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Abstract

Video instance segmentation (VIS) is a critical task with
diverse applications, including autonomous driving and
video editing. Existing methods often underperform on
complex and long videos in real world, primarily due to
two factors. Firstly, offline methods are limited by the
tightly-coupled modeling paradigm, which treats all frames
equally and disregards the interdependencies between ad-
jacent frames. Consequently, this leads to the introduc-
tion of excessive noise during long-term temporal align-
ment. Secondly, online methods suffer from inadequate
utilization of temporal information. To tackle these chal-
lenges, we propose a decoupling strategy for VIS by di-
viding it into three independent sub-tasks: segmentation,
tracking, and refinement. The efficacy of the decoupling
strategy relies on two crucial elements: 1) attaining pre-
cise long-term alignment outcomes via frame-by-frame as-
sociation during tracking, and 2) the effective utilization of
temporal information predicated on the aforementioned ac-
curate alignment outcomes during refinement. We introduce
a novel referring tracker and temporal refiner to construct
the Decoupled VIS framework (DVIS). DVIS achieves new
SOTA performance in both VIS and VPS, surpassing the
current SOTA methods by 7.3 AP and 9.6 VPQ on the
OVIS and VIPSeg datasets, which are the most challeng-
ing and realistic benchmarks. Moreover, thanks to the de-
coupling strategy, the referring tracker and temporal re-
finer are super light-weight (only 1.69% of the segmenter
FLOPs), allowing for efficient training and inference on a
single GPU with 11G memory. The code is available at
https://github.com/zhang-tao-whu/DVIS.

1. Introduction
Video Instance Segmentation (VIS) is a critical computer

vision task that involves identifying, segmenting, and track-

ing all interested instances in a video simultaneously. This

task was first introduced in [31]. The importance of VIS lies
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Figure 1. Pipelines of previous offline (a), online (b), and pro-
posed DVIS (c) frameworks. Unlike previous methods that rely

on tightly coupled networks, DVIS consists of independent com-

ponents, including a segmenter, a referring tracker, and a temporal

refiner.

in its ability to facilitate many downstream computer vision

applications, such as online autonomous driving and offline

video editing.

Previous studies [12, 6, 28, 10] have demonstrated suc-

cessful performance validation on videos with short dura-

tions and simple scenes [31]. However, in real-world sce-

narios, videos often present highly complex scenes, severe

instance occlusions, and prolonged durations [21]. As a re-

sult, these approaches [12, 6, 28, 10] have exhibited poor

performance on videos [21] that are more representative of

real-world scenarios.

We believe that the fundamental reason for the failure

of the aforementioned methods [12, 6, 28, 10] lies in the

assumption that a coupled network can effectively predict

the video segmentation results for any video, irrespective

of its length, scene complexity, or instance occlusion lev-
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els. In the case of lengthy videos (e.g. 100 seconds and

500 frames), with intricate scenes, the same instance may

exhibit significant variations in position, shape, and size be-

tween the first and last frames [21]. Even for experienced

humans, accurately associating the same instance in two

frames that are separated by a considerable interval is chal-

lenging without observing its gradual transformation tra-

jectory over time. Therefore, the alignment/tracking dif-

ficulty is significantly increased in complex scenarios and

lengthy videos, and even cutting-edge methods such as [5]

face challenges in achieving convergence [11].

To tackle the aforementioned challenges, we propose to

decouple the VIS task into three sub-tasks that are indepen-

dent of video length and complexity: segmentation, track-

ing, and refinement. Segmentation aims to extract all ap-

pearing objects and obtain their representations from a sin-

gle frame. Tracking aims to link the same object between

adjacent frames. Refinement utilizes all temporal informa-

tion of the object to optimize both segmentation and associ-

ation results. Thus we have our decoupled VIS framework,

as illustrated in Figure 1 (c). It contains three separate and

independent components, i.e., a segmenter, a tracker, and a

refiner. Given the extensive research on the segmenter in the

field of image instance segmentation, our focus is to design

an effective tracker for robustly associating objects across

adjacent frames and a refiner for improving the quality of

segmentation and tracking.

To achieve effective instance association, we propose

the following principles: (1) encourage sufficient interac-

tion between instance representations of adjacent frames to

fully exploit their similarity for better association. (2) avoid

mixing their information during the interaction process to

prevent introducing indistinguishable noise that may inter-

fere with the association results. Current SOTA methods,

such as [29, 11], violate principle 1 by utilizing heuris-

tic algorithms to match adjacent frame instance represen-

tations without any interaction, resulting in a significant

performance gap compared to our method. While [9, 35]

achieve interaction between instance representations of ad-

jacent frames by passing instance representations, they vio-

late principle 2. Following both principles, we designed the

Referring Cross Attention (RCA) module, which serves as

the core component of our highly effective referring tracker.

RCA is a modified version of standard cross-attention [4]

that introduces identification to avoid the blending of in-

stance representations in consecutive frames and efficiently

utilize their similarities. We further propose a novel tempo-

ral refiner that leverages 1D convolution and self-attention

to effectively integrate temporal information, and cross-

attention to correct instance representations.

An decoupled VIS framework, called DVIS, is then nat-

urally constructed by combining the segmenter, the refer-

ring tracker, and the temporal refiner. DVIS achieves new

SOTA performance on all the VIS datasets, surpassing pre-

vious SOTA method [29] by 7.3 AP on the most challenging

OVIS dataset [21]. Additionally, DVIS can be seamlessly

extended to other video segmentation tasks, such as video

panoptic segmentation (VPS) [13], without any modifica-

tion. DVIS also achieves new SOTA performance on the

video panoptic segmentation dataset VIPSeg [20], surpass-

ing previous SOTA method [1] by 9.6 VPQ. DVIS achieved

1st place in the VPS Track of the PVUW challenge at

CVPR 2023.

Our decoupling strategy not only significantly improves

the performance of video segmentation, but also dramati-

cally reduces hardware resource requirements. Specifically,

our proposed tracker and refiner operate exclusively on the

instance representations output by the segmenter, avoiding

the significant computational cost associated with interact-

ing with image features. As a result, the computation cost

of the tracker and refiner is negligible (only 5.18%/1.69%

of the segmenter with R50/Swin-L backbone). Thanks to

the decoupling design of the VIS task and framework, the

tracker and refiner can be trained separately while keeping

other components frozen. These advantages allow DVIS to

be trained on a single GPU with 11G memory.

In summary , our main contributions are:

• We investigate the failure reasons of current methods

on complex and lengthy real-world videos, and we ad-

dress these challenges by introducing a novel decou-

pling strategy for VIS, which involves decomposing it

into three decoupled sub-tasks: segmentation, track-

ing, and refinement.

• Following the decoupling strategy, we propose DVIS,

which includes a simple yet effective referring tracker

and temporal refiner to produce precision alignment

results and efficiently utilize temporal information, re-

spectively.

• DVIS achieves new SOTA performance in both VIS

and VPS, as validated on five major benchmarks:

OVIS [21], YouTube-VIS [31] 2019, 2021, and 2022,

as well as VIPSeg [20]. Notably, DVIS significantly

reduces the resources required for video segmentation,

enabling efficient training and inference on a single

GPU with 11G memory.

2. Related Works
Online Video Instance Segmentation. Most main-

stream online VIS methods follow a pipeline of segment-

ing and associating instances. MaskTrack R-CNN [31] in-

corporates a tracking head based on [8] and associates in-

stances in adjacent frames using multiple cues such as simi-

larity score, semantic consistency, spatial correlation, and

detection confidence. [3] replaces the segmenter in the
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above pipeline with a one-stage instance segmentation net-

work. [32] proposes a crossover learning scheme that seg-

ments the same instances in another frame using the in-

stance features of the current frame. With stronger seg-

menters and the widespread application of transformers in

vision tasks [6, 4, 33], recent works such as [11, 29, 34]

have achieved outstanding performance. [11] proposes a

minimal VIS framework based on [6] that achieves in-

stance association by measuring the similarity between the

same instances in adjacent frames. [29, 34] introduce con-

trastive learning in VIS to obtain a more discriminative in-

stance representation. [35, 9] completely remove heuris-

tic matching algorithms by delivering instance representa-

tions and modeling inter-frame association. Inspired by

[30, 9, 11, 19], DVIS also performs tracking based on in-

stance representations, which significantly reduces mem-

ory requirements. Our proposed DVIS introduces a novel

component called the referring tracker, which models inter-

frame association by denoising current instance representa-

tions with the help of previous frame instance representa-

tions.

Offline Video Instance Segmentation. Previous offline

video instance segmentation (VIS) methods have used var-

ious approaches to model the spatio-temporal representa-

tions of instances in the video. In [2], instance spatio-

temporal embeddings are modeled using a 3D CNN. The

first transformer-based VIS architecture proposed in [26]

uses learnable initial embeddings for each instance of each

frame, making it challenging to model instances with com-

plex motion trajectories. [12] introduces inter-frame com-

munication, which reduces computation and memory over-

head while improving performance. By directly mod-

eling a video-level representation for each instance, [5]

achieves impressive results. [28] constructs a VIS frame-

work based on deformable attention [36] to separate tem-

poral and spatial interactions between instance representa-

tions and videos. To significantly reduce memory consump-

tion and enable offline methods to handle long videos, [10]

constructs the video-level instance representation from the

instance representations of each frame. While [9] imple-

ments a semi-online VIS framework by replacing frames

with clips, no significant gains were observed compared to

the online version. The current SOTA methods for VIS have

been demonstrated to overlook the importance of the refine-

ment sub-task. Specifically, the refinement process has been

neglected by [29, 11, 35, 9], while [12, 5, 28, 10] exhibit a

lack of clear separation between refinement and other as-

pects of the segmentation and tracking sub-tasks. Our pro-

posed DVIS achieves SOTA performance by decoupling the

VIS task and designing an efficient temporal refiner to fully

utilize the information of the overall video.

3. Method
By reflecting on and summarizing the shortcomings of

[11, 10], we have proposed DVIS, a novel decoupled frame-

work for VIS that consists of three independent compo-

nents: a segmenter, a referring tracker, and a temporal

refiner, illustrated in Figure 1(c). Specifically, we use

Mask2Former [6] as the segmenter in DVIS. The referring

tracker is introduced in Section 3.1, while the temporal re-

finer is presented in Section 3.2.

3.1. Referring Tracker

The referring tracker models the inter-frame association

as a referring denoising task. The referring cross-attention

is the core component of the referring tracker that effec-

tively utilizes the similarity between instance representa-

tions of adjacent frames while avoiding their mixture.

Architecture. Figure 2 illustrates the architecture of the

referring tracker. It takes in the instance queries {Qi
seg|i ∈

[1, T ]} generated by the segmenter and outputs the instance

queries {Qi
Tr|i ∈ [1, T ]} corresponding to the instances in

the previous frame for the current frame, where T is the

length of the video. Firstly, the hungarian matching algo-

rithm [14] is employed to match Qseg of adjacent frames,

as is done in [11]:{
Q̃i

seg = Hungarian(Q̃i−1
seg , Q

i
seg), i ∈ [2, T ]

Q̃i
seg = Qi

seg, i = 1
, (1)

where Q̃seg is the matched intance queries of the segmenter.

The hungarian matching algorithm is not strictly necessary

and omitting it results in only a slight performance degrada-

tion, as shown in Section 4.2. Q̃seg can be considered as the

tracking result with noise and serves as the initial query for

the referring tracker. To denoise the initial query Q̃i
seg of the

current frame, the online tracker uses the denoised instance

queries Qi−1
Tr from the previous frame as a reference.

The objective of the referring tracker is to refine the ini-

tial value with noise, which may contain incorrect tracking

results, and produce accurate tracking results. The referring

tracker comprises a sequence of L transformer denoising

blocks, each of which consists of a referring cross-attention,

a standard self-attention, and a feedforward network (FFN).

The referring cross-attention (RCA) is a crucial compo-

nent of the denoising block, designed to capture the corre-

lation between the current frame and its historical frames.

Since the instance representations in adjacent frames are

highly similar but differ in position, shape, size, etc., using

the previous frame’s instance representation as the initial

instance representation for the current frame (as done by

[35, 9]) can introduce ambiguous information that makes

the denoising task more difficult. RCA overcomes this is-

sue by introducing identification (ID), while still effectively

utilizing the similarity between the query (Q) and key (K) to
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Figure 2. The framework of the referring tracker. The instance representations output by the segmenter (Qseg) and referring tracker

(QTr) are represented by squares and triangles, respectively. Instances with the same ID are assigned the same color.

generate the correct output. As shown in Figure 2, RCA is

inspired by [23] and differs only slightly from the standard

cross-attention:

RCA(ID,Q,K, V ) = ID +MHA(Q,K, V ). (2)

MHA refers to Multi-Head Attention [25], while ID, Q,

K, and V denote identification, query, key, and value, re-

spectively.

Finally, the denoised instance query QTr is utilized as an

input for the class head and mask head, which produce the

category and mask coefficient output, respectively.

Losses. The referring tracker tracks instances frame by

frame, and as such, the network is supervised using a loss

function that aligns with this paradigm. Specifically, the

instance label and prediction ŷTr are only matched on the

frame where the instance first appears. To expedite conver-

gence during the early training phase, the prediction of the

frozen segmenter ŷseg is used for matching instead of the

referring tracker’s prediction.⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ̂ = argmin

σ

N∑
i=1

Lmatch(y
f(i)
i , ŷ

f(i)
σ(i))

ŷ = ŷTr if Iter ≥ Max Iter

2
else ŷseg

, (3)

where f(i) represents the frame in which the i-th instance

first appears. Lmatch(y
f(i)
i , ŷ

f(i)
σ(i)) is a pair-wise matching

cost, as used in [5], between the ground truth y and the pre-

diction ŷ having index σ(i) on the f(i) frame.

The loss function L is exactly the same as that in [5].

LTr =

T∑
t=1

N∑
i=1

L(yti , ŷtσ̂(i)). (4)

3.2. Temporal Refiner

The failure of previous offline video instance segmenta-

tion methods can mainly be attributed to the challenge of
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Figure 3. The framework of the temporal refiner. Instance

representations for each frame (QRf ) are denoted by pentagons,

while the instance representations for the entire video (Q̂Rf ) are

denoted by circles. Different colors indicate different instance IDs.

effectively leveraging temporal information in highly cou-

pled networks. Additionally, previous online video instance

segmentation methods lacked a refinement step. To address

these issues, we developed an independent temporal refiner

to effectively utilize information from the entire video and

refine the output of the referring tracker.

Architecture. Figure 3 shows the architecture of the

temporal refiner. It takes the instance query QTr output

from the referring tracker as input and outputs the instance

query QRf after fully aggregating the overall information of

the video. The temporal refiner is composed of L temporal

decoder blocks that are cascaded together. Each temporal

decoder block consists of two main components, namely the
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short-term temporal convolution block and the long-term

temporal attention block. The short-term temporal convolu-

tion block exploits motion information while the long-term

temporal attention block exploits information from the en-

tire video. These blocks are implemented using 1D con-

volution and standard self-attention, respectively, and both

operate in the time dimension.

Lastly, the mask coefficients for each instance in each

frame are predicted by the mask head based on the refined

instance query QRf . The class head predicts the category

and score for each instance across the entire video, using

the temporal weighting of QRf . The temporal weighting

process can be defined as follows:

Q̂Rf =

T∑
t=1

SoftMax(Linear(Qt
Rf ))Q

t
Rf , (5)

where Q̂Rf is the temporal weighting of QRf .

Losses. The same matching cost and loss functions as

[5] are used to supervise the temporal refiner during train-

ing. The segmenter and referring tracker are frozen during

training, and therefore the referring tracker’s prediction re-

sults are used for matching in the early training phase to

guide the network towards faster convergence.⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ̂ = argmin

σ

N∑
i=1

Lmatch(yi, ŷσ(i))

ŷ = ŷRf if Iter ≥ Max Iter

2
else ŷTr

, (6)

where ŷRf is the prediction result of the temporal refiner.

The loss function is:

LRf =

N∑
i=1

L(yi, ŷσ̂(i)). (7)

4. Experiments
We evaluate the performance of DVIS for VIS on the

OVIS [21], YouTube VIS 2019, 2021, and 2022 [31]

datasets, and for VPS on the VIPSeg [20] dataset. In Ap-

pendix, the descriptions of these datasets can be found in

Section A, while implementation details, including network

training and inference settings, are provided in Section B.

4.1. Main Results

We compare DVIS with current SOTA online and offline

VIS methods on the OVIS, YouTube-VIS 2019, 2021, and

2022 datasets. When compared with online methods, DVIS

will discard the temporal refiner as it utilizes information

from future frames, in order to maintain a fair comparison.

The results are reported in Tables 1, 2, and 3, respectively.

We adopt MinVIS [11] as our baseline because DVIS is es-

sentially identical to MinVIS after removing the referring

Method
OVIS

AP AP50 AP75 AR1 AR10

O
n

li
n

e
R

es
N

et
5

0

MaskTrack R-CNN [31] 10.8 25.3 8.5 7.9 14.9

CMaskTrack R-CNN [21] 15.4 33.9 13.1 9.3 20.0

CrossVIS [32] 14.9 32.7 12.1 10.3 19.8

VISOLO [7] 15.3 31.0 13.8 11.1 21.7

MinVIS [11] 25.0 45.5 24.0 13.9 29.7

MinVIS† [11] 26.4 49.6 25.2 13.3 31.1

IDOL [29] 28.2 51.0 28.0 14.5 38.6
IDOL† [29] 30.2 51.3 30.0 15.0 37.5

ROVIS [35] 30.2 53.9 30.1 13.6 36.3

Ours 30.2 55.0 30.5 14.5 37.3

Ours† 31.0 54.8 31.9 15.2 37.6

S
w

in
-L

MinVIS [11] 39.4 61.5 41.3 18.1 43.3

MinVIS† [11] 41.6 65.2 42.8 19.3 45.1

IDOL [29] 40.0 63.1 40.5 17.6 46.4

IDOL† [29] 42.6 65.7 45.2 17.9 49.6

ROVIS [35] 41.6 65.0 42.9 18.7 46.9

ROVIS† [35] 42.6 64.7 42.6 18.4 49.1

GenVis� [9] 45.2 69.1 48.4 19.1 48.6

Ours 45.9 71.1 48.3 18.5 51.5

Ours† 47.1 71.9 49.2 19.4 52.5
O

ffl
in

e R
es

N
et

5
0

IFC [12] 13.1 27.8 11.6 9.4 23.9

SeqFormer [28] 15.1 31.9 13.8 10.4 27.1

Mask2Former-VIS [5] 17.3 37.3 15.1 10.5 23.5

VITA� [10] 19.6 41.2 17.4 11.7 26.0

Ours 33.8 60.4 33.5 15.3 39.5

Ours† 34.1 59.8 32.3 15.9 41.1

S
w

in
-L

VITA� [10] 27.7 51.9 24.9 14.9 33.0

Mask2Former-VIS [5] 25.8 46.5 24.4 13.7 32.2

GenVIS� [9] 45.4 69.2 47.8 18.9 49.0

MDQE† [15] 42.6 67.8 44.3 18.3 46.5

Ours 48.6 74.7 50.5 18.8 53.8

Ours† 49.9 75.9 53.0 19.4 55.3
Table 1. Results on the OVIS validation set. † denotes training

and evaluation at 720px. � denotes using COCO pseudo videos.

The best metrics in each group are bolded.

tracker and temporal refiner. We also compare DVIS with

current SOTA methods for VPS, and the results are shown

in Table 4. The visualization of DVIS’s prediction results

on these datasets is available in Figures I, II, and III of the

Appendix.

Performance on the OVIS Dataset. In online mode,

DVIS achieves 31.0 AP with ResNet50 and 47.1 AP with

Swin-L on the OVIS validation set, outperforming the base-

line MinVIS [11] by 4.6 AP and 5.5 AP, respectively. The

referring tracker has shown significant performance gains,

especially for medium and heavily occluded objects, as dis-

cussed in Section 4.2. DVIS outperforms the current SOTA

online VIS methods IDOL [29] and RO-VIS [35] by 4.5

AP. This demonstrates the successful design of the referring

tracker for robust tracking results particularly in heavily oc-

cluded scenarios.
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Method Backbone
Youtube-VIS 2019 Youtube-VIS 2021

AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

O
n

li
n

e

MaskTrack R-CNN [31] ResNet-50 30.3 51.1 32.6 31.0 35.5 28.6 48.9 29.6 26.5 33.8

SipMask [3] ResNet-50 33.7 54.1 35.8 35.4 40.1 31.7 52.5 34.0 30.8 37.8

CrossVIS [32] ResNet-50 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2

VISOLO [7] ResNet-50 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9

MinVIS [11] ResNet-50 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7

IDOL [29] ResNet-50 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9

Ours ResNet-50 51.2 73.8 57.1 47.2 59.3 46.4 68.4 49.6 39.7 53.5
MinVIS [11] Swin-L 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8

IDOL [29] Swin-L 64.3 87.5 71.0 55.6 69.1 56.1 80.8 63.5 45.0 60.1

Ours Swin-L 63.9 87.2 70.4 56.2 69.0 58.7 80.4 66.6 47.5 64.6

O
ffl

in
e

EfficientVIS [30] ResNet-50 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5

IFC [12] ResNet-50 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9

Mask2Former-VIS [5] ResNet-50 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -

SeqFormer [28] ResNet-50 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1

VITA [10] ResNet-50 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6

Ours ResNet-50 52.6 76.5 58.2 47.4 60.4 47.4 71.0 51.6 39.9 55.2
SeqFormer [28] Swin-L 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1

Mask2Former-VIS [5] Swin-L 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -

VITA [10] Swin-L 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6

Ours Swin-L 64.9 88.0 72.7 56.5 70.3 60.1 83.0 68.4 47.7 65.7
Table 2. Results on the validation set of YouTube-VIS 2019 & 2021. The best metrics in each group are bolded.

Method
YouTube-VIS 2022

AP AP50 AP75 AR1 AR10

S
w

in
-L VITA [10] 41.1 63.0 44.0 39.3 44.3

MinVIS [11] 33.1 54.8 33.7 29.5 36.6

Ours 45.9 69.0 48.8 37.2 51.8
Table 3. Results on the YouTube-VIS 2022 long videos. The best

metrics in each group are bolded.

Method
VIPSeg

VPQ VPQTh VPQSt STQ

R50

VPSNet [13] 14.0 14.0 14.2 20.8

VPSNet-SiamTrack [27] 17.2 17.3 17.3 21.1

VIP-Deeplab [22] 16.0 12.3 18.2 22.0

Clip-PanoFCN [20] 22.9 25.0 20.8 31.5

Video K-Net [17] 26.1 - - 31.5

TarVIS [1] 33.5 39.2 28.5 43.1
Tube-Link [16] 39.2 - - 39.5

Video-kMax [24] 38.2 - - 39.9

Ours 43.2 43.6 42.8 42.8

Swin-L
TarVIS [1] 48.0 58.2 39.0 52.9

Ours 57.6 59.9 55.5 55.3
Table 4. Results on the VIPSeg dataset. The best metrics in each

group are bolded.

In offline mode, DVIS achieves 34.1 AP with ResNet50

and 49.9 AP with Swin-L on the OVIS validation set, sur-

passing DVIS running in online mode by 3.1 AP and 2.8

AP, respectively. More impressively, DVIS outperforms the

baseline MinVIS by 8.3 AP. Additionally, DVIS surpasses

the previous pure offline VIS methods Mask2Former-VIS

[5] and VITA [10] by 24.1 AP and 22.2 AP, respectively.

Thus, DVIS achieves a new SOTA performance, demon-

strating the superiority of the decoupled framework in com-

plex scenarios compared to the previous coupled frame-

work.

Performance on the YouTube-VIS 2019 and 2021
Datasets. In online mode, DVIS achieved 51.2 AP with

ResNet50 and 63.9 AP with Swin-L on the YouTube-VIS

2019 validation set, outperforming MinVIS [11] by 3.8 AP

and 2.3 AP, respectively. For YouTube-VIS 2021 validation

set, DVIS achieved 46.4 AP with ResNet50 and 58.7 AP

with Swin-L in online mode, outperforming MinVIS [11]

by 2.2 AP and 3.4 AP, respectively. On the YouTube-VIS

datasets, DVIS running in online mode shows comparable

performance with the current SOTA method IDOL [29].

In offline mode, DVIS achieved 52.6 AP with ResNet50

and 64.9 AP with Swin-L on the YouTube-VIS 2019 valida-

tion set, outperforming DVIS running in online mode by 1.4

AP and 1.0 AP. Similarly, on the YouTube-VIS 2021 vali-

dation set, DVIS achieved 47.4 AP with ResNet50 and 60.1

AP with Swin-L, outperforming DVIS (online mode) by 1.0

AP and 1.4 AP. DVIS achieves a new SOTA performance on

the YouTube-VIS 2019 and 2021 datasets.

Performance on the YouTube-VIS 2022 Dataset.
DVIS achieves a new SOTA performance of 52.8 AP on

the validation set of the YouTube-VIS 2022 dataset, with

59.6 AP on short videos and 45.9 AP on long videos. Since

the short videos of the YouTube-VIS 2022 dataset largely

overlap with the YouTube-VIS 2021 dataset, we compare

the performance of DVIS with other methods only on long

videos, as shown in Table 3. DVIS outperforms the base-

line method MinVIS [11] by 12.8 AP and the current SOTA

method VITA [10] by 4.8 AP.

Performance on the VIPSeg Dataset. DVIS achieves

1287



APall APl APm APh

baseline 41.6 64.8 49.0 20.5

+Tracker 47.1(+5.5) 64.7(-0.1) 54.2(+5.2) 24.8(+4.3)

+Refiner 49.9(+8.3) 67.1(+2.3) 56.0(+7.0) 29.8(+9.4)
Table 5. Ablation study of the proposed components. The base-

line is MinVIS [11]. All models use Swin-L as the backbone and

are evaluated on the OVIS validation set with 720p input. APl,

APm and APh refer to the AP of the light, medium, and heavily

occluded instances, respectively.

43.2 VPQ and 57.6 VPQ on the VIPSeg validation set when

using ResNet50 and Swin-L backbones, respectively, sur-

passing the current SOTA VPS method TarVIS [1] by 9.7

VPQ and 9.6 VPQ. These results demonstrate the outstand-

ing performance of DVIS on video panoptic segmentation

(VPS) and its potential to achieve SOTA performance on all

video segmentation tasks.

4.2. Ablation Experiments

Ablation experiments were conducted on the OVIS

dataset, with DVIS evaluated using ResNet50 and input re-

sized to 360p unless otherwise specified.

Effectiveness of Referring Tracker and Temporal Re-
finer. We conducted ablation experiments on the OVIS

dataset to evaluate the effectiveness of the referring tracker

and temporal refiner. The results of the experiments are pre-

sented in Table 5. Our findings indicate that the referring

tracker leads to significant performance gains when pro-

cessing medium and heavily occluded objects, resulting in

an increase of 5.2 APm and 4.3 APh, respectively. However,

there is a slight decrease of 0.1 APl in the case of lightly

occluded objects, indicating that the improvement in the re-

ferring tracker is primarily in tracking quality rather than

segmentation quality. We further illustrate our findings by

presenting an instance of a completely occluded panda with

ID 1 in the third frame, which is tracked well by DVIS but

not by MinVIS [11], in Figure 4.

The temporal refiner leads to performance gains in both

segmentation quality and tracking quality, with improve-

ments of 2.3 APl, 7.0 APm, and 9.4 APh across the board.

The temporal refiner effectively utilizes the entire video in-

formation, leading to more significant improvements for

heavily occluded objects, as demonstrated in Figure 4 where

the green rectangles highlight a highly occluded panda. De-

spite this challenge, the temporal refiner produces accurate

segmentation results, while the referring tracker fails due to

its inability to leverage the full video information.

Initial Instance Representation of Referring Tracker.
Our proposed referring tracker represents the VIS as re-

ferring denoising, making it crucial to select an appropri-

ate initial value with noise. We evaluate the performance

with different initial values and report the results in Table

6. The best performance is achieved when using the Qseg

Initial Value AP AP50 AP75 AR1 AR10

Zero 28.9 52.5 27.9 14.7 35.7

Qpre
Tr 28.3 50.1 27.3 14.5 33.8

Qseg 29.8 54.3 28.3 14.8 36.5

Matched Qseg 30.5 54.7 30.1 15.0 36.5
Table 6. Ablation study of the initial instance representation in
the referring tracker. Qpre

Tr denotes the instance representation in

the previous frame, and Qseg denotes the instance representation

output by the segmenter.

Cross Attn Type AP AP50 AP75 AR1 AR10

Standard 2.9 5.0 2.8 2.4 3.4

Referring 30.5 54.7 30.1 15.0 36.5
Table 7. Ablation study on the type of cross-attention in the
referring tracker.

AP AP50 AP75 AR1 AR10

Baseline 32.2 57.9 31.3 15.1 38.7

w/o Long-term Attn. 31.0 56.2 29.3 14.9 37.8

w/o Short-term Conv. 31.8 56.6 30.2 14.8 37.9

w/o Cross Attn. 30.6 55.5 28.7 14.8 36.6
Table 8. Ablation study on the components of the temporal de-
coder block. Attn. denotes attention and Conv. denotes convolu-

tional.“w/o” refer to without.

obtained by matching with the hungarian algorithm as the

initial value. When zero is used as the initial value, the

denoising task becomes a more challenging reconstruction

problem, leading to a drop of 1.6 AP. Using the QTr of

the previous frame as the initial value results in a 2.2 AP

performance degradation, as it contains too much interfer-

ence information. The network also performs well when

using the unmatched Qseg , where the initial values of the

instance queries of each frame are linked by the learnable

prior information, demonstrating the robustness of the re-

ferring tracker.

Referring Cross-Attention. The referring cross-

attention is a crucial component of the referring tracker,

responsible for linking historical frames with the current

frame. We evaluated the importance of the referring cross-

attention by comparing it to the standard cross-attention,

where ID is set to Q in Equation 2. The results in Table 7

demonstrate that replacing the referring cross-attention with

the standard cross-attention leads to an extreme drop in per-

formance. This finding highlights the critical role of inter-

frame associations modeled by the referring cross-attention

in the success of the referring tracker.

Impact of Different Components of Temporal De-
coder Block. To evaluate the impact of different compo-

nents of the temporal decoder block, we conducted exper-

iments by removing each component individually and re-

porting the corresponding performance in Table 8. Our re-

sults show that removing long-term temporal self-attention

led to a performance degradation of 1.2 AP. Although the

function of the long-term attention overrides the function of

the short-term convolution, removing the short-term convo-
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VITA
(offline)

MinVIS
(online)

DVIS
(online)

DVIS
(offline)

Figure 4. Visualization results comparing DVIS with current SOTA online and offline VIS methods. VITA shows poor segmentation

quality (highlighted with red circles) and tracking stability (highlighted with red rectangles). The referring tracker demonstrates strong

tracking ability (highlighted with blue rectangles), while the temporal refiner effectively utilizes contextual information from previous and

future frames (highlighted with green rectangles).

lution still resulted in a performance degradation of 0.4 AP,

suggesting that it is beneficial for utilizing information in

adjacent frames. Moreover, the removal of cross-attention

resulted in a significant drop of 1.6 AP since incorrect in-

stance queries cannot be efficiently corrected without it,

even though information from different frames can still be

utilized.

Performance of DVIS in Semi-Online Mode. In real-

world scenarios, videos are often of infinite length, making

it impossible to run VIS models in pure offline mode. We

conduct experiments to measure the performance difference

between semi-online and offline modes, as shown in Table

II of Appendix. When videos are cut into clips of length 1

as input to DVIS, i.e., no other frame information available

for the current frame, the performance was only comparable

to that of DVIS without temporal refiner. However, as the

clip length increased, the performance of the semi-online

mode gradually approached that of the pure offline mode,

and achieved comparable performance after the clip length

exceeded 80 frames (33.8 vs. 33.8).

Computational Cost. The computational cost of DVIS

components was measured by evaluating the parameters,

MACs, and inference time of the segmenter, referring

tracker, and temporal refiner. Table 9 presents the results.

When using Mask2Former with ResNet50 and Swin-L as

the segmenter, the referring tracker and temporal refiner

combined only accounted for 5.18% and 1.69% of the seg-

menter’s computation, respectively. This demonstrates that

the referring tracker and temporal refiner can efficiently

achieve VIS with almost negligible computational cost.

Component Inp. NQ Params(M) MACs(G) Time(ms)

M2F(R50) 480p 100 43.95 103.73 48.10

Tracker 480p 100 9.68 1.68 7.63

Refiner 480p 100 14.41 3.69 1.11

M2F(SwinL) 720p 200 215.30 851.00 275.19

Tracker 720p 200 9.68 5.13 7.97

Refiner 720p 200 14.41 9.27 2.00
Table 9. Computational cost of DVIS components. M2F refers

to the Mask2Former used as the segmenter of DVIS. Inp. denotes

the size of the input video, and NQ denotes the number of queries.

The inference time per frame is measured on a 1080Ti GPU.

5. Conclusion
In this paper, we propose DVIS, a decoupled VIS frame-

work that separates the VIS task into three sub-tasks: seg-

mentation, tracking, and refinement. Our contributions

are three-fold: 1) we decouple the VIS task and intro-

duce the DVIS framework, 2) we propose the referring

tracker, which enhances tracking robustness by modeling

inter-frame associations as referring denoising, and 3) we

propose the temporal refiner, which utilizes information

from the entire video to refine segmentation results, a ca-

pability that was missing in previous methods. Our results

show that DVIS achieves SOTA performance on all VIS

datasets, outperforming all existing methods, supporting the

effectiveness of our decoupling standpoint and the design

of DVIS. Additionally, DVIS’s SOTA performance on VPS

demonstrates its potential and versatility. We believe that

DVIS will serve as a strong and fundamental baseline, and

our decoupling insights will inspire future works in both

online and offline VIS.
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