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Figure 1: We propose DEFORMTOON3D, an efficient 3D toonification framework which supports geometry-texture decom-
posed toonification over multiple styles. DEFORMTOON3D is fine-tuning free and could be easily extended to a series of
downstream applications designed for the pre-trained GAN, e.g., animation given a driving video, semantic attributes editing
(+ bangs and smile), and flexible style degree control.

Abstract

In this paper, we address the challenging problem of
3D toonification, which involves transferring the style of
an artistic domain onto a target 3D face with stylized ge-
ometry and texture. Although fine-tuning a pre-trained 3D
GAN on the artistic domain can produce reasonable perfor-
mance, this strategy has limitations in the 3D domain. In
particular, fine-tuning can deteriorate the original GAN la-
tent space, which affects subsequent semantic editing, and
requires independent optimization and storage for each new
style, limiting flexibility and efficient deployment. To over-
come these challenges, we propose DEFORMTOON3D, an
effective toonification framework tailored for hierarchical
3D GAN. Our approach decomposes 3D toonification into

*Equal contribution.

subproblems of geometry and texture stylization to better
preserve the original latent space. Specifically, we devise
a novel StyleField that predicts conditional 3D deformation
to align a real-space NeRF to the style space for geome-
try stylization. Thanks to the StyleField formulation, which
already handles geometry stylization well, texture styliza-
tion can be achieved conveniently via adaptive style mixing
that injects information of the artistic domain into the de-
coder of the pre-trained 3D GAN. Due to the unique design,
our method enables flexible style degree control and shape-
texture-specific style swap. Furthermore, we achieve effi-
cient training without any real-world 2D-3D training pairs
but proxy samples synthesized from off-the-shelf 2D tooni-
fication models. Code is released at https://github.
com/junzhezhang/DeformToon3D.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Artistic portraits are prevalent in various applications

such as comics, animation, virtual reality, and augmented
reality. In this work, our main objective is to propose an ef-
fective approach for 3D-aware artistic toonification, a criti-
cal problem that involves transferring the style of an artistic
domain onto a target 3D face with stylized geometry and
texture. The task opens up potential applications for quick
high-quality 3D avatar creation based on a photograph with
the style of a designated artwork, which would typically re-
quire highly professional handcraft skills.

Substantial progress has been made in automatic por-
trait style transfer over 2D images. Starting with im-
age style transfer [14, 52, 34, 28] and image-to-image
translation [27, 33, 10, 6, 55], recent advancements in
StyleGAN-based generators [23, 24] have shown their po-
tential in high-quality toonification via efficient transfer
learning [47]. Specifically, a pre-trained StyleGAN genera-
tor on face images is fine-tuned to transfer to the artistic por-
trait domain. With the progress of 3D-aware GANs [8, 40],
researchers have extended this pipeline to 3D with well-
designed domain adaptation frameworks [21, 31, 26, 1], en-
abling remarkable 3D portrait toonification.

Although fine-tuning the pre-trained StyleGAN-based
model for toonification achieves superior quality, it has sev-
eral limitations. First, fine-tuning the pre-trained genera-
tor shifts its generative space from the real face domain to
the artistic portrait domain at the cost of deteriorating the
original GAN latent space. With tremendous off-the-shelf
tools [53, 61] trained for the original GAN space, altering
the well-learned style space would affect the performance
of downstream applications over the toonified portrait, e.g.,
semantic editing. Second, despite fine-tuning-based do-
main adaptations have been thoroughly investigated for 2D
GANs [48, 64], applying this technique to 3D GANs fails to
leverage the full potential of the architecture of 3D genera-
tor models [8, 40] for characterizing view-consistent shape
and high-frequency textures in the artistic domain. Third,
it is inevitable to fine-tune a heavy generator for each new
style, which requires hours of training time and additional
storage. This limitation affects scalability when deploying
dozens of fine-tuned generators for real-time user interac-
tions. Therefore, 3D toonification remains a challenging
task that requires further exploration.

To better preserve the pre-trained GAN latent space
and to better exploit the 3D GAN generator, we propose
DEFORMTOON3D that decomposes geometry and texture
stylization into more manageable subproblems. In partic-
ular, unlike conventional 3D toonification approaches that
fine-tune the whole 3D GAN generator following existing
2D fine-tuning schemes, we carefully consider the charac-
teristics of 3D GANs to decompose the stylization of geom-
etry and texture domains. To achieve geometry stylization,

we introduce a novel StyleField on top of a pre-trained 3D
generator to deform each point in the style space to the pre-
trained real space guided by an instance code. This allows
for easy extension to multiple styles with a single stylization
field by introducing a style code to guide the deformation.
Since StyleField already handles geometry stylization well,
texture stylization can be easily achieved through adaptive
style mixing which injects artistic domain information into
the network for effective texture toonification. Notably, our
unique design enables training of the method at minimal
cost using synthetic paired data with realistic faces gener-
ated by a pre-trained 3D GAN and corresponding paired
stylized data generated by an off-the-shelf 2D toonification
model [66].

The proposed DEFORMTOON3D achieves high-quality
geometry and texture toonification over a vast variety of
styles, as demonstrated in Fig.1. Additionally, our approach
preserves the original GAN latent space, enabling compati-
bility with existing tools built on the real face space GAN,
including inversion [31], editing [53], and animation [61].
Furthermore, our design significantly reduces the storage
footprint by requiring only a small stylization field with a
set of AdaIN parameters for artistic domain stylization. In
summary, our work makes the following contributions:

• We propose a novel StyleField that separates geometry
toonification from texture, providing a more efficient
method for modeling 3D shapes than fine-tuning and
enabling flexible style control.

• We present an approach to achieve multi-style toonifi-
cation with a single model, facilitating cross-style ma-
nipulation and reducing storage footprint.

• We introduce a full synthetic data-driven training
pipeline that offers an efficient and cost-effective solu-
tion to training the model without requiring real-world
2D-3D training pairs.

2. Related Work

3D Generative Models. Inspired by the success of Genera-
tive Adversarial Networks (GAN)[15] in generating photo-
realistic images[23, 5, 25], researchers have been making
efforts towards 3D-aware generation [37, 18, 41]. Start-
ing with explicit intermediate shape representations, such
as voxels [37, 18] and meshes [41], which lack photo-
realism and are memory-inefficient, researchers have re-
cently shifted towards using implicit functions [43, 35, 9]
along with physical rendering processes [57, 36] as in-
trinsic 3D inductive biases. Among these approaches, 3D
generative models [7, 51] extended from neural radiance
fields (NeRF) [36] have demonstrated impressive view-
consistency in synthesized results. While the original NeRF
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is limited to modeling static scenes, recent research has in-
troduced deformation fields to enable NeRF to model dy-
namic volumes [44, 45, 62, 30]. To increase the resolu-
tion of generated images, recent studies [8, 19] have re-
sorted to voxel-based representations or adopted a hybrid
design [38, 40, 8, 16]. This hybrid design involves a cas-
cade model G = G1 ◦ G0 pairing a 3D generator G0 with
a 2D super-resolution decoder G1. Both G0 and G1 follow
the style-based architecture [23, 24] to accept a latent code
w to control the style of the generated object. By super-
resolving the intermediate low-resolution 2D features pro-
duced by the G0 with the G1, the hybrid design achieves
view-consistent synthesis at high resolution, e.g., 10242.
Domain Adaptation for StyleGAN Toonification. Re-
searchers have typically employed domain adaptation in 2D
space to achieve toonification with StyleGANs [23, 25].
Typically, a portrait StyleGAN pre-trained on real im-
ages [32, 22] is fine-tuned on an artistic domain dataset
to generate toonified faces. Building upon this straightfor-
ward framework [48], a series of in-depth research has been
conducted to further improve style control [66, 65], choices
of latent code [58], few-shot training [39], and text-guided
adaptation [13].

Pre-trained 3D GANs offer high-quality generation and
thus have the potential to facilitate downstream applica-
tions such as portrait stylization through 3D GAN inver-
sion [31, 8]. To extend 2D StyleGAN domain adapta-
tion to 3D, CIPS-3D [69] proposed fine-tuning only the
super-resolution decoder module for view-consistent tex-
ture toonification. However, it is limited to texture toonifi-
cation since the 3D generator is left unchanged. Dr.3D [21],
E3DGE [31], and 3DAvartarGAN [1] fine-tune the entire
3D generator [8, 40] for both geometry and texture tooni-
fication, while DATID-3D [26] leverages a Stable Diffu-
sion [50] generated corpus for text-guided domain adapta-
tion. While these methods yield impressive results, they
come with limitations, as as they require costly fine-tuning
and independent model storage for each new style. Fur-
thermore, previous fine-tuning-based toonification methods
suffer from limited generality due to the incompatibility
with abundant editing techniques developed for the origi-
nal StyleGAN latent space [53, 54, 46]. In contrast, DE-
FORMTOON3D fully preserves the original 3D GAN latent
space, which makes it intrinsically compatible with the edit-
ing methods trained for the original StyleGAN space. It
achieves comparable visual quality while being 10 times
more storage-efficient than previous methods.

3. DEFORMTOON3D
We present the framework of DEFORMTOON3D in

Fig. 2. Our approach begins with a typical hybrid 3D-aware
design [40, 8] that generates real-domain faces, and refor-
mulates it to a 3D toonification framework. The approach

starts with a cascade model G = G1 ◦ G0, which pairs a
3D generator G0 with a 2D super-resolution decoder G1.
The generator G0 captures the underlying geometry with
the instance code w and camera pose ξ, and produces an
intermediate feature map F with volume rendering [36].
Then, G1 upsamples F to obtain a high-resolution image
I with high-frequency details added. To adapt G from the
real domain to the artistic or cartoon domain, existing meth-
ods [21, 1, 69, 31] view G1 and G0 as a whole and sim-
ply fine-tune the pre-trained G, failing to take advantage
of the decomposed characteristics of the hybrid framework
design. By comparison, DEFORMTOON3D fully exploits
this cascaded synthesis process by using a novel StyleField
module for geometry stylization, which in turn also ben-
efits appearance stylization, allowing it to adopt a simple
adaptive style mixing strategy. In Sec. 3.1, we elaborate the
proposed StyleField along with the pre-trained G0 to han-
dle geometry stylization. In Sec. 3.2, we explain how the
adaptive style mixing injects the style of the target domain
into G1 to achieve texture stylization. Lastly, we present
our training pipeline in Section 3.3.

3.1. Geometry Toonification with StyleField

To train a 3D generator G̃0 capable of synthesizing artis-
tic domain geometry, previous methods [21, 26, 31, 1, 59]
fine-tune the pre-trained G0 with a target-domain dataset,
which can be computationally expensive and could poten-
tially deteriorate the original GAN latent space. To address
this issue, we propose to establish a correspondence be-
tween the stylized NeRF NS and the real-space NeRF NR.
More specifically, we use a stylization field (the StyleField),
HD, to bridge the correspondence, such that G̃0(xS) =
(G0 ◦HD)(xS). As shown in Fig. 2, given a stylized NeRF
NS : R3 7→ R4 of the target style domain, our goal is to
estimate a 3D deformation residual, HD : R3 7→ R3, which
maps NS back to NR via:

NS −→ NR : xR = (xS +HD(xS)),∀xS ∈ NS , (1)

where HD represents the residual 3D deformation
HD(xS) = ∆xS in the 3D space of the Stylized NeRF
NS and maps each 3D point xS ∈ NS in the stylized space
to its corresponding position in the real space NR.

To improve expressiveness, we extend HD as a condi-
tional neural deformation field that outputs the offsets under
the conditions of style and identity:

NS −→ NR : xR = xS +HD(xS ,wS ,wR) (2)

where wS is the style code that specifies the artistic do-
main, wR is the instance code corresponding to NR that
represents the identity of the 3D face in the source domain.
Both wS and wR serve as the holistic geometry indicators
to guide the deformation.
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Figure 2: DEFORMTOON3D framework. Given sampled instance code wR and style code wS as conditions, DEFORM-
TOON3D first deforms a point from the style space NS to the real space NR, which achieves geometry toonification without
modifying the pre-trained G0. Afterwards, we leverage adaptive style mixing with weight w to inject the texture information
of the target domain into the pre-trained G1 for texture toonification. Both pre-trained generators G0 and G1 are kept frozen.

We build HD as an MLP consisting of four SIREN [56]
layers due to its superior high-frequency modeling capacity.
After all the points xS ∈ NS are deformed to the real space,
we generate the new feature map F̂ = G̃0(wR,wS , ξ) for
the input of G1 and synthesize the high-resolution image
with the geometry of the artistic domain. By introducing
the 3D deformation module HD, we no longer need to fine-
tune pre-trained G0 to achieve geometry deformation of the
target domain. This greatly alleviates the parameters to op-
timize by 50% and fully preserves the original GAN latent
space. Moreover, with wS serving as the style condition, a
single HD can support multiple styles, which further saves
storage by 98.5% compared to fine-tuning the whole model
per style with 10 styles.

3.2. Texture Transfer with Adaptive Style Mixing

Thanks to the StyleField HD that handles the geometry
toonification within the cascade 3D GAN model, we only
need to inject the artistic domain texture information into
G1 for texture stylization. Here, G1 is a 2D style-based
architecture, where image styles are effectively adjusted by
AdaIN [20]. Inspired by style mixing [23, 25, 66] that con-
trols the AdaIN parameters, we inject the texture informa-
tion of the target style wS by mixing the style parameters
of G1, as shown in Fig. 2. To bridge the domain gap be-
tween the real space and target domain, we further add a
lightweight MLP, T , for each layer of G1 to adjust the style
code wS . The adapted T (wS) and the instance code wR are
fused with a weight w by weighted average, and sent to the
affine transformation block of G1 to obtain the final style
parameters for AdaIN. This mechanism allows us to model
and control multi-domain textures with T and w, without
fine-tuning the original decoder G1.

Let G̃1 denote G1 with the adaptive style mixing. The
image generation process with domain adaptation given w

and wS can be formulated as Î = G̃1(F̂,wR,wS , w).

3.3. Training

Data Preparation. We follow Sim2Real [63, 68, 31] to
generate paired data for training. Specifically, to generate
the training corpus for each iteration of the training pro-
cess, we pre-calculate a set of real space NeRFs NR with
corresponding latent codes wR and rendered images IR. To
generate pair-wise stylized ground truths, we stylize the ren-
dered image with existing 2D toonification models to obtain
the target ground truth IS . Here, to validate our method’s
performance on multi-style domain adaptation, we adopt
the exemplar-based DualStyleGAN [66] as our 2D tooni-
fication model, since it supports hundreds of diverse styles,
such as Cartoon, Pixar, and Caricature.

Finally, we define X = {IR,wR,wS , IS} as a training
set for DEFORMTOON3D with {wR, IR, wS} to serve as
the training inputs and {IS} is the set of training ground
truth. IR ∈ X is drawn i.i.d from distribution P (G(z, ξ))
where z ∼ N (0, 1) and ξ is the camera pose distribution of
pre-trained 3D GAN G. Some samples are shown in Fig. 3.
Reconstruction Loss. Here we use the LPIPS loss [67] to
evaluate stylized image quality:

LRec (X ) = EX

[
||P (Î)− P (IS)||2

]
, (3)

where P (·) denotes the perceptual feature extractor.
Smoothness Regularization. To encourage the smooth-
ness of stylization field deformation offsets and reduce spa-
tial distortion, a smoothness regularization is included to
regularize HD. Here we penalize the norm of the Jacobian
matrix JHD

= ∇HD of the deformation field [44] to ensure
the learned deformations are physically smooth:

LElastic = ReLU(∥∇HD(xS ,wS ,wR)∥22 − ϵ), (4)
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Figure 3: Training Samples. We show the source image
(row 1) and the stylized images of the target domain (row
2) for training supervisions.

where ϵ is the slack parameter for the smoothness regular-
ization. We set ϵ = 0.1 for all the experiments.
Adversarial Training. Additionally, we apply a non-
saturating adversarial loss LAdv [23] to bridge the domain
gap of toonified results.

In summary, the overall loss function is defined as

L = LRec + λElasticLElastic + λAdvLAdv,

where we set λAdv = 0.05 and λElastic = 0.01 in all the
experiments.

4. Experiments
Datasets. We mainly focus on the human face domain
and use synthesized data for the whole training. We fol-
low the data synthesis procedure mentioned in Sec. 3.3 for
generating training corpus and adopt DualStyleGAN [66]
as the 2D stylization model to infer paired toonified im-
age. We generate images with the following 10 styles:
Pixar, Comic, Slam Dunk, The Croods, Fiona (Shrek),
Rapunzel (Disney Princess), Hiccup Horrendous Haddock
III (How To Train Your Dragon), and three different carica-
ture styles. We use StyleSDF [40] pre-trained on FFHQ [23]
as our 3D generator. For evaluating toonification on real-
world images, we evaluate on CelebA-HQ [22].
Implementation Details. In all the experiments, we set the
learning rate to 5 × 10−4. We adopt Adam [29] optimizer
to train the toonification models. We train the DEFORM-
TOON3D for 100 epochs. To expedite the training process,
we disable the adversarial loss for the initial 50 epochs. The
training takes approximately 24 hours using 8 Tesla V100
GPUs with a batch size set to 16. For adaptive style mix-
ing, w = 1 is fixed during training and could be manually
selected from [0, 1] to achieve texture interpolation during
inference. More implementation details and experiment re-
sults are included in the supplementary material.
Baselines. Here we design three baselines for extensive
evaluations. The first is CIPS-3D [69], which naively fine-
tunes the super-resolution G1 for view-consistent toonifi-
cation. The second is E3DGE [31], which fine-tunes both
G0 and G1 independently for true-3D toonification. An-
other prominent method is to leverage directional CLIP

loss [13, 2, 26] for adapting a pre-trained style-based gen-
erator. Here we extend StyleGAN-NADA [13] to 3D GAN
and employ image CLIP directional loss for the evaluation.
The baseline models are trained on the same dataset as DE-
FORMTOON3D, with each fine-tuning process applied to a
single style. In contrast, DEFORMTOON3D is capable of
accommodating all styles within a single model.

4.1. Comparisons with Baselines

Qualitative Results. We show the qualitative compar-
isons against the baselines in Fig. 4. DEFORMTOON3D
fully captures the characteristics of the target domain with
consistent identity preservations. CIPS-3D only provides
texture-wise toonification and ignores geometry deforma-
tion. E3DGE suffers from mode collapse and tends to lose
identity. StyleGAN-NADA fails to capture the characteris-
tics of the target domain. Our method produces high-quality
toonification with consistent identity preservations.

Table 1: Quantitative evaluation over 10 styles. DE-
FORMTOON3D achieves the best identity preservation (IP)
and FID.

CIPS-3D E3DGE NADA Ours
IP↑ 0.681 0.707 0.535 0.781
FID↓ 50.6 34.0 59.3 27.6

Quantitative Results. To evaluate the fidelity and
quality of toonification, we compare their identity
preservation(IP) [11] and FID respectively in Tab. 1. In
terms of IP, DEFORMTOON3D outperforms all baseline
methods across the 10 styles provided, which underscores
the benefits of retaining the 3D generator. In terms of FID,
CIPS-3D [69] only fine-tunes G1 and achieves worse per-
formance compared to E3DGE [31], which fine-tunes the
whole generator. StyleGAN-NADA achieves the worst FID
performance, which we attribute to the challenges of di-
rectly adopting 2D CLIP-based supervision on 3D GANs.
A detailed breakdown by individual styles is available in
the supplementary material.

Table 2: User preference study.
CIPS-3D E3DGE NADA Ours

Shape 20.8% 17.4% 3.4% 58.4%
Appearance 16.1% 16.4% 3.4% 64.1%
Identity 23.1% 7.1 5.4 64.4%
Overall 21.8% 9.9% 2.7% 65.6%

User Study. For the user preference study, we collected
2400 votes to select the preferred rendering results in terms
of shape stylization, appearance stylization, identity preser-
vation, and overall performance. As shown in Tab. 2, the
proposed method gives the most preferable results despite
the fact that the baseline methods are trained on a single
style.
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Figure 4: Qualitative comparisons with baseline methods. DEFORMTOON3D produces better performance against all
baselines regarding toonification fidelity, diversity and identity preservation.

Table 3: Storage cost comparison. Values are averaged
across 10 styles and shown in MB. DEFORMTOON3D
achieves a considerably more efficient storage footprint
against the baselines.

Methods Trainable Params↓ Model Storage↓
CIPS-3D [69] 5.81 59.93
E3DGE [31] 7.64 76.4
StyleGAN-NADA [13] 7.64 76.4
Ours (single-style) 3.82 11.46

Storage Cost Comparison. We detail the storage costs in
Table 3. Thanks to our unique design that disentangles ge-
ometry and texture, our method requires no fine-tuning and
fewer parameters for training. In a single-style scenario, our
method reduces storage needs by 85%. This advantage be-
comes even more pronounced with the multi-style version
of HD, achieving a storage saving of 98.5% in a 10-style
scenario. This makes our approach particularly feasible for
potential mobile applications.

4.2. Applications

To demonstrate the generality of full GAN latent space
preservation, we show that DEFORMTOON3D could be eas-
ily extended to a series of downstream applications pro-
posed for the original pre-trained GAN, including inver-
sion, editing, and animation. To further validate DEFORM-
TOON3D’s unique geometry-texture decomposed toonifica-
tion, we show results of flexible toonification style control.
Inversion and Editing. With fully preserved 3D generative
prior, DEFORMTOON3D could directly adopt pre-trained

Sm
ile

B
an
gs

Figure 5: Editing of toonified results. We show two at-
tribute editing results over six styles. In row 1, we add bangs
to the male identities, and in row 2, we add “Smile” to fe-
male identities. The edited results fully preserve the identity
and abide by the style of the target domain.

3D GAN inversion framework and latent editing directions
for semantic-aware editing over the toonified portrait. Here
we adopt E3DGE [31] for 3D GAN inversion and show the
inversed results of the real image in Fig. 6. With fully pre-
served GAN latent space, DEFORMTOON3D could be ap-
plied to real images over multiple styles with high quality.
We also include the editing results of diverse styles in Fig. 5.
As can be seen, our method produces consistent editing re-
sults and fully preserves the identity and the style of the
target domain, regarding both the geometry and texture.
Animatable Toonification. Inspired by the success of 2D
method [61] that obtains a rig-like control over StyleGAN-
generated 2D faces, we propose a straightforward pipeline
that aligns 3DMM [4] parameters with pre-trained 3D GAN
latent space. Specifically, we train two MLP Fw : R|W| →
R|M| and Fm : R|M| → R|W| to learn the bi-directional
mapping between 3DMM parameter space M and 3D GAN
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Figure 6: DEFORMTOON3D on the real images. Our method enables multiple styles toonification with a single model,
where both the texture and the geometry matches the target domain.
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Figure 7: Animation of stylized results. We drive the real
space images (row 2) with an input video (row 1). Since
DEFORMTOON3D fully preserves the pre-trained GAN la-
tent space, the driving direction of the real space could be
directly applied to the style space (row 3 − 6). The ex-
pression on of animated toonified identities fully abide with
the driving frames without affecting the toonification per-
formance of target domain.

W space. To impose 3DMM-based control, given a latent
code w, we first infer its 3DMM parameters m̃ = Fw(w)
and reconstructed 3DMM code w̃ = Fm(mw). After im-
posing 3DMM-based editing m̃∆ = m̃+m∆, we infer the
corresponding edited W code w̃∆ = Fm(m̃∆). The final
result is synthesized from ŵ = w+ (w̃∆ − w̃). The whole
framework is trained in a self-supervised manner with cy-
cle consistency regularizations. Please refer to the supple-
mentary material for more technical details and animation
results.

We show the animated toonification results in Fig. 7.
Here, we extract the 3DMM parameters from a driving
video [17] using a pre-trained predictor [12]. The expres-
sion dimension of extracted parameters are injected to the
sampled wR using the procedure described above. Four
styles of animated toonified results are included. As can
be seen, our designed animation pipeline could accurately
drive the identity both in the real space (row 2) and the style
spaces (row 3 − 6). The reenacted expressions are natural
and abide with the driving input, which validates the gener-
ality of our method.

Input Style A Style B 𝐺! + 𝑇"𝐺" + 𝑇!

Figure 8: Style swap. Besides style interpolation, DE-
FORMTOON3D supports style swap of geometry and tex-
ture only across two styles. As shown here, given the
real space input (col 1) and the toonification results of two
spaces (col 2 − 3), DEFORMTOON3D could swap the ge-
ometry G and texture T of two styles independently (col
4− 5), which cannot be achieved by previous methods.

Toonification Style Control. Due to the unique geometry-
texture decomposition design, DEFORMTOON3D offers
flexible style control. First, we achieve style degree con-
trol and show the results in Fig. 9. Geometry-wise, since
HD outputs the 3D deformation offsets ∆xS , we simply
interpolate the offsets with τ ∗ ∆xS where τ = 0 repre-
sents an identical mapping of the real space. Texture-wise,
we rescale the style mixing weight w of G1, where w = 0
preserves the color of the real space images. Second, due
to the geometry-texture disentangled property, DEFORM-
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Figure 9: Style degree control. Thanks to the geometry-
texture toonification decomposition, DEFORMTOON3D
can specify geometry, texture, and full style control.

Table 4: Ablation study.

Method IP↑ FID↓
w/o wR condition 0.735 33.4
MLP as HD 0.746 31.8
w/o LAdv 0.769 29.9
Ours 0.781 27.6

TOON3D naturally supports the toonification of shape and
texture only. As shown in Fig. 8, we achieve the geometry-
texture swap between multiple styles, where the geometry
of one style could be combined with the texture of another
style. This could not be achieved by all previous methods
and opens up broader potential downstream applications.

4.3. Ablation Study

We ablate the effectiveness of our design choices in
Tab. 4. 1) Instance code condition: By removing instance
code wR, StyleField tends to learn similar offsets for differ-
ent identities, whereas adopting wR as the instance defor-
mation conditions facilitates better toonification. 2) Style-
Field architecture: We replace the SIREN architecture with
an MLP network as defined by D-NeRF [49] and observe
the significant performance drop. This demonstrates the
representation power of SIREN deformaiton field. 3) Ad-
versarial training: We also validate the effectiveness of
adversarial loss, which brings noticeable improvement re-
garding both FID and identity similarity, respectively.

4.4. Limitations

As shown in Fig. 10 pertaining to the style “Comic” and
“Slam Dunk”, though DeformToon3D produces reasonable
texture-wise stylization, the corresponding geometry still
has noticeable artifacts. The proposed StyleField implic-
itly learns the correspondence between the paired data from
the real space and the style space. Such correspondence is
easier to learn with information cues such as illumination
from the 3D-ish styles like Pixar or noticeable keypoints
from caricature styles, but harder for styles with limited in-
formation cues like Comic.

Figure 10: Failure cases.

5. Conclusion and Future Work
In this paper, we propose a novel 3D toonification frame-

work DEFORMTOON3D for a fine-tuning free, geometry-
texture decomposed 3D face toonification. We fully exploit
the hierarchical characteristics of 3D GAN and introduce
a StyleField to handle 3D geometry toonification of G0,
along with adaptive style mixing that injects texture infor-
mation into G1. Our method achieves high-quality toonifi-
cation on both geometry and texture, outperforming exist-
ing methods. Thanks to the preservation of the 3D gener-
ative prior, DEFORMTOON3D facilitates a range of down-
stream applications.

As a pioneering effort in this field, we believe this work
will inspire future works on free 3D toonification. First, to
mitigate the geometry-texture ambiguity present in certain
styles, introducing re-lighting during training could serve
as a potential solution [42]. Second, a more flexible train-
ing paradigm could directly guide the 3D toonification pro-
cess with a pre-trained vision-language model [50]. Third,
future research could focus on integrating a comprehensive
3D animation pipeline [3, 60] into the toonification process.
Moreover, the potential applicability of DeformToon3D to
other 3D GANs [8] and shapes beyond human faces, such
as full-body settings, is worth investigating.
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