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Abstract

Recently, the DETR framework has emerged as the dom-
inant approach for human–object interaction (HOI) re-
search. In particular, two-stage transformer-based HOI
detectors are amongst the most performant and training-
efficient approaches. However, these often condition HOI
classification on object features that lack fine-grained con-
textual information, eschewing pose and orientation infor-
mation in favour of visual cues about object identity and box
extremities. This naturally hinders the recognition of com-
plex or ambiguous interactions. In this work, we study these
issues through visualisations and carefully designed experi-
ments. Accordingly, we investigate how best to re-introduce
image features via cross-attention. With an improved query
design, extensive exploration of keys and values, and box
pair positional embeddings as spatial guidance, our model
with enhanced predicate visual context (PViC) outperforms
state-of-the-art methods on the HICO-DET and V-COCO
benchmarks, while maintaining low training cost.

1. Introduction

Detecting human–object interactions (HOI) is the task of
localising and recognising interactive human–object pairs.
It extends the detection of objects to include their rela-
tionships and facilitates a deeper understanding of visual
scenes. Recent developments in the detection of human–
object interactions have largely adhered to the encoder–
decoder style introduced by the detection transformers
(DETR) [2], where learnable queries are randomly ini-
tialised with Gaussian noise at the start of training, and pro-
gressively decoded into the desired human-predicate-object
triplets. Such one-stage detectors [33, 15, 47, 4, 42, 13]
require pre-trained DETR weights for initialisation to facil-
itate stable convergence. As we will demonstrate empiri-
cally, the pre-trained encoder features have overfitted to ob-
ject cues and lack the necessary information for recognising
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(a) Attn. for human (DETR) (b) Attn. for bike (DETR)

(c) Attn. for triplet (QPIC) (d) Attn. for predicate (Ours)

Figure 1. Visual context for the (a, b) two-stage HOI detector
UPT [44], (c) one-stage HOI detector QPIC [33] and (d) our
method. Cross-attention weights from the last decoder layer are
used for visualisation. UPT uses coarse object features that favour
visual cues about object identity and box extremities. QPIC fails to
detect the triplet person-washing-bike as it struggles to locate the
relevant visual context (person, bike, and the water hose). The box
pair with the highest IoUs against the ground truth is selected for
display. Our two-stage method with pre-detected objects success-
fully recognises the predicate washing as it pinpoints the location
of the image region containing the water hose.

human–object interactions. This means that the transformer
encoder weights need to change significantly to produce
discriminative features for such tasks. Together with the
need to repurpose the decoder to detect HOI triplets rather
than unary objects, this results in long training schedules
that often amount to hundreds of GPU hours. On the other
hand, two-stage detectors adopt a different methodology,
wherein an object detector is fine-tuned and then frozen,
which only introduces a one-off cost. These approaches fo-
cus on the extraction and exploitation of the rich informa-
tion residing in the frozen detector. Naturally, two-stage de-
tectors require significantly less time and resources to train,
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(a) Object feature replacement for predicate riding. (b) Object feature replacement for predicate throwing.

Figure 2. Object features from a frozen object detector (DETR [2]) are extracted from image regions that are indicative of the object identity
and are near the bounding box extremities, as shown by the cross-attention weights overlaid on each detected object. These features often
lack the fine-grained information to recognise HOIs. As a result, replacing object features with those from an object in a different (a, b)
pose, orientation or even (a) identity does not impact the classification score significantly. Experiments are conducted on UPT [44], where
the spatial configuration for pair (1, 2) is used for all pairs in each set of images while the object features are replaced.

facilitating more model analysis and experimentation.
Current state-of-the-art two-stage detector UPT [44]

employs a fine-tuned DETR detector, and performs self-
attention on unary (object) and pairwise (human–object) to-
kens. Despite its overall high performance and low cost, it
only utilises object features from the frozen detector, com-
plemented by hand-crafted spatial features, to construct the
final representations. As we show in Figures 1a and 1b,
these frozen features are obtained by attending to image re-
gions indicative of object identity and box extremities, thus
lacking the necessary information for recognising HOIs.

In Figure 2, we study the impacts of this lack of informa-
tion by replacing the object features with those of a different
object. For predicates with a distinct spatial pattern, such as
riding, we observe that the predicted scores do not change
significantly when object features are swapped, suggesting
that the spatial information dominates the visual informa-
tion, as shown in Figure 2a. Even when the replacement
features come from objects of a different identity, UPT still
gives confident predictions for the same predicate, such as
(4, 2) horse–riding–horse. Yet, the majority of predicates
do not exhibit a prominent spatial pattern, e.g. throwing. In
such cases, visual context plays a crucial role. Naturally,
replacing object features amounts to a more tangible im-
pact (Figure 2b). However, the score drop when replacing
the human features with those of a non-interactive person
is still not significant, indicating that such features do not
contain enough visual cues to differentiate interactiveness.
As we will show in Figure 3, failure cases of UPT often re-
quire much richer visual context. In particular, we identify
two types of context that coarse object features lack: fine-
grained visual information, such as the human body parts,
and information about other relevant context in the scene,
such as another object involved in the interaction.

To address the aforementioned issues, we investigate
how to enrich the contextual cues for human–object pair
representations. Our contribution is twofold. We conduct

thorough analysis with abundant visualisations to charac-
terise the two types of visual contexts lacking in current
two-stage models and the damage this causes. Accordingly,
we develop a superior two-stage detector with a lightweight
decoder, where we improve the query design with a more
streamlined architecture, explore various choices and com-
positions of keys/values and introduce positional embed-
dings tailored for bounding box pairs. In particular, we
demonstrate that the positional embeddings function as spa-
tial guidance in cross-attention, and shed light on this mech-
anism with rich visualisations.

2. Related Works

There is a large body of works [33, 15, 47, 4] centred
around adapting the detection transformer [2] to one-stage
HOI detectors. Since Tamura et al. [33] established a strong
baseline, the focus has shifted to improving the architecture
design. Zhang et al. [42] proposed to partially decouple the
feature representation of humans and objects from that of
the predicates. Qu et al. [31] investigated ways to better
utilise the ground truth with data distillation. Tu et al. [34]
and Kim et al. [16] explored multiscale backbone features
by either exploiting irregular window attention or extend-
ing Deformable DETR [46] to HOI detection. Last, Wu et
al. [40] demonstrated the value of human pose by applying
body-part masks in transformer cross-attention.

Two-stage detection has received much less attention in
comparison. Graph-based methods [43, 6, 35, 38] were the
state of the art for an extended period of time. Since the
advent of transformer-based approaches, much of the focus
has been shifted to one-stage detection. Recently, Zhang et
al. [44] demonstrated that self-attention can be repeatedly
applied to unary objects and human–object pairs, achiev-
ing complementary effects. However, the lack of contex-
tual information is its major weakness. For HOI detection,
the context is often characterised as either the visual fea-
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(a) Feeding. UPT: 0.07 (b) Tying. UPT: 0.12 (c) Washing. UPT: 0.12 (d) Cutting. UPT: 0.10

(e) Feeding. Ours: 0.75 (f) Tying. Ours: 0.52 (g) Washing. Ours: 0.66 (h) Cutting. Ours: 0.61

(i) Feeding. Ours (masked): 0.09 (j) Tying. Ours (masked): 0.14 (k) Washing. Ours (masked): 0.21 (l) Cutting. Ours (masked): 0.08

Figure 3. Existing two-stage HOI detectors (e.g., UPT [44]) lack relevant predicate visual context, including (a, b) fine-grained viusal
information, such as the human body parts, and (c, d) other relevant contextual information in the scene, such as another object involved in
the interaction. The predicted score for each example is listed in the caption. UPT (first row) uses frozen object features which often pool
information from the box boundary since this aids localisation. Consequently, such features do not cover other aspects of the object and
are not discriminative enough to recognise complex human–object interactions. Our method (second row) solves such failure cases with
spatially guided cross-attention, pinpointing the image regions corresponding to the relevant body parts or the additional object besides the
human–object pair. To demonstrate that these regions are indeed highly relevant to the prediction score, we mask out those image regions
with the highest attention weights (third row), and observe a significant drop in prediction scores.

tures extracted from the minimum covering rectangle of the
human–object pair [29] or the global image features [35].
These contextual features are then directly fused with the
common HOI representations consisting of the human and
object instance features and their spatial relationships. Prior
to the era of transformers, an early work [39] tackles a sim-
ilar problem with a contextual attention module, where the
region features are fused with the global image features via
element-wise product to produce an attention map. Such
an attention map is then used to aggregate the visual con-
text from the global image features. For transformer-based
models, Zhang et al. [45] addressed this by integrating
hand-coded HOI structures into transformer cross-attention.
Nonetheless, this introduces even more hand-crafted ele-
ments into two-stage detection. Seeking a more stream-
lined model design, we show that a dedicated query posi-
tional embedding yields better performance and more inter-
pretable visualisations.

In addition, there have been some works focusing on
other aspects of HOI research. Specifically, Wang et al. [37]

studied the object bias and explored ways to mitigate it.
Yuan et al. [41] conducted contrastive language–image pre-
training for HOI representations and demonstrated its ef-
fectiveness. Liao et al. [21] explored data distillation from
CLIP [32] features and showed competitive performance.

3. Spatially Guided Cross-Attention

The underpinning of query-based detection systems is
the transformer cross-attention mechanism [36], which acts
as a form of soft RoI pooling where the weights are com-
puted dynamically from the data. Stacking cross-attention
layers allows the queries to aggregate useful information
from the keys/values (image features) gradually. In the de-
tection transformer, queries are randomly initialised with
Gaussian noise and learn to represent spatial priors (box
centre positions, widths and heights) [2] as training pro-
gresses. We refer to such queries as implicit queries (Fig-
ure 4a), commonly used in one-stage HOI detectors. For
their two-stage counterparts [44, 45], thanks to the rich in-
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(a) Implicit Queries (b) Explicit Queries

Figure 4. Implicit queries (a) for one-stage detectors and explicit
queries (b) for two-stage detectors.

formation in the detections, there is no need for such learned
queries. Instead, the queries are explicit human–object pair
representations, injected with spatial and content priors. We
refer to them as explicit queries (Figure 4b).

3.1. Explicit Queries

Prior to the query construction, we filter the detected ob-
jects by their scores and perform self-attention to refine the
object features. As Zhang et al. [44] pointed out, such self-
attention promotes information flow between the interac-
tive objects and helps increase scores of positive examples.
Based on the observation that interactive instances tend to
appear close together in an image, we apply positional em-
beddings for bounding boxes, which encourages attention
between near objects. Insights on this design will be de-
tailed in the next section. Formally, denote the mapping
from a scalar to a sinusoidal embedding by ϕ : R → Rd,

ϕ(x)2i = sin
( x

τ2i/d

)
, ϕ(x)2i−1 = cos

( x

τ2i/d

)
, (1)

where i = 1, . . . , d/2 and τ is a temperature parameter.
A bounding box can be encoded by concatenating the si-
nusoidal embeddings of the centre coordinates, width and
height, which are then applied via element-wise sum as a
convention [36, 2]. We show in the experiment section
that with the positional embeddings, vanilla self-attention
achieves better performance than the custom layer in UPT.

To construct explicit queries, we enumerate all human–
object pairs. For each pair, the representation is obtained
by fusing the concatenated object features and their spatial
representations, following previous practice [43, 44]. In ad-
dition, we apply LayerNorm [1] to both modalities before
fusion. This greatly stabilises the training process and pre-
vents numeric overflow, which was previously resolved by
using large batch sizes. The full process of query construc-
tion is illustrated in Figure 5.

Figure 5. An illustration of the construction of explicit queries.

3.2. Positional Embeddings as Guidance

Cross-Attention. Even though the explicit query rep-
resentation of the human–object pair already contains spa-
tial priors, positional embeddings are still critical since they
function as spatial biases on the attention weights. This is
particularly important in the case of cross-attention. To shed
light on its impact, let us denote the keys and queries as kc

and qc, and their respective positional embeddings as kp

and qp. For simplicity, let us omit the linear transformations
and the normalisation. Dot-product attention is computed as

(kc + kp)
T(qc + qp) = kc

Tqc + . . .+ kp
Tqp. (2)

Intuitively, first term on the RHS measures the similarity
between the content features of the keys (image features)
and queries, while the last term measures that of the posi-
tional embeddings. More specifically, for an image token
with normalised spatial indices (i, j) and a 2D point with
normalised coordinate (x, y), the last term can be expanded
as a simple sum of similarity between coordinates,

kp
Tqp = ϕ(i)Tϕ(x) + ϕ(j)Tϕ(y). (3)

As an advantage of explicit queries, the availability of box
coordinates allows us to use box centres to construct po-
sitional embeddings, directly adding a bias to the atten-
tion map in the corresponding position. A weakness of the
aforementioned positional embeddings is the lack of infor-
mation on box dimensions. Although the subsequent linear
transformations have the potential to shift and deform the
dot-product attention, Liu et al. [25] showed that the po-
sitional embeddings can be modulated with box widths and
heights, saving the network from learning the relevant trans-
forms. For a bounding box b = [x, y, w, h], we follow their
practice by using the normalised widths and heights as dif-
ferent temperature parameters in horizontal and vertical di-
rections for the subsequent softmax normalisation, leading
to a bias term on attention weights as below

kp
Tqp = ϕ(i)Tϕ(x)

wref

w
+ ϕ(j)Tϕ(y)

href

h
, (4)
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(a) (0.5, 0.5) (b) (0.5, 0.7) (c) (0.5, 0.3) (d) (b, c)

Figure 6. Visualisation of the dot-product attention between the
position embeddings of 2D points and those of image patches,
without height and width modulation (a), with modulation (b, c).
Point coordinates are listed in the captions. The spatially summed
attention weights after softmax normalisation is shown in (d).

where wref and href are reference values learned from the
box features using a two-layer MLP, as follows

wref, href = σ(MLP(f)), (5)

with σ being the sigmoid function and f being the box ap-
pearance features obtained from the object detector.

To extend the usage to bounding box pairs, we concate-
nate the positional embeddings of the two box centres. The
concatenation of two positional embeddings is equivalent
to spatially summing the attention weights (Eq. 4) of two
boxes prior to the softmax normalisation. We defer the
mathematical details to the supplementary materials, but
show visualisations in Figure 6. Furthermore, we show
in the experiment section that for cross-attention, the two
omitted cross-terms in Eq. 2 produce mostly noise, hamper-
ing the effectiveness of positional embeddings. Thus, we
follow Meng et al. [28] to concatenate the keys and queries
with their respective positional embeddings, essentially re-
moving said terms. In addition, separate linear layers are
employed for the content features (keys and queries) and
positional embeddings to avoid undesired information flow,
in the same spirit as removing the two cross-terms. We
show visualisations on the impacts of the positional embed-
dings in the experiment section (Figure 9).

Self-Attention. For explicit queries, self-attention acts
mainly as a form of suppression [44]. Interactive human–
object pairs, which are often the most salient ones, suppress
the non-interactive pairs via the attention mechanism. The
positional embeddings, on the other hand, add an induc-
tive bias such that box pairs in close proximity attend to
each other more. While such inductive bias is intuitive in
cross-attention, it does not reflect the way human–object
pairs interact with each other. As we did not observe any
improvement, we do not use positional embeddings in self-
attention between human–object pairs. In contrast, self-
attention amongst the unary objects does benefit from po-
sitional embeddings, because interactive objects tend to ap-
pear together, and often share an intersected area. Thus,
such an inductive bias promotes attention between near in-
stances and aids the training process.

3.3. Keys/Values

In one-stage methods, the encoder features serve as ded-
icated keys/values and are end-to-end trained. Two-stage
methods, on the other hand, employ pre-trained object de-
tectors, mostly with frozen weights to ensure the perfor-
mance of the detector. Although an additional feature head
can be used for refinement, the source of the keys/values
is of utmost importance. We empirically found (see Sec-
tion 4.2) that backbone ResNet [10] C5 features are the most
informative, and a very lightweight feature head with win-
dow attention [26] improves the performance further, while
higher feature resolutions and multiscale features do not in-
troduce additional benefits.

3.4. Training and Inference

During training, we use the focal loss [22] on the pre-
dicted action logits following previous practice [44, 45],
where invalid actions for each object are masked out.
During inference, we combine the object detection scores
(sh, so) and action prediction scores (sa) using the geomet-
ric mean with hyperparameter λ ∈ [0, 1] as follows

s = (shso)
1−λsλa . (6)

4. Experiments
In this section, we first present a thorough ablation study

by progressively building up the proposed model, demon-
strating the impact of each design choice. We then compare
our method against state-of-the-art models and show its su-
perior performance, even against methods that perform data
distillation on large pre-trained vision and language mod-
els. Last, to shed light on how spatial priors are used to
guide cross-attention, we show visualisations of the atten-
tion weights for different terms in Eq. 2 and demonstrate
why concatenated positional embeddings are superior.

Datasets: The primary dataset used for model design and
validation is HICO-DET [3], which contains 37 633 train-
ing images and 9 546 test images. The dataset includes the
same 80 object classes as in MS COCO [24], 117 action
classes and 600 interaction classes. For legacy reasons we
also report on V-COCO [9], a much smaller dataset with
2 533 training images, 2 867 validation images and 4 946
test images. The dataset has 24 action classes.

4.1. Implementation Details

We use fine-tuned DETR provided by Zhang et al. [44]
and freeze the weights. In addition, we fine-tuned the
H-DETR [14] with iterative box refinement and the two-
stage options. During training, we adopt the same sampling
scheme in UPT, by filtering detections with a threshold of
0.2 and sampling a minimum of 3 and a maximum of 15
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Table 1. The mAP (×100) of model variants with different com-
ponents of the decoder on the HICO-DET test set. Variant C is
equivalent to UPT [44]. Results are averaged across three runs.

Decoder Default Setting (mAP)
# Self Cross FFN C.A. src. Full Rare N-rare

A None 30.71 25.16 32.37
B ✓ None 30.98 25.36 32.62
C ✓ ✓ None 31.47 25.98 33.11
D ✓ ✓ ✓ Encoder 31.51 26.12 33.13
E ✓ ✓ ✓ Backbone 32.89 27.91 34.38

Figure 7. Illustration of the composition of backbone and encoder
features. Encoder features are upsampled with bilinear interpola-
tion when there is a resolution discrepancy.

human and object instances each. For focal loss, we use
α = 0.5 and γ = 0.1. The hyper-parameter λ in the geo-
metric mean is set to be 0.26, which is simply a normalised
value and has an equivalent effect as the setup in UPT. For
the feature head, we use one encoder layer with window at-
tention and a window size of 8×8. For the decoder, we use
two layers. We apply the same data augmentation in previ-
ous works [2, 33, 44], including multiscale resizing, random
cropping and random colour jittering. AdamW [27] is used
as the optimiser, with both the learning rate and weight de-
cay being 10−4. Unless otherwise specified, all models are
trained for 30 epochs, with a learning rate drop by a factor
of 5 at the 20th epoch. Training is conducted on 8 Nvidia
Tesla V100 GPUs, with a batch size of 16.

4.2. Ablation Study

We present the ablation study as a progressive build-up
from the baseline model (variant A in Table 1), which di-
rectly feeds the explicit queries into a classifier. All subse-
quent model variants in this section along with the baseline
use a fine-tuned DETR [2] with ResNet50 backbone [10].
In Table 1, we show that introducing cross-attention with
encoder features as the keys/values leads to minimal im-
provement. This indicates that the frozen encoder features
may have overfitted to object cues and therefore do not con-
tain orthogonal information beneficial to the understanding
of HOIs. The backbone features, on the other hand, contain
more general contextual features and result in substantial
performance improvement. Nevertheless, there is likely to
be a certain degree of overfitting in the backbone, thus war-

Table 2. The mAP (×100) of model variants with different choices
and compositions of features as cross-attention keys/values on the
HICO-DET test set. Results are averaged across three runs.

Default Setting (mAP)
# Keys/Values Feature head Full Rare N-rare

E1 Backbone C3 C4, C5 29.59 22.41 31.73
E2 Backbone C4 C5 30.80 25.34 32.43
E3 Backbone C5 None 32.89 27.91 34.38
F1 C3 + encoder None 30.21 25.08 31.74
F2 C4 + encoder None 31.27 25.09 33.12
F3 C5 + encoder None 32.69 27.38 34.27
G1 FPN P3 None 32.44 28.19 33.71
G2 FPN P4 None 32.40 28.34 33.61

H1 Backbone C5 1× Self Attn. 33.50 29.80 34.60
H2 Backbone C5 2× Self Attn. 33.45 29.73 34.56
H3 Backbone C5 1× Win. Attn. 33.54 30.17 34.55
H4 Backbone C5 2× Win. Attn. 33.57 30.32 34.54

Table 3. The mAP (×100) of model variants with different query
components and designs on HICO-DET test set. Results are aver-
aged across three runs.

Modality Fusion Default Setting (mAP)
# Self-Attn. Spatial Content Full Rare N-rare

H3 Modified ✓ ✓ 33.54 30.17 34.55
I1 Modified ✓ 33.04 28.31 34.46
I2 None ✓ 32.60 26.79 34.34
I3 None ✓ 31.30 26.19 32.82
I4 None ✓ ✓ 32.87 29.20 34.27

J1 Vanilla ✓ ✓ 33.26 29.01 34.53
J2 Vanilla + pe ✓ ✓ 33.59 29.65 34.76

Table 4. The mAP (×100) of model variants with different posi-
tional embeddings and number of decoder layers on HICO-DET
test set. Results are averaged across three runs.

Default Setting (mAP)
# Positional Embed. #Dec. Full Rare N-rare

J2 None 1 33.59 29.65 34.76
K1 Standard, additive 1 33.43 29.83 34.50
K2 Standard, concat. 1 33.72 29.14 35.09
K3 Modulated, concat. 1 33.91 29.28 35.29

L1 Modulated, concat. 2 34.18 31.09 35.10
L2 Modulated, concat. 3 34.03 30.18 35.18
L3 Modulated, concat. 4 34.05 30.44 35.12

ranting investigation into earlier convolutional stages.
We present the relevant findings in Table 2. For fair-

ness, when using C3 and C4 features (variants E1, E2), we
added a feature head equivalent to the missing convolutional
stages, and observed that C5 features still yield the best per-
formance. We also explored the composition of the back-
bone and encoder features illustrated in Figure 7. The re-
sults (F variants) show that although the addition of encoder
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(a) Single ref. (b) Dual ref. (c) Single ref.

Figure 8. Reference point designs for human–object pairs. (a) Hu-
man box centre as the single reference point. (b) Human and object
box centres as dual reference points. (c) Interpolated point as the
single reference point.

Table 5. The mAP (×100) of model variants with different refer-
ence point designs for deformable attention. Results are averaged
across three runs.

Default Setting (mAP)
# Ref. points #Keys Full Rare N-rare

L1 N/A N/A 34.18 31.09 35.10

M1 single (hum.) 4 33.55 29.70 34.70
M2 dual 8 33.59 30.31 34.57
M3 dual 4 33.55 29.88 34.65
M4 single (interp.) 4 33.40 29.58 34.54

features benefits the lower-level backbone features, it does
not introduce orthogonal information to C5 features. In ad-
dition, with the G variants, we train a feature pyramid net-
work [23] to propagate the semantics in C5 features to lower
levels. The results show that higher-resolution features, al-
beit helpful for object detection and segmentation [2, 17],
do not benefit the recognition of HOIs. We further inves-
tigated adding attention layers to refine the backbone fea-
tures (H variants) and observed similar performance with
self-attention [36] and window attention [26]. Due to the
lower complexity, we use window attention in subsequent
model variants. We do not observe significant performance
increases with additional attention layers (H2, H4).

Next, we ablate the query components in Table 3. Us-
ing variant H3 as the reference, we show the impacts of
the object self-attention and modality fusion of object fea-
tures and the spatial features. Importantly, we show that
a vanilla transformer encoder with box positional embed-
dings achieves comparable performance to the modified en-
coder in UPT, validating our removal of this custom layer.

In addition, we demonstrate the effectiveness of mod-
ulated positional embeddings in cross-attention as well as
the scaling of decoders in Table 4. Notably, using the ad-
ditive positional embeddings (variant K1) does not help the
model. This is due to the noise introduced by the two cross-
terms in Eq. 2. Removing the cross-terms by concatenating
the positional embeddings (K2) results in a slight improve-
ment, while the modulated positional embeddings yields ad-

ditional improvement. Similar to the feature head for keys
and values, improvements brought by the decoder saturate
after two layers, likely due to the use of frozen features. In
summary, we observe a very significant improvement in the
rare classes (5 mAP) between our model (variant L1) and
the previous state-of-the-art UPT (variant C). This is in line
with our understanding that contextual cues introduced with
cross-attention greatly benefit the more ambiguous interac-
tions, often the rare ones in the HICO-DET dataset.

Last, as Deformable DETR [46] introduced a simple way
to exploit the multiscale structure of convolutional features
via deformable attention, we conducted experiments to in-
vestigate this mechanism. We follow the practice in De-
formable DETR to construct multiscale features denoted by
{C3, C4, C5, C6}, where C3, C4, C5 are extracted directly
from the backbone and C6 is obtained from C5 by applying
a 3 × 3 convolution with stride 2. Four sets of keys/values
are sampled for each feature level per query. For the refer-
ence points, Deformable DETR uses bounding box centres
predicted from the query representations. In our two-stage
method, due to the availability of bounding boxes, there is
no need to predict the reference points. As such, we fo-
cused on designing reference points for human–object pairs
and explored three variants depicted in Figure 8. As humans
play a centric role in HOIs, we started with a simple vari-
ant with human box centres as the reference point for each
query (Figure 8a). Naturally, this can be extended to dual
reference points to also include the object box centre (Fig-
ure 8b). We also experimented with a variant where the ref-
erence point is a convex combination (linear interpolation)
of the human and object box centres (Figure 8c). Formally,
denote the box centres by x, y ∈ R2. The reference point
is computed as βx + (1 − β)y, where the scaling factor
β ∈ [0, 1] is predicted from the query representation and
normalised with Sigmoid.

We compare the performance against the strongest L1
variant. For fair comparison, we use one deformable en-
coder layer to refine the multiscale features and two de-
formable decoder layers, a similar setup to the L1 variant.
As shown in Table 5, we observed insignificant performance
differences amongst the M variants with multiscale features,
while their performance lacks behind the single-scale vari-
ant L1. We believe the inferior performance of multiscale
deformable attention is likely due to the visual complexity
of human–object interactions. In particular, the role of ref-
erence points is somewhat similar to the box pair positional
embeddings. Although the offsets with respect to the refer-
ence points are dynamically predicted from the query rep-
resentation, they tend not to have large values. Therefore,
they act as a form of inductive bias to encourage high atten-
tion weights on keys/values (image patches) closer to the
reference point, analogous to the kT

p qp term in the vanilla
decoder. On the other hand, a weakness of deformable at-
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Table 6. Comparison of detection performance (mAP×100) on the HICO-DET [3] and V-COCO [9] test sets. We report results with the
common DETR [2] detector and ResNet50 backbone, while showing the scalability of our method using the more advanced H-DETR with
Swin-L backbone. Best performance in each section is highlighted in bold.

HICO-DET V-COCO

Default Setting Known Objects Setting

Method Backbone Full Rare Non-rare Full Rare Non-rare APS1
role APS2

role

InteractNet [8] ResNet-50-FPN 9.94 7.16 10.77 - - - 40.0 -
GPNN [30] ResNet-101 13.11 9.34 14.23 - - - 44.0 -
iCAN [7] ResNet-50 14.84 10.45 16.15 16.26 11.33 17.73 45.3 52.4
TIN [19] ResNet-50 17.03 13.42 18.11 19.17 15.51 20.26 47.8 54.2
VSGNet [35] ResNet-152 19.80 16.05 20.91 - - - 51.8 57.0
PPDM [20] Hourglass-104 21.94 13.97 24.32 24.81 17.09 27.12 - -
VCL [11] ResNet-50 23.63 17.21 25.55 25.98 19.12 28.03 48.3 -
DRG [6] ResNet-50-FPN 24.53 19.47 26.04 27.98 23.11 29.43 51.0 -
IDN [18] ResNet-50 24.58 20.33 25.86 27.89 23.64 29.16 53.3 60.3
HOTR [15] ResNet-50 25.10 17.34 27.42 - - - 55.2 64.4
FCL [12] ResNet-50 25.27 20.57 26.67 27.71 22.34 28.93 52.4 -
HOI-Trans [47] ResNet-101 26.61 19.15 28.84 29.13 20.98 31.57 52.9 -
AS-Net [4] ResNet-50 28.87 24.25 30.25 31.74 27.07 33.14 53.9 -
SCG [43] ResNet-50-FPN 29.26 24.61 30.65 32.87 27.89 34.35 54.2 60.9
QPIC [33] ResNet-101 29.90 23.92 31.69 32.38 26.06 34.27 58.8 61.0
CDN [42] ResNet-101 32.07 27.19 33.53 34.79 29.48 36.38 63.9 65.9
UPT [44] ResNet-101-DC5 32.62 28.62 33.81 36.08 31.41 37.47 61.3 67.1
RLIP [41] ResNet-50 32.84 26.85 34.63 - - - 61.9 64.2
GEN-VLKT [21] ResNet-50 33.75 29.25 35.10 36.78 32.75 37.99 62.4 64.5

PViC w/ DETR ResNet-50 34.69 32.14 35.45 38.14 35.38 38.97 62.8 67.8
PViC w/ H-DETR Swin-L 44.32 44.61 44.24 47.81 48.38 47.64 64.1 70.2

tention is that, it does not have a mechanism to encourage
attention based on visual similarity, i.e. the kT

c qc term in
the vanilla decoder. Therefore, the offsets predicted from
the query features may not be sufficient to locate the rele-
vant visual context to recognise a predicate.

4.3. Comparison with State-of-the-Art Methods

We report the performance of our method on HICO-
DET [3] and V-COCO [9] datasets. For HICO-DET, evalu-
ation is conducted under two different settings. The default
setting is the primary setting under which different methods
are being compared. The criteria for a successful detection
extends that of the Pascal VOC challenge [5] to bounding
box pairs. Specifically, both the human and object boxes
need to have an intersection over union (IoU) larger than
0.5 with ground truth for the detected pair to be identified
as positive. The known objects setting considers the sets
of object types of the ground truth pairs in an image to
be known, thus automatically removing detections where
the object class is outside the set. For V-COCO, there are
also two evaluation scenarios, differentiated by the protocol
when handling occluded objects. Scenario 1 (S1) requires
an empty box prediction for the detection to be considered
a match, while scenario 2 (S2) neglects the occluded object
and assumes it is always matched.

We report the performance of our model with two back-
bones to demonstrate its scalability. For the object detector,
we use DETR [2] and the most recent H-DETR [14], show-
ing the detector-agnostic nature of our approach. As shown
in Table 6, our method with the ResNet50 already outper-
forms the previous state-of-the-art two-stage detector UPT
by 2 mAP, despite it using the heavier ResNet101 and a fea-
ture dilation. Furthermore, compared against GEN-VLKT,
which distils features from a vision and language model
trained on millions of images (CLIP [32]), our method
achieves higher performance with the same ResNet50 back-
bone. With a stronger detector and backbone, i.e., H-
DETR, our method receives significant performance boost.
This highlights one of the great advantages of two-stage de-
tectors, that they can directly benefit from independent ad-
vances in object detection.

However, we would like to point out that the perfor-
mance of our method with H-DETR-R50 was surprisingly
lower than that with DETR-R50, although H-DETR-R50
outperforms DETR-R50 significantly in terms of object de-
tection mAP on HICO-DET [3]. To investigate this issue,
we first made the observation that H-DETR was trained us-
ing a multi-label classification objective, that is, the scores
are individual normalised using the Sigmoid function as op-
posed to Softmax. As a result, the predicted object de-

10418
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cqp) (e) σ(kT

pqc)

Figure 9. For the image in Figure 3c, we show visualisations of attention weights computed from the content features (a), positional
embeddings (b) and the concatenated formulation (c). We also show the noisy attention weights computed from the two omitted terms
from Eq. 2 in (d) and (e). Here we use σ to denote the softmax function and omit the scalar normalisation for brevity of exposition.

(a) licking a fork (b) riding a giraffe (c) checking a parking meter (d) directing a car (e) Visualised attention for (d)

Figure 10. Qualitative results (a, b, c) and failure case (d) on HICO-DET test set with fine-tuned DETR-R50 as the object detector.

tection scores tend to be lower, thus less over-confident.
To this end, we increased the value of hyper-parameter λ
from Eq. 6 to 0.37. Nevertheless, this only resulted in
marginal improvement. In addition, H-DETR employs de-
formable attention [46] and utilises the multi-scale feature.
Our method, on the other hand, uses a single-scale feature in
the spatially-guided cross-attention. Therefore, it is likely
that the different levels of the feature maps learned to ex-
tract different information, Unfortunately, our attempts in
exploiting multi-scale features did not lead to concrete im-
provements. As such, we leave this problem to future work.

4.4. Positional Embeddings in Cross-Attention

To elucidate the mechanism of positional embeddings,
we separate the attention weights for each term in Eq. 2 and
visualise them in Figure 9. Starting with the content fea-
tures of the keys and queries (kT

c qc), we show in Figure 9a
that this term only accounts for the visual similarity. Con-
sequently, a distant object of a relevant class, i.e. the bike in
the background, receives a substantial amount of attention.
This can be corrected by the similarity term between posi-
tional embeddings, which places a spatial bias on locations
of the human object pair as depicted in Figure 9b. When the
positional embeddings are concatenated to the content fea-
tures, the resultant attention weights become the sum of the
two terms. As shown in Figure 9c, combination of these two
terms results in high attention weights on the water hose,
which is the key to recognising the interaction washing a
bike. In addition, we show in Figures 9d and 9e that the
two omitted cross-terms from Eq. 2 mostly generate noise,
as the content features and positional embeddings are from
very different feature spaces, justifying their removal.

4.5. Qualitative Results and Limitations

We show additional qualitative results in this section. In
particular, our model performs well on several interactions
with little training data, such as licking a fork (six train-
ing examples, 10a), riding a giraffe (two training exam-
ples, 10b) and checking a parking meter (36 training exam-
ples, 10c). We also show an example of missed detections in
Figure 10d, due to a severe lack of training examples, one in
this case. In addition, as there are other interaction classes
involving the same predicate directing but with different ob-
jects and backgrounds, the model tends to fit towards other
classes. Consequently, the model cannot locate the relevant
visual context (Figure 10e), hand gesture in this case.

5. Conclusion
In this paper we analysed the visual features used in

existing two-stage HOI detectors and concluded that their
major weakness was a lack of relevant contextual informa-
tion, since they were specialised to the localisation task. As
such, we proposed an improved design by re-introducing
image features into the human–object pair representation
via cross-attention. To this end, we performed extensive
experiments on the choices of keys/values and introduced
box pair positional embeddings as spatial guidance, and vi-
sualised the impacts of the attention mechanism. Compared
to previous two-stage approaches, we streamlined and sim-
plified the architecture, reducing the need for custom com-
ponents. Our method achieves state-of-the-art performance
on the relevant benchmarks, with particular improvements
where fine-grained visual features, like human pose, and ad-
ditional context, like another object involved in the interac-
tion, are relevant to the classification.
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