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Abstract

Paired video and language data is naturally temporal
concurrency, which requires the modeling of the temporal
dynamics within each modality and the temporal alignment
across modalities simultaneously. However, most existing
video-language representation learning methods only focus
on discrete semantic alignment that encourages aligned se-
mantics to be close in the latent space, or temporal con-
text dependency that captures short-range coherence, fail-
ing in building the temporal concurrency. In this paper, we
propose to learn video-language representations by mod-
eling video-language pairs as Temporal Concurrent Pro-
cesses (TCP) via a process-wised distance metric learn-
ing framework. Specically, we employ the soft Dynamic
Time Warping (DTW) to measure the distance between two
processes across modalities and then optimize the DTW
costs. Meanwhile, we further introduce a regularization
term that enforces the embeddings of each modality ap-
proximating a stochastic process to guarantee the inher-
ent dynamics. Experimental results on three benchmarks
demonstrate that TCP stands as a state-of-the-art method
for various video-language understanding tasks, including
paragraph-to-video retrieval, video moment retrieval, and
video question-answering. Code is available at https:
//github.com/hengRUC/TCP.

1. Introduction

Video-Language Representation Learning [33, 42, 26,
48, 46] is a fundamental problem of multimodal intelli-
gence, which has demonstrated great practical value in var-
ious real-world applications such as video captioning [29,
40], video question answering [46, 26, 57], and video re-
trieval [7, 17, 16]. Essentially, a video-language pair can
be seen as two temporal sequences where each sequence is
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coherent and change smoothly, and the two sequences are
concurrently aligned with each other over time. Therefore,
different from single-modality representation learning, e.g.,
video or text, that requires capturing the temporal dynamics
along time [42, 26, 48, 13], multi-modality learning further
appeals to the temporal alignment across two concurrent
modalities. We refer to the property of requiring model-
ing of both temporal dynamics and temporal alignment in
video-language learning as temporal concurrency.

Pioneer works [32, 1, 28, 54, 50] for video-language rep-
resentation learning typically concentrate on the semantic
alignment by discrete cross-modal matching (Figure 1(a))
that encourages paired video clips and sentence [32] to be
close in the common latent space [1, 28, 54, 50]. However,
the imposition of pulling discrete semantics together with-
out accounting for the temporal dynamics of each individual
modality disrupts the inherent temporal coherence of uni-
modal representations and temporal concurrency between
two modalities. Thereby leads to a sub-optimal representa-
tion with limited generalization [18]. Recently, an emerg-
ing line of endowing temporal dynamics is to capture the
temporal context dependency (Figure 1(b)), by global repre-
sentation alignment across modalities [48], long-form video
encoding with video Transformers [45], or temporal order
modeling by shufe discriminations [25, 10, 21]. Despite
incorporating temporal constraints to capture temporal con-
text, these methods have limited efcacy in capturing subtle
and long-range dependencies due to the neglect of temporal
coherence over the entire sequence of data. The incomplete
modeling of temporal dynamics undermines temporal con-
currency and leads to unsatisfactory performance.

In a nutshell, video-language representation learning
entails the temporal concurrency with two intrinsic pat-
terns: 1) intra-modal temporal dynamics that indicate the
sequential representations should adhere to coherent con-
straints, and 2) cross-modal temporal alignment that re-
quires both global (video-paragraph) and local (i.e., video
clip-sentence) semantic alignments over time. Based on
the above insights, we propose to model the video-language

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15568



(a) Semantic Alignment (b) Context Dependency (c) Temporal Concurrency

E
m
be
dd
in
g
Sp
ac
e

E
m
be
dd
in
g
Sp
ac
e

E
m
be
dd
in
g
Sp
ac
e

Video Clip

Sentence

Video

Paragraph Text Process

Video Process

Figure 1. Compare to mainstream video-language representation learning methods. (a) Semantic Alignment (e.g., HERO [28], Frozen [1])
enforces video-clip sentence pairs to be close in the embedding space, disrupting the inherent temporal dynamics of each modality. (b)
Context Dependency (e.g. HD-VILA [50], MERLOT [54]) endows short-range temporal context dependency within each modality, limited
on capturing long-range dependencies. (c) The proposed Temporal Concurrency models video-language pairs as temporal concurrency
processes, therefore capturing temporal alignments while maintaining the coherence of each modality.

pairs as Temporal Concurrent Processes (TCP, Figure 1(c))
where each modality is represented as a goal-oriented
stochastic process [35, 4] and the two modalities are further
aligned as concurrent processes.

Here the basic assumptions are that 1) a temporal se-
quence is coherent and smoothly changes from the start to
the end, which is essentially a stochastic process, and 2)
two concurrent processes can be temporally aligned by min-
imizing the distance between them.

The implementation of TCP follows a process-wised dis-
tance metric learning framework, where the distance is mea-
sured by an optimal match between two processes via dy-
namic programming. Specically, we employ the differ-
entiable soft Dynamic Time Warping [12] (soft-DTW) to
calculate the overall cost. However, directly optimizing
networks by soft-DTW costs usually encounter trivial so-
lutions owing to the lack of constraints for each sequence,
we further introduce a regularization term that models each
temporal sequence as a goal-oriented stochastic process to
agree with a time-variant Gaussian distribution, i.e., the
Brownian bridge [37, 3], wherein the representations in the
process are expected to be the line combination of the bridge
head and tail. The overall training objective is the combina-
tion of the soft-DTW cost with the regularization term.

Thanks to the global optimization between two self-
consistent temporal processes by modeling video-language
pairs as Temporal Concurrency Processes, the proposed
TCP successfully captures the implicit correlation between
the ne-grained semantics of each modality and models the
temporal concurrency across modalities. Compared with
existing methods that rely on discrete cross-modal align-
ment or temporal context dependency, TCP empirically pro-
duces richer representations of visual contents and language
for various downstream video-language tasks, including
paragraph-to-video retrieval [53, 1, 17, 16], video moment
retrieval [34, 15], and video question-answering [27].

Our contributions are summarized as follows:
• To the best of our knowledge, we are the rst work that
models video-language pairs as Temporal Concurrent
Processes (TCP) to capture the inherent temporal con-
currency of video-language representation learning.

• We implement TCP with a novel process-wised dis-
tance metric learning framework and optimize it by the
soft-DTW cost of two processes to construct tempo-
ral alignment, accompanying a regularization term for
each process to preserve temporal dynamics.

• The proposed TCP achieves state-of-the-art perfor-
mance on various video-language understanding tasks
across three widely-used datasets.

2. Related Work
Video-Language Pre-training. Early video-language pre-
training works are mostly designed for short-form video
tasks [1, 50]. VideoBERT [42] trains the encoder by pre-
dicting the masked token of video and text representation
in a single-stream manner. Two-stream methods [31, 44]
are proposed to alleviate the interference when encoding
each of the two modalities and interact representations in
different latent spaces between video and language. Due
to its fundamental role in real applications, video-language
pre-training for long-form videos is getting more attention.
By applying cross-modality interaction on different scales
of video, [28] aggregates the contextualized segment-level
representation as the input for further task-specied mod-
ules. Moreover, aligning the video segment and its text
description is generally introduced as a typical proxy task
during video-language pre-training [50, 54]. [50] propose
a two-branch scheme to process visual content in different
resolutions and perform a divided spatial-temporal opera-
tion to reduce the computational cost. [54] takes one step
further in modeling ne-grained temporal information by

15569



forcing the model to predict the correct order of frames dur-
ing a video segment. However, the alignment conducted
at the segment level is not sufcient because the natural
temporal consistency implied between different segments
of long-form video is ignored.

Most recently, sequence alignment for video-language
representation learning is explored in TempCLR [52],
which discovers the temporal dynamics between different
video segments by a contrastive learning framework based
on the shufed segment sequence. Different from Temp-
CLR which uses the unstable DTW for global sequence
alignment and learn temporal dynamics by distinguishing
normal video sequence from shufed ones on a single video
modality, we leverage a differentiable version of DTW and
learn temporal dynamics by modeling sequences as Brown-
ian bridge processes in both video and language modalities.
Long-form Video Temporal Modeling. Recently, a se-
ries of more challenging tasks like video moment retrieval
[21], video visual grounding [41], and action localization
[9], which conducts a contextual alignment between lan-
guage and visual contents in long-form videos, is becoming
a hot research topic because it is more in line with the re-
quirement of the real-world application scenarios. Differ-
ent from the tasks that rely on only the local dependencies
in videos, to semantically match entities and segments in
a long-form video with their corresponding description, we
need to model the temporal dependencies from aspects at
both the segment level and global level. Existing methods
mainly focus on exploring the temporal context based on
designing multi-scale modeling architecture, while ignoring
the correlation between different video segments.
Video-to-Transcript. Prior transcription-based methods
can be roughly divided into two categories: 1) Single-modal
works leverage transcript (action order) [8] or cluster al-
gorithm [24] for video Temporal Order, ignoring Cross-
modal Semantic Alignment. 2) In multimodal works, the
frame-sentence similarity matrix is incorporated to deter-
mine frame-sentence pseudo labels for denoising [20] or
Cross-modal Semantic Alignment [52, 20], while still fail-
ing to construct the Inherent Dynamics of sequential in-
put. Although [43] proposes a multimodal temporal con-
trastive loss for temporal inherent relation, it is process-
unperceived and neglects Temporal Order. Comparing to
video-to-transcript methods, our TCP achieves 1) Temporal
Order and Cross-modal Semantic Alignment via soft-DTW,
2) Inherent Dynamics of each modality with a Brownian
Bridge constraint.

3. Method

3.1. Model Architecture

Video Encoder. First of all, given a video containing N
clips, we randomly select K frames from each clip to rep-

resent them, with each frame divided into H ×W patches.
Then patchs are mapped to video tokens by a learnableMLP
projection head and taken as the input of the video encoder
by adding the position embedding indicating the timestamp.
We take Swin-Transformer [30] as the video encoder. Fol-
lowing the last layer, an average pooling over each frames
that belong to the same video clip is applied to represent the
clip. We initialize the video encoder with the parameters of
Swin-Transformer pre-trained on ImageNet-21K.
Text Encoder. Similarly, we rst obtain text tokens embed-
ding via lookup and add position and segment embeddings
as in BERT [13]. The text encoder is a multi-layer bidi-
rectional Transformer with 12 layers, 768 hidden size, and
12 self-attention heads. Following the last layer, an aver-
age pooling over each sentence is applied to obtain the hid-
den states of each sentence. We initialize our text encoder
weights with the BERTBASE [13] model.
Notations. We denote the video encoder as fθv , the text
encoder as fθp . Given a long video-paragraph pair xc =
c11, ..., c

j
i , ..., c

M
N


where cji indicates the i-th video clip

belong to j-th segment, xs = s1, ..., sj , ..., sM where sj
indicates the j-th sentence in the paragraph. We obtain the
nal representations with,

zv = fθv(xc), zp = fθp(xs) (1)

3.2. Cross-modal Sequence Alignment

Preliminary of DTW. The dense vectors output from the
dual-encoder can be taken as temporal sequences of dif-
ferent modalities. We employ Dynamic Time Wrapping
(DTW) discrepancy [2] for cross-modal sequence align-
ment. It is a classical algorithm for nding the minimum
cost path in the distance matrix of two sequences wherein
the minimum cost can be taken as the distance of two se-
quences. Different from previous work that uses DTW for
video-to-transcript [8] or video-to-video alignment [6, 22],
we explore the application of DTW on video-to-language
alignment by minimizing the sequence distance.

Given the representations output from dual-encoder,
zv =


v1
1 , ...,v

j
i , ...,v

M
N


where vj

i indicates the repre-
sentation of i-th video clip belong to j-th segment, zp =
p1, ...,pj , ...,pM where pj indicates the representation
of j-th sentence in the paragraph. The distance between i-
th video clip belong to k-th (k ∈ [1,M ]) segment and j-th
sentence is dened as:

Di,j =
vk

i − pj

2
2
,D ∈ RN×M (2)

We rst calculate the initial states (i.e., the rst column and
row) for the distance matrixD:
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Figure 2. An overview of the proposed TCP. We rst obtain video and text embeddings using a feature extractor and tokenizer, respectively.
To prepare the inputs for the encoders, we add position and segment embeddings (Section 3.1). We leverage the cost of soft-DTW as the
optimization objective for cross-modal sequence alignment (Section 3.2). For the sequences of each modality, we enforce the elements of
the sequence to be embedded in the temporal location of the corresponding Brownian bridge process in the latent space via regularization
term for the soft-DTW cost (Section 3.3).

d(1, 1) = D1,1,

d(i, 1) = Di,1 + d(i− 1, 1),

d(1, j) = D1,j + d(1, j − 1),

(3)

where i ∈ [2, N ], j ∈ [2,M ]. Then the distance matrix D
can be calculated with the dynamic programming:

d(i, j) = Di,j+min d(i, j − 1), d(i− 1, j), d(i− 1, j − 1)
(4)

Soft-DTW Cost. We can nd the minimum cost path from
D via the backtracking algorithm and calculate the cost
value. However, the minimum cost of soft-DTW can not
be directly used as an optimization object due to its undif-
ferentiable min operator. Therefore, we select a smooth
and continuous version of DTW, the soft-DTW [12], which
replaces themin operator in a smooth way:

mins(d1, d2, ..., dn) = −λ log
n

i=1

e
−di
λ , (5)

where 0 < λ is a parameter for smoothness. A larger λ
value leads to smoother results. soft-DTW will degenerate
into DTW when lim(λ → 0).

Replacing min operator with mins in the Equation (4),
we get the soft-distance matrix D̂. For concise calculation
and description, we use a binary matrix S to record the min-
imum cost path with the same shape as D̂. In S, the cells
that belong to the minimum cost path are 1, other cells are
0. Finally, the soft-DTW alignment cost is,

LV 2P = ⟨S, D̂⟩ (6)

Soft-DTW can serve as a better optimization objective with
smooth gradients in backpropagation even though no con-
vex optimization function is specically provided, which
makes the training process stable.

3.3. Intra-modal Sequence Modeling
Brownian Bridge Process. Sequence alignment focus on
cross-modal temporal connection while missing the tempo-
ral dynamic evolution in each modal (e.g., smooth change
between continuous clips of a video, context relevance of
sentences in a paragraph). In addition, optimizing the net-
work only with the alignment cost may result in trivial so-
lutions. That is to say, all the representations of clip and
sense collapse to a small cluster so that all the entries of
the video-paragraph distance matrix are 0. Based on these
ndings and inspired by [47, 55], we model the sequence
of video clips or sentences as a Brownian bridge process to
capture the dynamic evolution along the temporal dimen-
sion. A process indicates a segment of a video or a para-
graph. The transition density of the process conforms to a
time-variant Gaussian distribution:

p(ztzA,zT ) = N ((1− α)zA + αzT ,α(T − t)) ,

where α =
t−A

T −A
.

(7)

where zA, zT are the start and end points of the Brown-
ian bridge process respectively, and zt is an arbitrary point
in the process. 1) The mean value of this distribution re-
quires zt to be the linear combination of the start and end
points of the trajectory according to their relative temporal
distance. zt should be more similar to zA if zt is near the
start point. Otherwise zt should be more similar to zT . 2)
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The variance of this distribution requires the uncertainty of
zt to increase and then decrease over time, which conforms
to a normal distribution. To sum up, this distribution in-
dicates that the elements with closer temporal distance are
more similar with a smaller change range, which is very
consistent with the dynamic changes of video or language
sequences.
Process-wised Regularization. To map the sequence into
the latent space of the Brownian bridge, we leverage con-
trastive learning to build the process. We rst dene the
anchor, positive and negative samples in contrastive learn-
ing. Given a Brownian bridge Z = zA, · · · ,zt, · · · ,zT 
where zt is the point at the timestamp t. The linear combi-
nation (ref. Equation (7)) of the start and end points at the
timestamp t is the anchor, zt serves as positive while the
points of other Brownian bridges serves as negatives. We
next dene the distance between the anchor and positive or
negative points as:

d(zA,zt,zT ) =
1

2σ2
∥zt − (1− α)zA − αzT ∥22 ,

where α =
t−A

T −A
.

(8)

where σ2 is α(T − t), the variance of the Brownian bridge
transition density in Equation (7). We nally use the fol-
lowing triplet margin loss for process-wised metric learn-
ing, dubbed PRT (Process-wised Regularization Term):

LPRT = [d(zA,zt,zT )− d(zA, ẑt,zT ) + β]+ (9)

where β is a margin parameter, ‘+’ indicates the result keeps
if the value in the brackets is greater than 0 otherwise set to
0. N represents the valid triplets (e.g., greater than 0).
Application of PRT. The sequence can be the representa-
tion of video or language. We next discuss the application
of PRT on video clips zv and paragraph zp respectively.

Given a video representation zv =

v1
1 , ...,v

j
i , ...,v

M
N



that contains M segments. Each segment is taken as
a Brownian bridge process. The j-th segment zj

v =
vj
A, ...,v

j
t , ...,v

j
T


where vj

A, v
j
T are the both end of the

Brownian bridge. The positive in the timestamp t is vj
t

while the negatives are randomly selected from other seg-
ments, denoted as v̂t. The process-wised regularization for
video clips sequence modeling is:

L(V ) =
M

j=1

T−1

t=A+1

[d(vA,vt,vT )− d(vA, v̂t,vT ) + β]j+

(10)
As for text paragraphs, conditions and denitions

are somewhat different. Given the paragraph zp =
p1, ...,pj , ...,pM where each sentence corresponding to
a video segment, the whole paragraph is taken as a Brow-
nian bridge process. The positive in the timestamp j is pj

while the negatives p̂j are randomly selected from another
sentence in this paragraph. The process-wised regulariza-
tion in paragraph sequence modeling is:

L(P ) =
M−1

j=2

[d(p1,pj ,pM )− d(p1, p̂j ,pM ) + β]+ (11)

3.4. Optimization Objective
The overall training objective used in our method is

to minimize the combination of the cross-modal sequence
alignment cost in Equation (6) and the intra-modal sequence
modeling regularization term in Equation (10, 11):

L(V, P ) = LV 2P + η(L(V ) + L(P )), (12)

where η is the weight of sequence modeling. The nal
optimization objective encourages video-paragraph pairs
to have minimum alignment costs and ne-grained cross-
modal matching (i.e., clip-to-sentence) by modeling the dy-
namic evolutions along the temporal dimension in each re-
spective modality.

4. Experiments
4.1. Experimental Settings
Pre-training Datasets. Our model is pre-trained on LF-
VILA-8M [43] dataset, which combines multiple video-
language pairs presented in HD-VILA-100M [50] to ob-
tain long-form video with its text descriptions in tempo-
ral sequence. There are 8.5 million video-language pairs
in LF-VILA-8M with 100.2 seconds duration on average,
which is signicantly longer than that in HD-VILA-100M.
The language paragraph contains 307.9 words on average.
The available large-scale video-language datasets, such as
HowTo100M [33], are noisy, and thus competitive perfor-
mance requires a signicant amount of computation re-
sources. Compared to HowTo100M, LF-VILA-8M is much
cleaner and smaller in size while longer in average length,
which is more suitable for modeling and training long se-
quences in our TCP. Unless otherwise stated, all the video-
text pairs in the dataset are used for pre-training.
Implementation Details. The number of frames that repre-
sent each clip is set as K = 8 wherein the resolution of the
frame is resized to 192×320. The size of patch in the frame
is set to 8×8. In the pre-training process, all parameters
of the two encoders are optimized by Adam with a learn-
ing rate of 1e-5 and a weight decay of 0.05. We implement
TCP using PyTorch and pre-train the model on 8 NVIDIA
A100 GPUs for 12 epochs with batch size 128. We x the
margin parameter β = 0.2 in Equation (9) and set the pa-
rameter for smoothness λ = 0.5 in Equation (5), the weight
of sequence modeling η = 1 in Equation (12) as default
value. The ablation study on parameters λ, η is illustrated
in Appendix.
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Method Date Video Input PT Dataset #Pairs PT R@1 R@5 R@10 MedR↓
Fine-tuning:
AVLnet [39] 2021 ResNeXt-101 HowTo100M 120M 27.1 55.6 66.6 4.0
TACo [51] 2021 I3D, S3D HowTo100M 120M 28.4 57.8 71.2 4.0
Support Set [36] 2021 R(2+1)D-34 HowTo100M 120M 30.1 58.5 69.3 3.0
VideoCLIP [48] 2021 S3D HowTo100M 110M 30.9 55.4 66.8 -
Frozen [1] 2021 Raw Videos CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0
HD-VILA [50] 2022 ResNet-50 HD-VILA-100M 103M 35.6 65.3 78.0 3.0
LocVTP [7] 2022 Raw Videos CC3M, WebVid-2M 5.5M 36.5 64.3 76.8 3.0
MILES [17] 2022 Raw Videos CC3M, WebVid-2M 5.5M 37.7 63.6 73.8 3.0
Bridging [16] 2022 Raw Videos CC3M, WebVid-2M 5.5M 37.6 64.8 75.1 3.0
Ours 2023 Raw Videos LF-VILA-8M⋆ 5.5M 38.0 65.5 76.4 3.0
Zero-shot:
TACo [51] 2021 I3D, S3D HowTo100M 120M 9.8 25.0 33.4 29.0
VideoCLIP [48] 2021 S3D HowTo100M 110M 10.4 22.2 30.0 -
Support Set [36] 2021 R(2+1)D-34 HowTo100M 120M 12.7 27.5 36.2 24.0
HD-VILA [50] 2022 ResNet-50 HD-VILA-100M 103M 14.6 34.4 44.1 15.0
Frozen [1] 2021 Raw Videos CC3M, WebVid-2M 5.5M 18.7 39.5 51.6 10.0
AVLnet [39] 2021 ResNeXt-101 HowTo100M 120M 19.6 40.8 50.7 9.0
LocVTP [7] 2022 Raw Videos CC3M, WebVid-2M 5.5M 22.1 48.0 55.3 8.0
Bridging [16] 2022 Raw Videos CC3M, WebVid-2M 5.5M 26.0 46.4 56.4 7.0
MILES [17] 2022 Raw Videos CC3M, WebVid-2M 5.5M 26.1 47.2 56.9 7.0
Ours 2023 Raw Videos LF-VILA-8M⋆ 5.5M 26.8 48.3 57.6 7.0

Table 1. Comparison with state-of-the-art methods for paragraph-to-video retrieval on MSR-VTT 1K test set under two evaluation settings
(zero-shot and ne-tuning). Video Input: the type of video embeddings as the input of the video encoder. I3D, S3D, R(2+1)D, and
ResNeXt-101 are all pre-extracted features while Raw Videos means raw video frame pixels. PT Dataset: the pre-training dataset in each
method wherein HowTo100M is the instruction domain and the others are the open domain. #Pair PT: the number of video-text pairs in
the pre-training dataset. ⋆ indicates that we selecte 5.5M pre-training pairs in LF-VILA-8M for fair comparison.

Method Date Video Input PT Dataset #Pairs PT R@1 R@5 R@50 MedR↓
ClipBERT [26] 2021 ResNet-50 COCO, Visual Genome 5.6M 21.3 49.0 - 6.0
HD-VILA [50] 2022 ResNet-50 HD-VILA-100M 103M 28.5 57.4 94.0 4.0
Frozen [1] 2021 Raw Videos CC3M, WebVid-2M 5.5M 28.8 60.9 - 3.0
Support Set [36] 2021 R(2+1)D-34 HowTo100M 120M 29.2 61.6 94.7 3.0
TACo [51] 2021 I3D, S3D HowTo100M 120M 30.4 61.2 93.4 3.0
LF-VILA [43] 2022 Raw Videos LF-VILA-8M 8.5M 35.3 65.4 95.0 3.0
Ours 2023 Raw Videos LF-VILA-8M 8.5M 36.0 66.7 95.8 3.0

Table 2. Comparison with state-of-the-art methods for paragraph-to-video retrieval on ActivityNet 1K val set. We additionally report the
recall accuracy under a large candidate range, i.e., R@50. The proposed TCP achieves state-of-the-art performance on all metrics.

4.2. Paragraph-to-Video Retrieval

Setup and Evaluation Metrics. In this task, soft-DTW is
directly used to match the whole video and the paragraph.
We evaluate our method under two settings: zero-shot and
ne-tuning. In zero-shot, pre-trained models are directly
used for downstream datasets and no ne-tuning is allowed.
In ne-tuning, we netune the downstream training set be-
fore evaluation. The performance evaluation metric is mea-
sured as the proportion of the queries with correct results in
the Top-k retrievals as the performance evaluation metric,

which is denoted as R@k in this paper. MedR represents
the Median Rank, which measures the median position of
the right option in the sequence. Lower MedR indicates
better performance.

Datasets. ActivityNet-Captions is constructed based on
ActivityNet [5], which has 19,209 videos with an average
duration of 117.6 seconds. For each of the videos, there are
3.65 sentences with 13.8 words on average. MSR-VTT [49]
contains a total of 10,000 videos in 20 categories, and each
video has 20 text descriptions.
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Method Dataset
LSMDC MRSVTT

Fine-tuning:
JSFusion [53] 73.5 83.4
ActBERT [57] - 85.7
ClipBERT [26] - 88.2
MERLOT [54] 81.7 -
VIOLET [14] 82.9 -
All-in-one-B [46] 83.1 91.4
Ours 83.7 92.8
Zero-shot:
All-in-one-B [46] 56.3 80.3
Ours 57.0 80.8

Table 3. Comparison with state-of-the-art methods for video ques-
tion answering on LSMDC andMRSVTTmultiple-choice test set.
The proposed TCP achieves state-of-the-art performance on both
settings of both datasets.

Comparison with State-of-the-Art. Table 1 and 2 show
the performance comparison between state-of-the-art meth-
ods and ours on MSR-VTT and ActivityNet datasets re-
spectively. Our method achieves better retrieval accuracy
according to all of the metrics on the MSR-VTT 1K test
set in both ne-tuning and zero-shot evaluation settings, as
presented in Table 1. Our model outperforms state-of-the-
art methods with either signicantly fewer training video-
language data pairs or with the same number of training
pairs. For ActivityNet 1K val set, as denoted in Table 2,
compared with the latest advanced method [43], our model
yields signicant performance advantages with the same
size of the training dataset, while the pre-extracted feature
we utilized to train implies a faster than raw video data that
[43] uses. These experimental results validate the effective-
ness of our model for understanding long-form videos com-
prehensively.

4.3. Video Moment Retrieval
Setup and Evaluation Metrics. Video Moment Retrieval
(VMR) aims to nd the corresponding segment in a video
based on a given language query. To transfer to this task,
we re-train the widely used temporal grounding method 2D-
TAN [56] by only replacing the input with our features of
the pre-trained model. Following [21], we choose R@θ

n as
the evaluation metric for video moment retrieval, which in-
dicates the percentage of the queries with at least one re-
trieved segment from top-k ones whose IoU with the target
segment is larger than θ. In this paper, n ∈ 1, 5 and
θ ∈ 0.5, 0.7 are selected for evaluation.
Datasets. The temporal boundary indexes of the video
segment are accessible in the video-sentence pairs given
in ActivityNet-Captions [23], and thus we evaluate the
video moment retrieval performance of our method in the
ActivityNet-Captions dataset.

Comparison with State-of-the-Art. Our model achieves
overall better performance than state-of-the-art methods,
as illustrated in Table 4. For the model trained based
on the pre-extracted feature, our model outperforms Sup-
port Set [36] and ClipBERT [26] by 4.6% and 3.9% rela-
tively according to R@0.5

1 metric. Compared to the latest
[7] trained on raw videos, our pre-extracted feature-based
model, which advances in training speed, surpasses it ac-
cording to R@0.7

5 and both of the R@1 metrics, and has
competitive results according to R@0.5

5 metric. This result
illustrates the promising ability of our model to capture the
ne-grained cross-modality alignment.

4.4. Video Question-Answering

Setup and Evaluation Metrics. Multiple-choice Video
Question-Answering is another video-language task that
aims to choose the correct answer among multiple choices
based on a given video query. To t on this task, we tune
the model with cross-entropy loss to maximize the scores
on positive pairs. We use accuracy as the evaluation metric
for multiple-choice Video Question-Answering.
Datasets. We use MSR-VTT and LSMDC [38] for evalu-
ation following [46]. LSMDC [38] contains 118,081 video
moments collected from 201 movies.
Comparison with State-of-the-Art. In Table 3 we present
the performance comparison of video question answering
on MRS-VTT and LSMDC datasets respectively. Our
model achieves state-of-the-art accuracies in both datasets.
Specically, compared with the latest method All-in-one-B
[46], accuracy improvements of 0.6% and 1.4% have been
achieved in MRS-VTT [49] and LSMDC [38] respectively.
Furthermore, in the zero-shot evaluation setting, our model
also surpasses All-in-one-B [46] by 0.7% and 0.5% in terms
of accuracy. These results demonstrate that our model can
effectively understand the content of the long-form video
and match it with the textual descriptions.

4.5. Ablation Study

Regularization Term. We take the none regularization
term as the baseline, and employ another two regularization
terms as the contrast to PRT (Process-wised Regularization
Term): Inverse Difference Moment (IDM) [11] and Noise
Contrastive Estimation (NCE) [19].
IDM. The Inverse Difference Moment is dened as:

I(x) =
n

i=1

n

j=1

W (i, j)∆x(i, j), (13)

where W (i, j) = 1
(i−j)2+1 serves as the temporal weight,

∆x is the self-similarity matrix of sequence x, x can be any
sequence of multiple modalities. Maximizing this objective
encourages temporally close elements to be closer in the
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Method Date Video Input PT Dataset #Pairs PT R@0.5
1 R@0.7

1 R@0.5
5 R@0.7

5

Support Set [39] 2021 R(2+1)D-34 HowTo100M 120M 41.9 25.2 74.7 58.3
ClipBERT [26] 2021 ResNet-50 COCO, Visual Genome 5.6M 42.6 24.6 75.3 59.7
Frozen [1] 2021 Raw Videos CC3M, WebVid-2M 5.5M 43.3 25.8 75.8 59.3
LocVTP [7] 2022 Raw Videos CC3M, WebVid-2M 5.5M 46.1 27.6 78.9 63.7
Ours 2023 Raw Videos LF-VILA-8M⋆ 5.5M 46.5 28.4 78.2 64.0

Table 4. Comparison with state-of-the-art methods for video moment retrieval on ActivityNet 1K val set. The proposed TCP achieves
state-of-the-art performance on most metrics.

Reg. term MRS-VTT ActivityNet
PVR (R@1) VQA (Accuracy) VMR (R@0.7

1 )
None 16.4 51.2 18.6
IDM 24.2 76.3 25.8
NCE 26.4 81.2 27.8
PRT 26.8 80.8 28.4

Table 5. Ablation studies of regularization term.

latent space. To be used as a regularization term for opti-
mization objective, the IDM maximization function can be
converted to the following minimization:

Ī(x) = −
n

i=1

n

j=1

W̄ (i, j)∆x(i, j), (14)

where W̄ (i, j) = (i− j)2 + 1. As Table 5 shows, IDM
can alleviate the problem of the trivial solution to a certain
extent while failing to achieve optimal performance.
NCE. Different from PRT which learns from triplet con-
trast, NCE learns from the contrast with multiple negative
samples of a batch in the training, all samples except the zi

t

are taken as negative samples denoted asM. We dene the
NCE-based regularization term as:

C(x) = − 1

N

N

i=1

log
exp(d(zi

A,z
i
t,z

i
T ))

z′
t∈M

exp(d(zi
A,z

′
t,z

i
T ))

. (15)

As shown in Table 5, NCE achieves comparable perfor-
mance with PRT on paragraph-to-video retrieval and video
moment retrieval tasks. In addition, NCE outperforms
other regularization terms on the video question-answering
task. These ndings demonstrate that incorporating addi-
tional negative samples is benecial for cross-modal seman-
tic matching without signicantly affecting the learning of
intra-modal temporal dynamics.

Scalability Study. To gure out how our method scales
with the size of pre-training dataset, we pre-train the model
with 1.5M, 3.5M, 5.5M, and 8.5M data pairs successively.
We report the text-to-video retrieval results on MSR-VTT
and ActivityNet in Figure 3, TCP achieves ∼4% improve-
ment on MSR-VTT with 7M dataset expansion, ∼2.5%

Figure 3. Scalability study with different number of pre-training
data pairs. The top two lines indicate our paragraph-to-video re-
trieval results on MSR-VTT and ActivityNet in order.

higher than Frozen [1], which demonstrates its good scala-
bility. It may be attributed to TCP’s construction of inherent
dynamics of sequential video/text.

5. Conclusion
In this paper, we propose to model video-language pairs

as Temporal Concurrent Processes (TCP), which captures
the inherent patterns of temporal concurrency, including
intra-modal temporal dynamics and cross-modal temporal
alignment. Specically, TCP represents each modality as
a goal-oriented stochastic process and aligns them as con-
current processes via dynamic programming and soft-DTW.
Meanwhile, we introduce a regularization term that en-
forces each temporal sequence to agree with a time-variant
Gaussian distribution within the Brownian bridge. Exten-
sive experimental results show that TCP empirically pro-
duces well-generalized representations that are suitable for
various downstream video-language understanding tasks.
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