
DMNet: Delaunay Meshing Network for 3D Shape Representation

Chen Zhang1 Ganzhangqin Yuan1,2 Wenbing Tao1,*

1National Key Laboratory of Science and Technology on Multi-spectral Information Processing,
School of Artifical Intelligence and Automation, Huazhong University of Science and Technology, China

2TuKe Research
{zhangchen , gzq yuan, wenbingtao}@hust.edu.cn

Abstract

Recently, there has been a growing interest in learning-
based explicit methods due to their ability to respect the
original input and preserve details. However, the connec-
tivity on complex structures is still difficult to infer due to
the limited local shape perception, resulting in artifacts
and non-watertight triangles. In this paper, we present
a novel learning-based method with Delaunay triangula-
tion to achieve high-precision reconstruction. We model
the Delaunay triangulation as a dual graph, extract local
geometric information from the points, and embed it into
the structural representation of Delaunay triangulation in
an organic way, benefiting fine-grained details reconstruc-
tion. To encourage neighborhood information interaction
of edges and nodes in the graph, we introduce a local graph
iteration algorithm, which is a variant of graph neural net-
work. Moreover, a geometric constraint loss further im-
proves the classification of tetrahedrons. Benefiting from
our fully local network, a scaling strategy is designed to en-
able large-scale reconstruction. Experiments show that our
method yields watertight and high-quality meshes. Espe-
cially for some thin structures and sharp edges, our method
shows better performance than the current state-of-the-art
methods. Furthermore, it has a strong adaptability to point
clouds of different densities.

1. Introduction
Surface reconstruction from a given point cloud is a

long-standing problem in computer vision and graphics
[7, 1, 28, 27, 34, 59, 4, 60, 25, 21, 17, 36, 8]. A widely
used framework is to first compute an implicit representa-
tion and then extract the resulting surface using Marching
Cubes [37]. Implicit methods typically produce a water-
tight mesh and have the advantage of noise resistance, but
present over-smoothing and loss of detail in the face of fine

*Corresponding author.

DeepDT++ DSE PoissonDeepDTGT

DMNetDSE PoissonGT IGRConvONet

DeepDT OursDSE GT

Figure 1: A comparison of our approach with the two state-
of-the-art explicit methods on challenging sharp edges and
complex thin structures composed of sparse data.

structures [4]. On the other hand, some methods from com-
putational geometry [16, 5, 31, 22, 44, 33] construct explicit
meshes by point set triangulation, where the key feature is
that the vertices of the output mesh come from the input
point cloud. As an advantage, these explicit methods re-
spect the original point set to preserve sharp features and
fine structures.

More recently, several learning-based explicit methods
with point set triangulation have been proposed, which
demonstrate a good performance. A category of methods,
such as DSE [51], PointTriNet [52] and IER Meshing [35],
learn to generate connected triangles locally in an itera-
tive manner. They can preserve some linear structures to
some extent, but ensuring watertightness is a challenge for
them. Although DSE reports good results with few non-
watertight triangles, it still struggles with inferring trian-
gular connectivity on complex topologies. Another cate-
gory of method, DeepDT [38], learns the classification of
tetrahedrons from Delaunay triangulation. It improves upon
traditional approaches that use graph cuts and visibility in-
formation, by employing a multi-layer Graph Convolution
Network (GCN) [29] to break the limitation of visibility in-
formation. DeepDT achieves good results on objects with
hundreds of thousands of points, but struggles with recon-
structing sparse data, especially for complex thin structures
and sharp edges (see Figure 1). There are several impor-
tant reasons for this. 1) The tangent plane features used

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14418

between points are inadequate for expressing the local dis-
tribution information of the point cloud, which leads to a
weak perception of the local geometry. 2) The simple com-
bination of point features without structural representation
results in ambiguous tetrahedral features for classification.
3) The employed graph neural network lacks a strong con-
nection to the Delaunay triangulation structure, providing
inadequate interaction with local information. Moreover,
dealing with large-scale data is also a tricky problem for
DeepDT.

Nonetheless, the application of Delaunay triangulation
without visibility information remains a topic worth ex-
ploring. In contrast to generating connected triangles lo-
cally, Delaunay triangulation pre-constructs global candi-
date triangles, containing a more accurate surface approx-
imation [2] and ensuring the watertightness and non-self-
intersection of the mesh. Additionally, Delaunay triangu-
lation possesses an excellent property of adapting to point
density, enabling it to strike a balance between resolution,
efficiency, and resource occupation. It suggests that further
exploration of the potential of Delaunay triangulation for
high-precision reconstruction is necessary to address some
of the challenges faced by current learning-based explicit
approaches, such as 1) high-quality reconstruction of thin
structures and sharp edges, 2) good compatibility with data
of different densities on a well-trained model, especially for
sparse data, and 3) efficient scalability to handle large-scale
data.

In this paper, we present Delaunay Meshing Network
(DMNet), a completely local approach for surface recon-
struction that captures fine details and scales efficiently. In
stark contrast to the previous approaches, each tetrahedron
and triangular facet in the Delaunay triangulation can be in-
dividually encoded in our method. To accurately perceive
local geometry, our graph feature encoder captures both
their morphological structure information and the neighbor-
hood points distribution information of their vertices. Ad-
ditionally, an offset position of the vertex is calculated to
enable the organic embedding of the vertex features into the
structural representation. This enables our method to bet-
ter capture geometric differences between tetrahedrons in-
side and outside the local surface for robust labeling. To
obtain more comprehensive neighborhood information, we
design a variant of the graph neural network called Local
Graph Iteration. As a form of local graph structure regular-
ization, it utilizes simple self-attention modules and MLPs
to iteratively process one-hop node features, without rely-
ing on a global adjacency matrix in GCN. Furthermore, we
take into account the connection relationship between nodes
and adjacent edges in the Delaunay triangulation structure,
incorporating edge features into the information interac-
tion. Compared to GCN, it provides a more powerful lo-
cal processing capability with only a few iteration layers.

To avoid large triangle artifacts, we further propose a shape
constraint loss to constrain the shape of the extracted tri-
angles. Benefiting from the local network processing, an
octree-based scaling strategy is proposed for separating the
dual graph, which allows our approach to handle large-scale
real data with millions of points like DTU [24]. Our exper-
iments demonstrate the superiority of our approach across
some challenging tasks. In summary, our contributions are
as follows:

1) Our graph feature construction integrates multi-
geometry information from Delaunay triangulation, allow-
ing our method to preserve rich fine-grained details, espe-
cially for thin structures and sharp edges.

2) Local Graph Iteration algorithm is tailored for De-
launay triangulation, promoting ample interaction among
neighborhood information. Both it and the geometric con-
straint loss allow better classification of tetrahedrons.

3) The robust local processing capability of our network
allows for a good generalization to data of varying densi-
ties, even sparse data. Additionally, the combination with
our scaling strategy enables efficient scalability with high
precision.

2. Related Work
2.1. Traditional Geometric Mesh Reconstruction

The traditional geometric methods mainly include im-
plicit methods and explicit methods. Implicit methods typ-
ically compute a field function to fit the point cloud and
then use Marching Cubes to extract isosurfaces [27, 28, 58,
9, 47, 26, 41, 45, 46, 18]. They are suitable for compact
point clouds with tight bounding boxes, but lead to expen-
sive voxelization and fail to preserve the given points in the
final mesh. [4] discusses in detail the over-smoothing and
loss of detail produced by implicit methods. Some explicit
methods estimate local surface connectivity and directly
connect the sampled points through triangles [57, 6, 30].
They respect the input data, i.e., the vertices of output sur-
face are the points in the input point cloud. For example,
Alpha shapes [16] and Ball pivoting [5] utilize the concept
of a rolling ball on the surface to derive local triangles. An-
other strategy is to apply Delaunay triangulation to the in-
put points [32, 44, 23, 62, 33]. L-Method [31] is a classic
method using graph cuts and visibility information to la-
bel tetrahedrons as inside/outside. By relying on visibility
constraints, this family of methods has achieved remarkable
performance in solving some challenging tasks. However,
they fail to handle point clouds without visibility informa-
tion.

2.2. Learning-based Mesh Reconstruction

The recent rapid development of deep learning has led to
the emergence of more solutions for surface reconstruction

14419

Li
ne

ar

La
ye

r

So
ftm

ax

Feature Map

S

Weight Map

Sh
ar

ed

Input Points

Delaunay
Triangulation

Local Map
KNN-points

A

St
ru

ct
ur

al
 in

fo
r-

m
at

io
n

ex
tra

ct
io

n

32 64 128 64

P

V
er

te
x

In
de

x

Tetrahedral
structural features

Triangular
structural features

64 16

C

C

C

A

Graph Feature Encorder Local Graph Iteration

 Tetrahedron corresponding to node
 Triangle corresponding to edge

Surface
Extraction & Output

F,16

T,16

F,2,16
Expand

Dim

F,2,16

 Delaunay Tetrahedron
Dual Graph

F,2,32 64 128

C

F,2,128 16 F,16

T2F

T,4,16

F4T

Expand
Dim

T,4,16

T4T

T,4,16

T,4,48 64 128 T,4,128 16 T,16

C

c.Graph iteration module

1x1 convolution

A Self-attention module

Triangle Features

Tetrahedron Features

Triangle Features

Tetrahedron Features

Addition

C Concatenation

S Sum

P
Offset Position of
Vertices

T2F Fetching Two Neighbor Tetrahedrons
Feature of One Facet

T4T Fetching Four Neighbor Tetrahedrons
Feature of One Tetrahedron

F4T

Fetching Four
Facets Feature of
One Tetrahedron

a.Pipeline

Feature Enhanced
Graph

Point feature encoder

Structural feature encoder

A

A

Iterate X times

Li
ne

ar

La
ye

r

So
ftm

ax

Feature Map

S

Weight Map

Sh
ar

ed

b.Self-attention module

Multiplication

Input Points

Delaunay
Triangulation

Local Map

KNN-points

Graph Feature Encorder Local Graph Iteration

 Tetrahedron corresponding to node
 Triangle corresponding to edge

Surface
Extraction & Output

F,16

T,16

F,2,16
Expand

Dim
F,2,16

 Delaunay Tetrahedron
Dual Graph

F,2,32 64 128

C

F,2,128 16 F,16

T2F

T,4,16
F4T

Expand
Dim

T,4,16

T4T

T,4,16

T,4,48 64 128 T,4,128 16 T,16

C

c.Graph iteration module

1x1 convolution

A Self-attention module

Triangle Features

Tetrahedron Features

Triangle Features

Tetrahedron Features

Addition

C Concatenation

S Sum

P Offset Position of Vertices

T2F Two Neighbor Tetrahedrons Feature of One Facet

T4T Four Neighbor Tetrahedrons Feature of One Tetrahedron

F4T Four Facets Feature of One Tetrahedron

a.Pipeline

Feature Enhanced Graph

A

A

Iterate X times

Li
ne

ar
 L

ay
er

So
ftm

ax

Feature Map

S

Weight Map

Sh
ar

ed

b.Self-attention module

Multiplication

A

St
ru

ct
ur

al
 in

fo
r-

m
at

io
n

ex
tra

ct
io

n

32 64 128 64

P

V
er

te
x

In
de

x

Tetrahedral
structural features

Triangular
structural features

64 16
C

C

C

A

Point feature encoder

Structural feature encoder

Figure 2: The pipeline of DMNet. Our network contains two main parts, one is the local feature construction of nodes and
edges in the dual graph, and the other is the Local Graph Iteration algorithm to exchange neighborhood information.

tasks. Many learning-based methods learn implicit repre-
sentations from voxels or octrees [12, 48, 20, 49, 36, 40, 39,
3, 14, 15, 19, 53, 55], facing similar problems as traditional
implicit methods. For example, ONet [42] and ConvONet
[50] learn continuous 3D occupancy functions. SAP [49]
employs a differentiable Poisson solver to quickly solve the
indicator function. NDC [11] directly predicts the position
of mesh vertices, improving the complex dual contouring
algorithm. SSRNet [43] and SSRNet+ [61] learn octree ver-
tex classification and takes advantage of the regular division
of octrees to achieve batch learning of large-scale data.

Some approaches focus on learning connectivity from
point set triangulation and creating explicit meshes directly
from input data. PointTriNet [52] uses a local patch-based
network for predicting connectivity. IER Meshing [35] se-
lects triangles in the candidate set by predicting the ratio
of the Geodesic distance to the Euclidean distance. DSE
[51] learns logarithmic maps and applies two-dimensional
Delaunay triangulation to pick connected triangles. These
methods respect the input points and have the potential to
retain rich details. However, the meshes they create are
typically non-watertight and lack proper triangles to effec-
tively represent sharp features. Moreover, the expensive
geometric calculations limit their application in large-scale
data. Building on the improvements of traditional graph

cuts, DeepDT [38] provides an approach that uses GCN to
label Delaunay tetrahedrons without the need for visibility
information. However, its over-reliance on tangent plane
features between points and neglect of structural represen-
tation make it only applicable to dense point clouds. On the
other hand, Sulzer et al. [54] also employ GCN to integrate
visibility information, which stands in a different perspec-
tive from our approach.

3. Method
Given a point cloud P = {pi | i = 1, ..., N} with N

points, where pi is the coordinate of one point with nor-
mal ni, we construct Delaunay triangulation structure D for
it, where D is the set of tetrahedrons and the four vertices
of each tetrahedron are 3D points in P . At the boundary,
there are some infinite tetrahedrons sharing an infinite ver-
tex. Such a setting ensures that each tetrahedron has four
neighbor tetrahedrons sharing common triangular facets.
We model the Delaunay triangulation structure D as a dual
graph G with tetrahedrons as nodes and triangles as edges.
Our aim is to combine the structural information of Delau-
nay triangulation and the neighborhood information in the
graph to achieve accurate labeling of tetrahedrons without
visibility information. The pipeline of our method is illus-
trated in Figure 2.a.

14420

iS

Adjacent
tetrahedron

Adjacent
tetrahedron



2
SiT

1
SiT

Figure 3: 2D example of additional morphological feature
Angi for triangle Si. The red line represents the triangle
Si. The dashed lines represent the tangent planes of the
circumscribed spheres of its two adjacent tetrahedrons.

3.1. Graph Feature Extraction

In our approach, the local geometric information of each
node and edge in graph G is encoded separately, which is
completely different from previous methods. The combi-
nation of neighborhood points distribution information and
structural representation is a key insight in our approach.
Point Feature Encoding For each reference point pi in P ,
we search its K nearest neighbors pki , k = 1, ...,K with
normal nki . The relative position vector rki = pki − pi can
well express the relative geometric direction and the relative
geometric distance between pi and pki . We first take pi as
the center and aggregate rki and nki of the K nearest neigh-
bors as the initial feature of pi to represent the local point
cloud distribution. The normal nki is regularized as equation
(1). Afterwards, we apply a feature mapping function Fmap

implemented by a short MLP to process the local geomet-
ric information. Finally, a weight matrix Wi generated by
a simple self-attention module is used to pool the features.
As shown in Figure 2.b, the attention module uses a shared
linear layer represented by FC to perform the feature trans-
formation in the same dimension as the input, followed by a
softmax operation to compute the weight matrix. The total
process can be formulated as follows:

Hk
i = Fmap

((
pki − pi

)
⊕ nki

)
,

∥∥nki ∥∥ = 1 (1)

W k
i = Softmax

(
FC

(
Hk

i

))
(2)

Fi =

K∑
i=1

Hk
i ⊙W k

i (3)

where ⊕ represents the concatenation operation and ⊙ rep-
resents the product of elements. ∥·∥ represents the L2-norm
of one vector.
Structural Representation After extracting the local fea-
tures of each point, we further construct structural features
of the nodes and edges in G. In this process, we consider
morphological structure information and take the relative

distribution of vertices as one type of it. For a tetrahe-
dron Ti with four vertices vji (j = 1, 2, 3, 4), we first search
for a geometric center position oi, which can be obtained
by taking the average position of vji . An offset distance
odji = oi − vji is calculated as the abstract coordinate of
vji in tetrahedron Ti. Then we concatenate it to the indexed
feature Fvji from generated points features, and use an at-
tention module and a mapping function Gmap implemented
by a short MLP to automatically aggregate important ver-
tices features for tetrahedron classification. Moreover, to
capture more structural features of the tetrahedron, we cal-
culate the longest side length Li

max, the shortest side length
Li
min, the volume V oli and the radius Ri of the circum-

scribed sphere of Ti as additional manual features. These
features are sufficient to represent the structure of the space
occupied by a tetrahedron. The final feature F (Ti) of Ti is
calculated as follows:

Hj
i = Gmap

((
oi − vji

)
⊕ Fvji

)
(4)

Mi =

4∑
j=1

Hj
i ⊙W j

ti (5)

F (Ti) =Mi ⊕ Li
max ⊕ Li

min ⊕ V oli ⊕Ri (6)

where ⊕ represents the concatenation operation and W j
ti is

the weight matrix generated by the attention module. While
Hj

i and Mi are intermediate variables. In particular, for the
infinite tetrahedrons in the Delaunay triangulation D, we
adopt a padding strategy that sets these features to zero.

Similarly, we follow the above manner to construct the
features of the edges in graph G. In particular, for the i-th
triangle Si in D, we calculate its longest side length, short-
est side length and area as additional manual features. To
better represent the relationship between Si and its two ad-
jacent tetrahedrons, we construct a new feature Angi =
1 − min {cos θ, cosψ}, where θ and ψ are the angles be-
tween Si and the circumscribed spheres of its two adjacent
tetrahedrons, as shown in Figure 3. It represents a geomet-
ric association of one triangle with its adjacent tetrahedrons
in shape.

3.2. Local Graph Iteration

The raw node and edge features in graph G are con-
structed independently, thus they do not contain sufficient
neighborhood graph information. Inspired by GCN using
the global adjacency matrix and weight matrix for feature
aggregation of one-hop nodes, we design a variant con-
sisting of shared MLPs and self-attention modules to en-
hance local processing ability. Our graph iteration module
is shown in Figure 2.c, where each node can be processed
individually and the network parameters are shared across

14421

different nodes. In addition, since edges in G have a phys-
ical structure, it is meaningful to calculate their geometric
features as part of the graph features. Benefiting from our
well-designed edge features, the interaction of edges with
adjacent nodes is also considered to enhance the aggrega-
tion of neighborhood information, making our method dif-
ferent from the general graph algorithms.

In the l-th graph iteration layer, F l−1 (Si) ∈ R1×C is
the previous feature of triangle Si with two adjacent tetrahe-
drons T 1

Si and T 2
Si. F

l−1
(
T 1
Si

)
∈ R1×C and F l−1

(
T 2
Si

)
∈

R1×C are the features of T 1
Si and T 2

Si, respectively. By con-
catenating F l−1 (Si) in the manner of Equation (7), a new
feature El (Si) ∈ R2×2C is formed. Afterwards, we apply
a feature aggregation function Gagg consisting of a short
MLP and a self-attentive module to pool features. The en-
tire process can be formulated as follows:

El (Si) =[F l−1 (Si)⊕ F l−1
(
T 1
Si

)
,

F l−1 (Si)⊕ F l−1
(
T 2
Si

)
]

(7)

F l (Si) = Gagg

(
El (Si)

)
(8)

where ⊕ represents a concatenating operation in the second
dimension and [,] represents the concatenating operation
in the first dimension. The output pooling feature F l (Si)
of Si in the l-th layer has the same dimension as F l−1 (Si).

Furthermore, we aggregate the features of neighbor
nodes and edges to construct the enhanced node features.
For a tetrahedron Ti, we search for its four neighbor tetra-
hedrons T j

i (j = 1, 2, 3, 4), which share triangles Sj
T i with

Ti. Similar to the above manner of processing edges, we
concatenate the features of neighboring nodes and edges to
Ti in the form of Equation (9 - 10) and gain a new feature
El (Ti) ∈ R4×3C . A feature aggregation function is applied
once again to pool the feature.

F l
(
T j
i

)
= F l−1 (Ti)⊕ F l

(
Sj
T i

)
⊕ F l−1

(
T j
i

)
(9)

El (Ti) =
[
F l

(
T 1
i

)
, F l

(
T 2
i

)
, F l

(
T 3
i

)
, F l

(
T 4
i

)]
(10)

F l (Ti) = Gagg

(
El (Ti)

)
(11)

As the number of iteration layers increases, each node
is able to capture information from a larger receptive field.
However, benefiting from its powerful local processing ca-
pability, two layers are sufficient in our experiments and the
last layer finally outputs the probability of classifying the
tetrahedron as inside/outside.

3.3. Octree Based Scaling Strategy

The inconsistency of tetrahedrons presents a great chal-
lenge for the effective scaling of Delaunay triangulation-
based methods. However, partitioning the nodes in the form

(a) (b) (c) (d)

Figure 4: 2D example of an octree dividing the nodes of
graph G. (a) Setting the cubic bounding box for all nodes
of G. (b and c) Performing division operations. Voxels that
contain no nodes of G or have a number of nodes less than
the given threshold are retained, and the division contin-
ues for the remaining voxels until the number of nodes in
all voxels is less than the threshold. These voxels are re-
ferred to as leaves of the octree. (d) Tetrahedrons corre-
sponding to the nodes of G that are contained within one
leaf are grouped into one batch of data.

of a dual graph provides a feasible solution. In our method,
the structural features that we construct for nodes are specif-
ically designed to be computed around the geometric cen-
ter of the tetrahedrons. This means that the feature of one
tetrahedron is aggregated on its geometric center, allowing
us to instantiate our graph model, i.e., the location of one
geometric center can be taken as the location of the corre-
sponding node. Benefiting from the fact that our network
is fully local, we employ an octree structure to divide the
nodes and process the tetrahedrons represented by the nodes
inside the same leaf in batches. We set a maximum thresh-
old for the number of nodes inside each voxel of the octree,
which can be adjusted according to the size of the device’s
video memory. The division process is illustrated in Figure
4. To ensure feature integrity, the neighborhood point in-
formation of all tetrahedrons and triangles is pre-computed
before dividing. Such a scaling strategy allows our DMNet
to be capable of handling points on the order of millions.

3.4. Loss Functions

Multi-label Supervision We use a multi-label supervision
loss Lm and a neighborhood smoothing loss Ln [38] as
Equation (12-13) to supervise the labeling of tetrahedrons.
We randomly sample Nref reference locations inside each
tetrahedron and get their inside/outside labels. Cij is the
cross-entropy loss between the prediction probabilities of a
tetrahedron Ti and its j-th sampling label of reference loca-
tion. Rij is the cross-entropy between the predicted proba-
bilities of Ti and its j-th neighbor tetrahedron T j

i . N is the
number of tetrahedrons.

Lm =
1

N ×Nref

N∑
i=1

Nref∑
j=1

Cij (12)

14422

GT

ConvONet

DSE

Poisson

IGR

DMNet

DeepDT

GTOursPoissonDSEDeepDTSSRNet+ConvONet

GTOursPoissonDSEDeepDTSSRNet+SAPConvONet

Figure 5: Qualitative comparison on ShapeNet. It can be seen that our method has an outstanding ability to preserve fine-
grained details, yielding a better visual representation compared to other methods.

Ln =
1

4N

N∑
i=1

4∑
j=1

Rij (13)

Shape Constraint In order to obtain higher-quality meshes,
we propose a geometric constraint loss, making our final ex-
tracted triangles as uniform in shape as possible and avoid-
ing creating large artifacts. Specifically, the extraction prob-
ability Pi of one triangle Si (i = 1, ..,M) can be trans-
formed by the predicted probabilities PT1

i and PT2
i of its

two neighboring tetrahedrons in a differentiable manner as
Equation (14). Then we perform a softmax operation on the
extraction probabilities of triangles, using the results as a
weight of the longest side length to constrain shape. This
loss function is advantageous for the classification of large
tetrahedrons, ultimately leading to an improvement in re-
construction accuracy.

Pi = PT1
i

(
1− PT2

i

)
+ PT2

i

(
1− PT1

i

)
(14)

Ls =

∑M
i=1 Softmax(Pi) × Ei

E
(15)

where Ei is the length of the longest side of Si, and E is the
average length of Ei.

Then our total loss function can be summarized as:

L = λ1Lm + λ2Ln + λ3Ls (16)

4. Experiments
4.1. Setup

Dataset and Metric We use three datasets to evaluate our
method from different perspectives. The first is ShapeNet

Method C-L1 ↓ F(1%) ↑ F(0.3%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k)

Alpha shapes [16] 0.058 0.835 0.601 0.880 0.991 - 15.32
Ball pivoting [5] 0.026 0.965 0.754 0.954 0.879 - 17.57
ONet [42] 0.077 0.813 0.338 0.918 1.0 0.803 59.91
ConvONet [50] 0.052 0.942 0.368 0.934 1.0 0.848 55.95
PointTriNet [52] 0.0215 0.9975 0.783 0.965 0.910 - 19.19
IER Meshing [35] 0.028 0.977 0.746 0.954 0.937 - 20.03
SAP [49] 0.031 0.981 0.675 0.950 1.0 0.930 45.54
NDC [11] 0.047 0.947 0.696 0.954 0.992 - 65.79
SSRNet+ [61] 0.030 0.983 0.571 0.958 0.989 - 59.53
DSE [51] 0.0215 0.9968 0.786 0.962 0.986 - 19.99
DeepDT [38] 0.027 0.973 0.747 0.948 0.983 - 18.50
Poisson [27] 0.023 0.9942 0.775 0.966 1.0 0.970 38.57
Ours 0.0206 0.9983 0.804 0.973 1.0 0.983 20.24

Table 1: Quantitative comparison on ShapeNet. ’-’ means
that the data is not evaluated due to the limitation of water-
tight meshes.

[10]. Following ConvONet [50], we use a subset and se-
lect the same four metrics including Normal Consistency
(NC), Chamfer-L1 Distance (C-L1), F-Score (F), and IoU
for evaluation. For the threshold of F-Score, we use 1%
and 0.3% to make some comparisons more obvious. Addi-
tionally, we add the Percentage of Watertight Edges (WE)
and the Average Number of Triangles (N.T) to evaluate
the watertightness of meshes and the number of triangles
contained in meshes, respectively. The second is FA-
MOUSTHINGI dataset [51] and we use it to perform gener-
alization experiments. Following DSE [51], we use Cham-
fer Distance (CD), Normal Reconstruction Error (NR) and
WE as metrics. Since models in this dataset have a large
number of sharp edges, we additionally add Edge Chamfer
Distance (ECD) and Edge F-Score (EFS) [13] to evaluate
the preservation of sharp edges. The last is DTU [24]. Fol-
lowing SSRNet [43], we use CD, DTU Accuracy, and DTU
Completeness [24] as metrics. A detailed description can
be found in the supplementary.

14423

5K 3K 1K

Method C-L1 ↓ F(1%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k) C-L1 ↓ F(1%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k) C-L1 ↓ F(1%) ↑ NC ↑ WE ↑ IoU ↑ N.T(k)

Alpha shapes [16] 0.065 0.824 0.873 0.990 - 7.93 0.072 0.817 0.865 0.988 - 4.93 0.063 0.810 0.818 0.975 - 1.75
Ball pivoting [5] 0.031 0.947 0.934 0.877 - 8.81 0.036 0.929 0.915 0.877 - 5.31 0.052 0.862 0.872 0.878 - 1.78
ONet [42] 0.079 0.812 0.909 1.0 0.797 59.50 0.080 0.811 0.905 1.0 0.791 59.07 0.082 0.799 0.892 1.0 0.773 57.60
ConvONet [50] 0.052 0.943 0.934 1.0 0.849 55.45 0.052 0.940 0.933 1.0 0.846 54.92 0.063 0.900 0.917 1.0 0.810 53.39
PointTriNet [52] 0.024 0.992 0.952 0.903 - 9.59 0.027 0.981 0.937 0.891 - 5.75 0.042 0.906 0.886 0.845 - 1.89
IER Meshing [35] 0.036 0.957 0.900 0.800 - 12.43 0.043 0.925 0.875 0.717 - 9.29 0.063 0.810 0.803 0.737 - 5.50
SAP [49] 0.032 0.977 0.947 1.0 0.924 45.73 0.034 0.966 0.940 1.0 0.910 46.18 0.069 0.824 0.851 1.0 0.727 47.18
NDC [11] 0.049 0.943 0.948 0.986 - 64.92 0.053 0.933 0.938 0.974 - 60.97 0.076 0.822 0.894 0.892 - 34.48
SSRNet+ [61] 0.031 0.982 0.955 0.974 - 57.07 0.032 0.977 0.951 0.953 - 55.02 0.045 0.897 0.919 0.851 - 33.74
DSE [51] 0.024 0.991 0.947 0.974 - 9.99 0.027 0.980 0.930 0.957 - 5.99 0.044 0.898 0.894 0.901 - 1.98
DeepDT [38] 0.030 0.966 0.940 0.980 - 9.46 0.034 0.956 0.931 0.978 - 5.69 0.058 0.896 0.893 0.973 - 1.88
Poisson [27] 0.026 0.987 0.956 1.0 0.955 19.94 0.031 0.972 0.946 1.0 0.935 13.51 0.056 0.875 0.901 1.0 0.849 4.59
Ours 0.022 0.996 0.965 1.0 0.977 10.04 0.024 0.990 0.956 1.0 0.967 6.02 0.042 0.937 0.914 1.0 0.912 2.00

Table 2: Quantitative comparison for data with different densities on ShapeNet. ’-’ means that the data is not evaluated due
to the limitation of watertightness.

Implementation Details Unless otherwise stated, the num-
ber of reference locations (Nref) in our approach is set to 3,
and the λ1, λ2, and λ3 in loss function are set to 0.9, 0.1 and
1, respectively. In our point encoder, the number of nearest
neighbor points searched is set to 32. The learning rate is
set to 0.001 and decreases tenfold after 5 epochs.

4.2. Results

Reconstruction of Details ShapeNet contains a rich set of
models, and we sample 10K points uniformly on each of
them. We retrain all learning-based methods, but for ONet
and ConvONet, we use their given models because we can-
not train a better one.

Table 1 presents the quantitative evaluation results. As
an advantage of explicit methods respecting the input
points, they typically yield superior results in distance met-
rics and produce fewer triangles compared to methods based
on implicit representation. However, the inability to guar-
antee a watertight mesh remains a significant limitation. In
contrast, our DMNet well inherits the advantages of both
explicit methods and Delaunay triangulation, achieving the
best results across all performance metrics and ensuring wa-
tertight output meshes. The highest IoU value and the best
distance values represent the superior ability of our method
to reconstruct details.

Figure 5 presents a qualitative comparison of our method
with some state-of-the-art methods. Implicit representation
based methods, such as Poisson, ConvONet, SAP and SS-
RNet+, show great shortcomings in perceiving thin struc-
tures, while explicit methods tend to better preserve de-
tails. However, a significant number of artifacts are also
created by these explicit methods. Due to the limited local
shape perception, the lines generated by DSE are typically
open structures composed of discrete triangles, rather than
closed columnar structures. For similar reasons, DeepDT
generates many misclassifications of tetrahedrons in the de-
tails, resulting in numerous visually corrupting artifacts. In
contrast, our approach addresses these drawbacks by fo-

GTConv
ONet

Ball
pivoting

DS
E

Poiss
on

Deep
DT++

PointT
riNet

IER
Meshing

GTOursPoissonDSEIRE MeshingPointTriNetConvONet Ball Pivoting

GTOursPoissonDSEDeepDTNDCSSRNet+

Figure 6: Comparison on sparse 1K points. Our results
performs better reconstruction accuracy and completeness.

cusing on the learning of local structural representation.
This allows our approach to robustly distinguish geomet-
ric information between tetrahedrons inside and outside
the thin structures. Meaningfully, our approach learns to
pick some narrow acute triangles to aid in reconstructing
smooth columnar structures and edges. As a result, our
method reconstructs more complete models and smoother
lines without any smoothing post-processing. Furthermore,
our method has a fast running time (3.64s), which is one-
ninth of DSE (32.8s), and also achieves the best results for
non-uniformly sampled data. These are shown in the sup-
plementary.

Compatibility with Data of Various Density Adapting
point clouds of varying densities is also a great challenge
for a learning-based algorithm, especially for sparse point
clouds. We sample 5K, 3K, and 1K points on ShapeNet to
evaluate the compatibility with point density variations. In-
terestingly, all learning-based methods are trained on 10K
sampled points without retraining in the comparison, which
makes it difficult to challenge classical geometric algo-
rithms. Table 2 shows the quantitative comparison result,
where our method achieves the best results in almost every

14424

GTL-Method SSRNet+ Poisson Ours

Sc
an

 4
4

Sc
an

 4
4

_l
oc

al
Sc

an
 4

6
Sc

an
 4

6
_l

oc
al

Sc
an

 1
27

Sc
an

 1
27

_l
oc

al

DeepDT

GTSSRNet+ Poisson Ours

GTSSRNet+ Poisson Ours GTSSRNet+ Poisson Ours

Figure 7: Qualitative comparison results on DTU. For one
scene, we show two rows of results, where the lower row is
the clear local result of the upper row.

Method CD ↓ NR ↓ ECD ↓ EFS ↑ WE ↑
Alpha shapes [16] 1.064 17.69 0.854 0.153 0.983
Ball pivoting [5] 0.524 6.59 0.746 0.289 0.743
ConvONet [50] 2.436 24.13 2.210 0.004 1.0
PointTriNet [52] 0.331 5.54 0.443 0.338 0.917
IER Meshing [35] 0.343 6.30 0.445 0.335 0.947
SSRNet+ [61] 0.438 9.95 1.105 0.027 0.978
DSE [51] 0.329 5.34 0.726 0.342 0.996
DeepDT [38] 0.554 8.61 0.566 0.235 0.972
Poisson [27] 0.347 7.44 5.357 0.015 1.0
Ours 0.338 4.74 0.270 0.386 1.0

Table 3: Quantitative comparison on FAMOUSTHINGI.
The units of CD and ECD are both 10−2.

DA ↓ DC ↓ CD ↓
Method Mean Var. Mean Var. Mean RMS

L-Method [31] 0.524 1.612 0.377 0.596 0.745 35.840
DeepDT [38] 0.734 0.634 0.383 0.207 0.293 10.277
SSRNet [43] 0.321 0.285 0.304 0.0888 1.46 4.42
SSRNet+ [61] 0.310 0.236 0.335 0.105 1.29 3.97
Poisson [27] 0.330 0.441 0.345 0.438 1.17 4.49
Ours 0.272 0.114 0.259 0.054 0.025 0.363

Table 4: Quantitative results on DTU. DA = DTU Accuracy,
DC = DTU Completeness. CD is in units of 10-6.

metric. The qualitative results on 1K points are shown in
Figure 6. It can be seen that our DMNet is able to recon-
struct a structurally complete model even for sparse data.
This demonstrates an outstanding ability to adapt to point
density variations, which is difficult to achieve even for
geometric methods. More meaningfully, the reconstructed
smooth surfaces show that explicit methods have the poten-
tial to produce high-quality meshes without requiring any
smoothing post-processing, even if very few triangles are
used for sparse data (see N.T in Table 2).

Generalization Capability and Edge reconstruction We
generalize various methods over FAMOUSTHINGI dataset
to further investigate the ability of preserving sharp edges,
especially for unknown shapes. We sample 10K points uni-
formly for each model and all learning-based methods are
trained on ShapeNet. The comparison results are shown in
Table 3 and Figure 1. Satisfactorily, our method exhibits
an outstanding performance in preserving edge sharpness,
as demonstrated by ECD and EFS values that significantly
outperform those of other methods. While Poisson, SSR-
Net+ and ConvONet exhibit a significant gap with the ex-
plicit methods. The inherent smoothness of these implicit
methods makes it challenging for them to retain sharpness.
More visual comparisons are shown in the supplementary.

Challenging Large-scale Real Data We evaluate the scala-
bility of our method on the DTU dataset, where each scene
contains millions of scanned points. We use the first 30
scenes for training, 10 scenes for validation, and the rest
for testing. The maximum capacity of an octree leaf in our
method is set to 60K tetrahedrons. We impose a slight
Laplacian smoothing [56] like SSRNet and SSRNet+ in
this experiment, which does not increase the details our
method preserves, simply to get a better visual effect. We
still add DeepDT as a comparison, although it has no scal-
ability. Therefore, for consistency with its paper [38], each
point cloud is downsampled to 200K points for its training
and testing. Table 4 reports the quantitative results, where
our method outperforms SSRNet and SSRNet+, the state-
of-the-art learning-based methods we know for processing
large-scale data. Figure 7 shows the qualitative results.
Benefiting from our scaling strategy, our method exhibits
exceptional performance in handling scans with millions of
points, retaining rich fine-grained details. In contrast, Pois-
son presents an overly smooth surface that results in loss
of many details, such as columns on the windows, due to
the inherent smoothness of implicit function. Our excel-
lent results on large-scale real data further illustrate that our
method well explores the reconstruction potential of Delau-
nay triangulation.

4.3. Analysis

Ablation Studies In this section, we evaluate the perfor-
mance impact of each major module in our approach, as
presented in Table 5. Firstly, we consider the performance
improvement that the proposed local graph iteration algo-
rithm brings in comparison to GCN [29]. Following the
replacement, the performance of our method significantly
declines, indicating that edge information in the graph is im-
portant and that node-edge interaction aids in effective ag-
gregation of neighborhood information by nodes. Secondly,
we construct multi-level geometric features for the graph by
combining points, triangles, and tetrahedrons in a fully local

14425

w/o LGI
w/ GCN

feature
encoder*

w/o offset
distance

w/o manual
features

w/o shape
constraint base

C-L1 ↓ 0.0230 0.0252 0.0221 0.0214 0.0210 0.0206
F(0.3%) ↑ 0.776 0.758 0.787 0.798 0.801 0.804

Table 5: Ablation experiments of our method on ShapeNet.
LGI represents our Local Graph Iteration algorithm. * rep-
resents the module replacement with DeepDT.

manner. In contrast, DeepDT focuses on tangent plane fea-
tures between points. To compare the two manners of graph
feature encoding, we replace our method’s feature encoder
with that of DeepDT. The result shows an even greater per-
formance decline, indicating that focusing on structural rep-
resentation can capture more local geometric information
and contribute to better tetrahedron classification. Thirdly,
to assess the significance of the local coordinate transforma-
tion in our structural feature encoder, we replace the offset
distances of vertices with their original coordinates. The
resulting performance degradation demonstrates the impor-
tance of this transformation in effectively embedding ver-
tex features into the structural representation. Finally, we
remove the designed manual features in our structural en-
coder and the shape constraint loss, respectively. We ob-
serve that each of these changes leads to a degradation in
performance.

Limitations We show the experiments for noisy data with
two standard deviations including 0.5% and 1% in the
supplementary. Although the results demonstrate that our
method remains robust in maintaining model integrity in
the face of noisy data, it inevitably requires a smoothing
post-processing to produce better visual results when deal-
ing with high-intensity noise. This is a common problem
for explicit methods since the vertices of output meshes are
derived from the input noisy points. It would be a good
direction to combine mesh deformation in future work.

5. Conclusion
We propose a novel data-driven method with Delaunay

triangulation of point clouds for surface reconstruction, giv-
ing an effective solution to preserve fine-grained details and
deal with data of different densities. The special feature
construction and Local Graph Iteration algorithm make our
method have a powerful ability to capture local details. The
scaling strategy allows our approach to be applied to the
reconstruction of millions of points. Experiments demon-
strate the effectiveness of our method in tackling some re-
construction challenges, such as thin structures, sharp edges
and large-scale real data. We hope that our method could in-
spire more learning-based methods to explore the applica-
tion value of Delaunay triangulation in surface reconstruc-
tion, contributing to high-quality reconstruction.

6. Acknowledgements
This work was supported by the National Natural Sci-

ence Foundation of China under Grants 62176096 and
61991412.

References
[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar

Fleishman, David Levin, and Claudio T. Silva. Computing
and rendering point set surfaces. IEEE Transactions on visu-
alization and computer graphics, 9(1):3–15, 2003.

[2] Nina Amenta and Marshall Bern. Surface reconstruction
by voronoi filtering. Discrete & Computational Geometry,
22(4):481–504, 1999.

[3] Tristan Aumentado-Armstrong, Stavros Tsogkas, Sven
Dickinson, and Allan D Jepson. Representing 3d shapes
with probabilistic directed distance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19343–19354, 2022.

[4] Matthew Berger, Andrea Tagliasacchi, Lee M Seversky,
Pierre Alliez, Gael Guennebaud, Joshua A Levine, Andrei
Sharf, and Claudio T Silva. A survey of surface reconstruc-
tion from point clouds. In Computer Graphics Forum, vol-
ume 36, pages 301–329. Wiley Online Library, 2017.

[5] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,
Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-
rithm for surface reconstruction. IEEE transactions on visu-
alization and computer graphics, 5(4):349–359, 1999.

[6] Jean-Daniel Boissonnat and Bernhard Geiger. Three-
dimensional reconstruction of complex shapes based on the
delaunay triangulation. In Biomedical image processing and
biomedical visualization, volume 1905, pages 964–975. In-
ternational Society for Optics and Photonics, 1993.

[7] Ruud M. Bolle and Baba C. Vemuri. On three-dimensional
surface reconstruction methods. IEEE Transactions on Pat-
tern Analysis & Machine Intelligence, 13(01):1–13, 1991.

[8] Alexandre Boulch and Renaud Marlet. Poco: Point con-
volution for surface reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6302–6314, 2022.

[9] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J
Mitchell, W Richard Fright, Bruce C McCallum, and Tim R
Evans. Reconstruction and representation of 3d objects with
radial basis functions. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques,
pages 67–76, 2001.

[10] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[11] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and
Hao Zhang. Neural dual contouring. ACM Transactions on
Graphics (TOG), 41(4):1–13, 2022.

[12] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF

14426

Conference on Computer Vision and Pattern Recognition,
pages 5939–5948, 2019.

[13] Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM
Transactions on Graphics (TOG), 40(6):1–15, 2021.

[14] Julian Chibane, Gerard Pons-Moll, et al. Neural unsigned
distance fields for implicit function learning. Advances in
Neural Information Processing Systems, 33:21638–21652,
2020.

[15] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.
On the effectiveness of weight-encoded neural implicit 3d
shapes. arXiv preprint arXiv:2009.09808, 2020.

[16] Herbert Edelsbrunner and Ernst P Mücke. Three-
dimensional alpha shapes. ACM Transactions on Graphics
(TOG), 13(1):43–72, 1994.

[17] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J
Mitra, and Michael Wimmer. Points2surf learning implicit
surfaces from point clouds. In European Conference on
Computer Vision, pages 108–124. Springer, 2020.

[18] Fabien Evrard, Fabian Denner, and Berend Van Wachem.
Surface reconstruction from discrete indicator functions.
IEEE Transactions on Visualization and Computer Graph-
ics, 25(3):1629–1635, 2018.

[19] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4857–
4866, 2020.

[20] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7154–7164, 2019.

[21] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In International Conference on Machine Learning,
pages 3789–3799. PMLR, 2020.

[22] M Jancosek and T Pajdla. Multi-view reconstruction pre-
serving weakly-supported surfaces. In Proceedings of the
2011 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3121–3128, 2011.

[23] Michal Jancosek and Tomas Pajdla. Exploiting visibility in-
formation in surface reconstruction to preserve weakly sup-
ported surfaces. International scholarly research notices,
2014, 2014.

[24] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,
and Henrik Aanæs. Large scale multi-view stereopsis eval-
uation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 406–413, 2014.

[25] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, Thomas Funkhouser, et al. Local
implicit grid representations for 3d scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6001–6010, 2020.

[26] Michael Kazhdan. Reconstruction of solid models from ori-
ented point sets. In Proceedings of the third Eurographics
symposium on Geometry processing, pages 73–es, 2005.

[27] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006.

[28] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (ToG),
32(3):1–13, 2013.

[29] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[30] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F O’Brien. Spectral surface reconstruction from noisy
point clouds. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 11–
21, 2004.

[31] Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven.
Efficient multi-view reconstruction of large-scale scenes us-
ing interest points, delaunay triangulation and graph cuts. In
2007 IEEE 11th international conference on computer vi-
sion, pages 1–8. IEEE, 2007.

[32] Patrick Labatut, J-P Pons, and Renaud Keriven. Robust and
efficient surface reconstruction from range data. In Com-
puter graphics forum, volume 28, pages 2275–2290. Wiley
Online Library, 2009.

[33] Shiwei Li, Yao Yao, Tian Fang, and Long Quan. Recon-
structing thin structures of manifold surfaces by integrat-
ing spatial curves. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2887–
2896, 2018.

[34] Seng Poh Lim and Habibollah Haron. Surface reconstruc-
tion techniques: a review. Artificial Intelligence Review,
42(1):59–78, 2014.

[35] Minghua Liu, Xiaoshuai Zhang, and Hao Su. Meshing point
clouds with predicted intrinsic-extrinsic ratio guidance. In
European Conference on Computer Vision, pages 68–84.
Springer, 2020.

[36] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang,
Xin Tong, and Yang Liu. Deep implicit moving least-
squares functions for 3d reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1788–1797, 2021.

[37] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987.

[38] Yiming Luo, Zhenxing Mi, and Wenbing Tao. Deepdt:
Learning geometry from delaunay triangulation for surface
reconstruction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 2277–2285, 2021.

[39] Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Neural-pull: Learning signed distance functions
from point clouds by learning to pull space onto surfaces.
arXiv preprint arXiv:2011.13495, 2020.

[40] Baorui Ma, Yu-Shen Liu, Matthias Zwicker, and Zhizhong
Han. Surface reconstruction from point clouds by learning
predictive context priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6326–6337, 2022.

14427

[41] Josiah Manson, Guergana Petrova, and Scott Schaefer.
Streaming surface reconstruction using wavelets. In Com-
puter Graphics Forum, volume 27, pages 1411–1420. Wiley
Online Library, 2008.

[42] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4460–4470, 2019.

[43] Zhenxing Mi, Yiming Luo, and Wenbing Tao. Ssrnet: Scal-
able 3d surface reconstruction network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 970–979, 2020.

[44] Christian Mostegel and Markus Rumpler. Robust surface re-
construction from noisy point clouds using graph cuts. Tech-
nical report, 2012.

[45] Yukie Nagai, Yutaka Ohtake, and Hiromasa Suzuki. Smooth-
ing of partition of unity implicit surfaces for noise robust
surface reconstruction. In Computer Graphics Forum, vol-
ume 28, pages 1339–1348. Wiley Online Library, 2009.

[46] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Sei-
del. 3d scattered data interpolation and approximation with
multilevel compactly supported rbfs. Graphical Models,
67(3):150–165, 2005.

[47] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross.
Feature preserving point set surfaces based on non-linear
kernel regression. In Computer graphics forum, volume 28,
pages 493–501. Wiley Online Library, 2009.

[48] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019.

[49] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A dif-
ferentiable poisson solver. Advances in Neural Information
Processing Systems, 34:13032–13044, 2021.

[50] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In European Conference on Computer Vision,
pages 523–540. Springer, 2020.

[51] Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman,
Niloy J Mitra, and Maks Ovsjanikov. Learning delaunay
surface elements for mesh reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22–31, 2021.

[52] Nicholas Sharp and Maks Ovsjanikov. Pointtrinet: Learned
triangulation of 3d point sets. In European Conference on
Computer Vision, pages 762–778. Springer, 2020.

[53] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020.

[54] Raphael Sulzer, Loic Landrieu, Renaud Marlet, and Bruno
Vallet. Scalable surface reconstruction with delaunay-graph
neural networks. In Computer Graphics Forum, volume 40,
pages 157–167. Wiley Online Library, 2021.

[55] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

[56] Gabriel Taubin. A signal processing approach to fair surface
design. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 351–
358, 1995.

[57] Greg Turk and Marc Levoy. Zippered polygon meshes from
range images. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, pages
311–318, 1994.

[58] Greg Turk and James F O’brien. Modelling with implicit
surfaces that interpolate. ACM Transactions on Graphics
(TOG), 21(4):855–873, 2002.

[59] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. Ad-
vances in neural information processing systems, 29, 2016.

[60] Cheng Chun You, Seng Poh Lim, Seng Chee Lim, Joi
San Tan, Chen Kang Lee, and Yen Min Jasmina Khaw. A
survey on surface reconstruction techniques for structured
and unstructured data. In 2020 IEEE Conference on Open
Systems (ICOS), pages 37–42. IEEE, 2020.

[61] Ganzhangqin Yuan, Qiancheng Fu, Zhenxing Mi, Yiming
Luo, and Wenbing Tao. Ssrnet: Scalable 3d surface recon-
struction network. IEEE Transactions on Visualization and
Computer Graphics, 2022.

[62] Yang Zhou, Shuhan Shen, and Zhanyi Hu. Detail pre-
served surface reconstruction from point cloud. Sensors,
19(6):1278, 2019.

14428

