensity noise. This is a common problem
for explicit methods since the vertices of output meshes are
derived from the input noisy points. It would be a good
direction to combine mesh deformation in future work.

5. Conclusion
We propose a novel data-driven method with Delaunay

triangulation of point clouds for surface reconstruction, giv-
ing an effective solution to preserve fine-grained details and
deal with data of different densities. The special feature
construction and Local Graph Iteration algorithm make our
method have a powerful ability to capture local details. The
scaling strategy allows our approach to be applied to the
reconstruction of millions of points. Experiments demon-
strate the effectiveness of our method in tackling some re-
construction challenges, such as thin structures, sharp edges
and large-scale real data. We hope that our method could in-
spire more learning-based methods to explore the applica-
tion value of Delaunay triangulation in surface reconstruc-
tion, contributing to high-quality reconstruction.
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