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Figure 1: 3D Reconstruction and trajectory error on scene0054 00 (ScanNet [12]). From left to right: RGB-D methods (iMAP [35],
NICE-SLAM [53], DROID-SLAM [41] and ours), ground truth scan, and monocular methods (DROID-SLAM [41] and ours).

Abstract

Neural implicit representations have recently demon-
strated compelling results on dense Simultaneous Localiza-
tion And Mapping (SLAM) but suffer from the accumula-
tion of errors in camera tracking and distortion in the re-
construction. Purposely, we present GO-SLAM, a deep-
learning-based dense visual SLAM framework globally op-
timizing poses and 3D reconstruction in real-time. Ro-
bust pose estimation is at its core, supported by efficient
loop closing and online full bundle adjustment, which op-
timize per frame by utilizing the learned global geometry
of the complete history of input frames. Simultaneously,
we update the implicit and continuous surface represen-
tation on-the-fly to ensure global consistency of 3D re-
construction. Results on various synthetic and real-world
datasets demonstrate that GO-SLAM outperforms state-of-
the-art approaches at tracking robustness and reconstruc-
tion accuracy. Furthermore, GO-SLAM is versatile and can
run with monocular, stereo, and RGB-D input.

1. Introduction
The demand for high-fidelity 3D object and scene re-

constructions grows continuously in various fields, includ-
ing robotics and augmented/virtual reality applications.
Thus, faithfully representing objects and scenes in three-

dimensional space is paramount to modelling them as con-
tinuous surfaces rather than discrete points. However, de-
spite the significant advancements in 3D reconstruction
techniques, obtaining high-quality representations in real-
time without compromising accuracy and spatial resolution
remains challenging. This fact is further demanding in on-
line reconstruction scenarios, where handling camera mo-
tions and achieving real-time performance are critical.

Dense visual Simultaneous Localization and Mapping
(SLAM) systems [28, 45, 32, 13, 46] have been intro-
duced recently, enabling real-time, dense indoor scene re-
constructions using RGB-D sensors. In particular, Bundle-
Fusion [13] is the first volumetric approach that focuses on
globally consistent 3D reconstruction on large-scale scenes
at a real-time rate. However, consumer depth sensors have
a limited working range [32, 12] and could yield extremely
noisy [27] measurements. This issues make the represen-
tation mapped by RGB-D SLAM suffer from blurring or
over-smoothed geometric details, degrading the accuracy
of pose estimation and reconstruction. In parallel, scene
reconstruction from monocular imagery is emerging as a
more convenient solution compared to RGB-D or LiDAR
sensors. Camera sensors are lightweight, inexpensive, and
represent the most straightforward configuration. Several
deep-learning approaches [38, 4, 11, 51, 39, 32, 41] have
advanced monocular 3D reconstruction. However, their sur-
face representations – point cloud, surfel-based and volu-
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metric representations – lack flexibility at shape extraction
and thus inhibit high-fidelity reconstruction.

More recently, the advent of Neural Radiance Fields
(NeRFs) also impacted dense visual SLAM, offering pho-
tometrically accurate 3D representations of the world.
The implicit representation yielded by continuous radiance
fields allows for high-quality rendering of both visible and
occluded regions, enabling extraction of the underlying
shapes at arbitrary resolution. Recent [35, 19, 53] and con-
current [20, 31, 9, 52] works demonstrate that NeRF-based
visual SLAM can yield precise 3D reconstructions and cam-
era pose estimation in small-scale scenes. However, due to
the lack of global online optimization, such as loop closure
(LC) and global bundle adjustment (BA), camera drift error
accumulates as the number of processed frames grows, and
the 3D reconstruction quickly collapses, as shown in Fig. 1.

Purposely, this paper introduces GO-SLAM, a deep-
learning-based SLAM system featuring on-the-fly, globally
consistent 3D reconstruction, facilitated by our robust cam-
era tracking and real-time implicit surface updates. As real-
world 3D scenes may be very complex, drifting cannot be
completely avoided by only locally tracking camera motion,
especially in the monocular camera setting, due to the lack
of explicit depth measurements. In addition to the local reg-
istration commonly performed by current SLAM systems,
we present an efficient loop closing to correct trajectory in
real-time, accompanied by an online full BA module to ac-
tively optimize the 3D geometry of the complete keyframes
history. In contrast to previous works performing BA or LC
with sparse visual features [26, 6, 13, 11], our end-to-end
global optimization procedure is naturally robust to chal-
lenging regions, thanks to richer features and geometry cues
(e.g., pixel-wise flow) learned by neural networks. Further-
more, GO-SLAM implements instant mapping based on a
neural implicit network with multi-resolution hash encod-
ing [24]. Its compact, multiscale representation enables up-
dating the 3D reconstruction at high-frequency according to
newly-optimized camera poses and depths from our global
optimization system, thus ensuring global consistency in the
dense map and capturing local details. Our contributions
can be resumed as follows:

• A novel deep-learning-based, real-time global pose op-
timization system that considers the complete history
of input frames and continuously aligns all poses.

• An efficient alignment strategy that enables instanta-
neous loop closures and correction of global structure,
being both memory and time efficient.

• An instant 3D implicit reconstruction approach, en-
abling on-the-fly and continuous 3D model update
with the latest global pose estimates. This strategy fa-
cilitates real-time 3D reconstructions.

• The first deep-learning architecture for joint robust
pose estimation and dense 3D reconstruction suited for
any setup: monocular, stereo, or RGB-D cameras.

2. Related Work
Here, we review the literature relevant to our work.
Online 3D Reconstruction and SLAM. Real-time,

dense, and globally consistent 3D reconstruction is cru-
cial in the SLAM literature. As a core element for high-
quality reconstruction, the underlying representation can be
approximately categorized as depth point [25, 26, 6, 51,
15, 4, 38, 11, 41], height map [17], surfel [32, 45] and
volumetric representation [28, 29, 13]. Especially some
of them [26, 6, 13, 32, 11], make an effort for globally
consistent reconstruction by implementing global BA and
LC systems. However, due to discrete and limited surface
representations (e.g., point-, surfel- or voxel-based), these
methods suffer from the accumulation of errors in cam-
era tracking and distortion in the reconstruction. DROID-
SLAM [41] achieves impressive trajectory estimations by
using neural networks to leverage richer context from im-
ages, yet it performs global bundle adjustment only offline,
at the end of camera tracking. However, for some challeng-
ing cases, it gets hard to eliminate the drift error with offline
refinement solely, as shown in Fig. 1, pointing out the im-
portance of online BA for on-the-fly drift correction.

NeRF-based Visual SLAM. Neural implicit fields
(NeRF) have recently emerged as one of the promising
and widely applicable methods for 3D representation, open-
ing up many new research opportunities including novel
view synthesis [23, 44, 43, 2, 3, 49, 36, 16, 24], multi-
view 3D reconstruction [8, 7, 37], and large-scale scene
reconstruction [42, 54, 21, 50, 30, 1, 48]. A common re-
quirement of these methods is the posed images. [22, 47]
tries to relax this constraint starting from imperfect cam-
era poses on small objects. More recently, using neural im-
plicit representation in visual SLAM [35, 53, 52, 31, 9, 20]
has achieved better scene completeness, especially for un-
observed regions, and it has also allowed for continu-
ous 3D modeling at arbitrary resolution. Two pioneer
works, iMAP [35] and NICE-SLAM [53], extend the neu-
ral implicit representation to RGB-D SLAM system, which
learns camera pose tracking and room-scale mapping from
scratch. Concurrent works [20, 52], by removing the re-
liance on depth sensor input, achieve visual SLAM when
only RGB sequences are available. Instead of naı̈ve pose
optimization with NeRF, Orbeez-SLAM [9] resorts to vi-
sual odometry from ORB-SLAM2 [26] for accurate pose
estimation. However, the lack of many of the core capabili-
ties of modern SLAM systems, such as LC and global BA,
inhibits the ability of these methods to perform large-scale
reconstructions. Concurrent to our work, NeRF-SLAM [31]
integrates DROID-SLAM [41] for camera tracking. How-
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(b) Covisibility Matrix for Loop Closing (c) Covisibility Matrix for Full BA (a) GO-SLAM System Overivew 

Figure 2: Architecture Overview. Our GO-SLAM framework consists of three parallel threads (a): front-end tracking
(including keyframe initialization and loop closing), back-end tracking, and instant mapping. The front-end tracking thread
uses the video stream as input and iteratively updates the pose and depth of the current frame while determining whether
it should be promoted as a new keyframe. Moreover, it also actively performs efficient loop closing (b). The back-end
tracking thread focuses on generating globally consistent pose and depth predictions through full bundle adjustment (c).
Simultaneously, instant mapping updates the 3D reconstruction on-the-fly according to the latest geometry changes.

ever, it also inherits its limitations, i.e., the absence of on-
line loop closing and full BA, which restricts its ability to
perform globally consistent 3D reconstruction.

3. Method
Our GO-SLAM framework, depicted in Fig. 2, uses

a keyframe-based SLAM paradigm to achieve real-time,
globally-consistent 3D reconstruction. This is made possi-
ble by the online drift-corrected pose tracking and instant
mapping capabilities of our system. By performing full
bundle adjustment and loop closing, pose optimization can
be carried out globally. Meanwhile, instant mapping adapts
to continuous changes in optimized global poses and depths.

3.1. Tracking with Global Optimization

Loop closing and global bundle adjustment are crucial
for robust pose estimation and long-term map consistency.
In this work, we extend the tracking component of DROID-
SLAM [41] by several key features. These enhancements
effectively reduce the drift and pave the way for a glob-
ally optimal map. In the front-end tracking, we initialize
a keyframe if sufficient motion is observed – there, we also
introduce LC – while the back-end is equipped with full BA
for online global refinement. Fig. 3 shows the effect of both
LC and BA on tracking and 3D reconstruction qualitatively,
correcting the large errors occurring in their absence.

Front-End Tracking. Our system takes as input a live
video stream, which can be either monocular, stereo, or
RGB-D, and applies a recurrent update operator based on
RAFT [40] to compute the optical flow of each new frame
compared to the last keyframe. If the average flow is larger
than a predefined threshold τflow, a new keyframe is cre-
ated out of the current frame and added to the maintained
keyframe buffer for further refinement.

We use the set of keyframes {KFk}NKF

k=1 created so far

to build a keyframe-graph (V, E) for performing LC. This
process involves two steps: (1) select high co-visibility con-
nections between the most recent Nlocal keyframes, and
(2) detect loop closures between local keyframes and his-
torical keyframes outside the local window. Accordingly,
we compute a co-visibility matrix of size Nlocal × NKF

between Nlocal local keyframes and all the NKF created
keyframes to find valuable edge connections, as shown in
Fig. 2 (b). In practice, the co-visibility is represented by
the mean rigid flow between keyframe pairs using effi-
cient back-projection, and those with low co-visibility, i.e.,
mean flow larger than τco, are filtered out. Among lo-
cal keyframes – the red-borders sub-matrix in Fig. 2 (b) –
we build edges for keyframe pairs temporally adjacent or
with high co-visibility. To avoid redundancy, once an edge
connection (e.g., KFi ↔KFj) is added to the keyframe-
graph, we suppress all possible neighboring edges between
{KFk}i+rlocal

k=i−rlocal
and {KFk}j+rlocal

k=j−rlocal
, where rlocal is a

hyper-parameter denoting a temporal radius. The loop de-
tection step is quite similar. We sample edges from the un-
explored part of the co-visibility matrix in descending or-
der of co-visibility and suppress neighboring edges with
radius rloop. More strictly, to accept a loop candidate,
we detect consecutively three loop candidates and validate
them if their mean flow is lower than τco. The value of
rloop is determined empirically based on the observation
that keyframes within a local window observe almost the
same scene. We set rloop to Nlocal

2 , which allows for only
one loop closure between the recent local region and one
revisited region. In addition to the edge connections within
local keyframes, several extra loop edges can be added to
the keyframe graph depending on how many times the cur-
rent local region is revisited. In general, the number of
edges in the graph is linear to Nlocal with an upper-bound
Nlocal × Nlocal + few loop closures. Through neighbor-
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(a) w/o Loop Closing, w/o Full BA (b) w/ Loop Closing

(c) w/ Full BA (d) w/ Loop Closing, w/ Full BA
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Figure 3: Qualitatives examples of LC and full BA on scene0054 00 (ScanNet [12]) with a total of 6629 frames. In (a), a
significant error accumulates when no global optimization is available. With loop closing (b), the system is able to eliminate
the trajectory error using global geometry. Additionally, online full BA optimizes (c) the poses of all existing keyframes. The
final model (d), which integrates both loop closing and full BA, achieves a more complete and accurate 3D model prediction.

hood suppression and co-visibility filtering, we further limit
the number of edges in the keyframe-graph to sedge ·Nlocal,
so that the efficiency of optimization of the entire keyframe
graph, i.e., the whole front-end tracking, can be further en-
sured.

Afterward, we use the differentiable Dense Bundle Ad-
justment (DBA) layer proposed in [41] to solve a non-linear
least squares optimization problem over the cost function in
order to correct the camera pose G ∈ SE(3) and inverse
depth d ∈ RH×W

+ of each keyframe in the keyframe-graph:

E(G,d) =
∑

(i,j)∈E

∥∥p∗
ij −Πc(Gij ◦Π−1

c (pi,di))
∥∥2
Σij

,

(1)
where (i, j) ∈ E denotes any edge in keyframe-graph,
Πc and Π−1

c are the projection and back-projection func-
tions, pi is the back-projected pixel position from keyframe
KFi, Gij is the pose transformation from KFi to KFj ,
p∗
ij and wij are estimated flow and associated confidence

map, Σij = diagwij and ∥·∥Σ is the Mahalanobis dis-
tance which weights the error terms based on the confidence
weights wij . The cost function allows the update of cam-
era poses and dense per-pixel depth to maximize their com-
patibility with flow p∗

ij predicted by the recurrent update
operator. For the sake of efficiency, we only compute the
Jacobians with respect to the depths and poses of the local
keyframes. After computing residuals and Jacobians at each
iteration, a damped Gauss-Newton algorithm is applied to
find the optimal poses and depths of all local keyframes.

Back-End Tracking. Simultaneously optimizing over-

all historical keyframes can be computationally expensive,
as observed in [26, 6, 41]. To address this issue, we follow
a similar approach as previous SLAM algorithms [26, 6]
by running the full BA online in a separate thread, allow-
ing the system to continue tracking new frames and loop
closing. Similarly to the proposed front-end tracking, we
start a new keyframe-graph and insert keyframe pairs with
high co-visibility, as well as temporal adjacent keyframes,
as shown in Fig. 2 (c). When a new edge is built, we sup-
press the redundant neighboring edges with radius rglobal.
As the trajectory error of the latest keyframes has been cor-
rected with global geometry featured by loop closing, it
eases the real-time requirement for the full BA. Our pro-
posed full BA is efficient up to tens of thousands of input
frames, as shown in Fig. 4.

3.2. Instant Mapping

The proposed instant mapping aims at updating the
global 3D reconstruction in real-time by incorporating
newly-optimized geometry from tracking. However, this
goal presents two challenges for the mapping thread: i)
ensuring that the updated reconstruction remains globally
consistent, and ii) enabling fast rendering of the recon-
structed scene. Updating all existing keyframes at once is
the simplest approach to ensure global consistency, but it
can quickly become impractical as the number of keyframes
increases. Therefore, it is crucial to prune the keyframe can-
didates for updating selectively. Additionally, high-speed
rendering of the scene is necessary to meet real-time re-
quirements. To achieve these goals, we introduce our novel
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Figure 4: Number of unoptimized keyframes at each
timestamp with full BA. Experiment on scene0054 00
(ScanNet [12]) with 6629 frames (357 total keyframes).

keyframe selection strategy and discuss our use of spatial
hashing [24] and rendering networks in the remainder.

Keyframe Selection. At the beginning of each update
of the 3D reconstruction, the instant mapping thread first
takes a snapshot of all existing keyframe poses and depths
tracked, to ensure that the geometry remains consistent dur-
ing the mapping period. For keyframe selection, we pri-
oritize those with the most relevant optimization updates,
following the principle established by previous works [13].
Firstly, we ensure that the latest two keyframes and those
not optimized by mapping are always included. In addi-
tion, following [13], we sort all keyframes in descending
order of pose difference between the current and last up-
dated state and select the top 10 keyframes from the sorted
list when accessing. Furthermore, to prevent the mapping
from forgetting previous 3D geometry, we also select 10
keyframes using a stratified sampling [23] from all the avail-
able keyframes.

Rendering. Drawing inspiration from the recent ad-
vancements in implicit neural network techniques [23] –
Instant-NGP [24] in particular – we can construct 3D
models from scratch with remarkable speed and accuracy.
Specifically, given depth D (converted from inverse depth
d), pose G, and image I for each selected keyframe, we
randomly select M pixels for training. We then generate
Nray = Nstrat + Nimp total sampling points along the
emitted ray crossing each pixel, where Nstrat points are
sampled using stratified sampling and Nimp points are se-
lected near the depth value following [53]. For each 3D
sampling point x, we map it to multi-resolution hash en-
codings [24] hΘhash

(x) with trainable encoding parameters
Θhash at each entry of the hash table. As the hash encodings
hΘhash

(x) have explicitly stored the geometric and inten-
sity information for each spatial position, we can predict a
signed distance function (SDF) Φ(x) and color Ω(x) using
shallow networks.

More specifically, our SDF network fΘsdf
, which con-

sists of a single multi-layer perceptron (MLP) with learn-
able parameters Θsdf , takes the point position x and corre-
sponding hash encodings hΘhash

(x) as input and predicts
the SDF as:

Φ(x), g = fΘsdf
(x, hΘhash

(x)), (2)

with g being the learned geometry feature vector. The color
network fΘcolor

processes g, x and the gradient of SDF n
with respect to x to estimate color Ω(x) as:

Ω(x) = fΘcolor
(x,n,g). (3)

where Θcolor is the set of learnable parameters of the color
network, i.e., a two-layers MLP.

The depth and color of each pixel/ray are calculated by
unbiased volume rendering following NeuS [43]. Specifi-
cally, for point xi, i ∈ {1, · · · , Nray} along a ray, given
the camera center o, view direction v, and sampled depth
Dray

i , it can be formulated as xi = o + Dray
i v. At the

same time, the unbiased ray termination probability at this
point is modeled as wi = αiΠ

i−1
j=1(1−αj), where the opac-

ity value αi is computed as:

αi = max

(
σ(Φ(xi))− σ(Φ(xi+1))

σ(Φ(xi))
, 0

)
. (4)

where σ is the modulated Sigmoid function [43]. With the
weight w, the predictions of pixel-wise color ĉ and depth D̂
are accumulated along the ray:

ĉ =

Nray∑
i=1

wiΩ(xi), D̂ =

Nray∑
i=1

wiD
ray
i . (5)

Training Losses. To optimize the rendering networks,
taking keyframe image I and depth D as ground truth, the
RGB and depth losses Lc and Ldep imposed on the selected
M pixels are Lc =

1
M

∑M
m=1 |cm − ĉm|, cm ∈ I and

Ldep =
1

M

M∑
m=1

|Dm − D̂m|√
D̂var

m

, (6)

respectively, with D̂var
m =

∑Nray

i=1 wi(D̂m −Dray
m,i)

2 being
the predicted depth variance used for down-weighting un-
certain regions in the reconstructed geometry [35, 53]. Fur-
thermore, we also introduce regularization to the predicted
SDF, following [30, 42]. Specifically, to encourage the gra-
dient of SDF to unit length, we adopt the Eikonal term [18]:

Leik =
1

MNray

∑
m,i

(1− ||nm,i||)2 (7)

Besides, to supervise the SDF for accurate surface recon-
structions, we approximate the ground truth SDF of sam-
pling point xi by computing its distance to the keyframe’s
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360 desk desk2 floor plant room rpy teddy xyz avg

ORB-SLAM2 [26] ✗ 0.071 ✗ 0.023 ✗ ✗ ✗ ✗ 0.010 -
ORB-SLAM3 [6] ✗ 0.017 0.210 ✗ 0.034 ✗ ✗ ✗ 0.009 -

DeepV2D [39] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepFactors [11] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233
DROID-SLAM [41] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038

Ours 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010 0.035

fr1/desk fr2/xyz fr3/office

Kintinuous[28] 0.037 0.029 0.030
BAD-SLAM[32] 0.017 0.011 0.017
ORB-SLAM2[26] 0.016 0.004 0.010

iMAP [35] 0.049 0.020 0.058
NICE-SLAM [53] 0.027 0.018 0.030

GO-SLAM (ours) 0.015 0.006 0.013

Table 1: ATE[m] on the TUM RGB-D [34] benchmark. The left table shows the results of monocular SLAM on sequences
from the freiburg1 set. The right one reports the accuracy for RGB-D SLAM on sequences from freiburg1, freiburg2 and
freiburg3 respectively. ‘✗’ denotes tracking failure, ‘-’ no available data. Results of monocular SLAM [26, 6, 39, 11, 41] and
RGB-D SLAM [28, 32, 26, 35, 53] are taken from [41] and [53] respectively.

depth Dm, i.e., b(xi) = Dm − Dray
m,i . For SDF learn-

ing, we have |Φ(xi)| ≤ |b(xi)|,∀xi. To satisfy this bound,
for near-surface points (|b(xi)| ≤ τtrunc, where τtrunc is
a hyper-parameter denoted the truncation threshold, set to
16cm), the SDF loss is defined as Lnear = |Φ(xi)−b(xi)|,
while for elsewhere, i.e., free space, we apply a relaxed loss:

Lfree = max
(
e−βΦ(xi) − 1,Φ(xi)− b(xi), 0

)
(8)

where β is a hyper-parameter to apply a penalty when the
predicted SDF Φ(xi) is negative in free space. Therefore,
our full SDF loss is defined as:

Lsdf =
1

MNray

∑
m,i

{
Lnear if |b(xi)| ≤ τtrunc
Lfree otherwise. (9)

Our instant mapping thread continuously optimizes the
scene reconstruction over all sampled pixels of all selected
keyframes. Specifically, for each set of selected keyframes,
we run the mapping process for a fixed number Niter of
iterations. Our total loss is defined as:

L = λcLc + λdepLdep + λeikLeik + λsdfLsdf , (10)

with Lc, Ldep, Leik, and Lsdf being loss balance weights.
Given the pose and depth of each selected keyframe, our
mapping thread directly uses them without refinement since
our full BA and LC have exploited the global geometry to
optimize both, being naturally robust in handling occluded
regions and back faces.

4. Experimental Results
This section investigates our experimental evaluation, in-

cluding implementation details, datasets, and key findings.

4.1. Implementation Details

Our system runs on a PC with a 3.5GHz Intel Core
i9-10920X CPU and an NVIDIA RTX 3090 GPU. For
tracking, we utilize pre-trained weights from DROID-
SLAM [41], whereas the rendering networks are trained

from scratch. The experiments are performed with the
following default settings unless otherwise specified: lo-
cal window size Nlocal = 25 for RGB-D and stereo in-
put, Nlocal = 50 for monocular mode, neighboring radius
rlocal = 1, rglobal = 5, co-visibility threshold τco = 25.0,
the factor used to constrain the maximum allowed edge
sedge = 8, sampling points along a ray Nstrat = 24,
Nimp = 48, pixel samples M = 200, penalty parame-
ter β = 5.0, iterations Niter = 2, and the loss weights
λc = 1.0, λdep = 1.0, λeik = 0.1, λsdf = 1.0. The mesh
reconstruction of a scene is achieved by running marching
cubes on the SDF values of the queried points. The supple-
mentary material provides more details about SLAM con-
figuration and also qualitative results on various datasets.

4.2. Datasets

We evaluate our GO-SLAM system on several datasets
with different input modalities, including the TUM RGB-D,
EuRoC, ETH3D-SLAM, ScanNet, and Replica. The TUM
RGB-D benchmark [34] is a small-scale indoor dataset with
accurate ground truth obtained from an external camera mo-
tion capture system. The EuRoC dataset [5] contains 11
indoor stereo sequences recorded from a micro aerial vehi-
cle (MAV). The ETH3D-SLAM dataset [32] provides real-
world RGB-D image sequences captured with synchronized
global shutter cameras. The ScanNet dataset [12] features
richly annotated RGB-D scans of real-world environments,
including challenging short and long trajectories. Finally,
the Replica dataset [33] provides high-fidelity 3D models
of photo-realistic indoor scenes, enabling us to assess the
reconstruction performance of our approach. For TUM
RGB-D, EuRoC, and ETH3D-SLAM, images are resized
to 384× 512 resolution, while 240× 320 and 320× 640 for
ScanNet and Replica datasets, respectively.

4.3. Evaluation Metrics

Following the common protocol in the SLAM literature
[53, 26, 41], we evaluate the estimated trajectory by align-
ing it to the ground truth and then calculating the cam-
era pose accuracy based on the Absolute Trajectory Error
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MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg

ORB-SLAM2 [26] 0.035 0.018 0.028 0.119 0.060 0.035 0.020 0.048 0.037 0.035 - -
SVO [15] 0.040 0.070 0.270 0.170 0.120 0.040 0.040 0.070 0.050 0.090 0.790 0.159
ORB-SLAM3 [6] 0.029 0.019 0.024 0.085 0.052 0.035 0.025 0.061 0.041 0.028 0.521 0.084
DROID-SLAM [41] 0.015 0.013 0.035 0.048 0.040 0.037 0.011 0.020 0.018 0.015 0.017 0.024

Ours 0.016 0.014 0.023 0.045 0.045 0.037 0.011 0.023 0.016 0.010 0.022 0.024

V103 V202 V203

ORB-SLAM3 [6] 0.037 0.022 ✗
DSO [14] 0.903 0.132 1.152
DROID-SLAM [41] 0.020 0.013 0.014

Li et al. [20] ✗ 0.178 ✗

GO-SLAM (ours) 0.018 0.011 0.017

Table 2: ATE [m] on the EuRoC dataset [5]. In the left table, the results of all methods were obtained by running them on
stereo video. In the right table, we report the trajectory error of monocular SLAM. ‘✗’ denotes tracking failure. Results of
[26, 6, 15, 41, 14] and [20] are adopted from [41] and [20] respectively.
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Figure 5: Qualitative results. Top: V1 02 Medium (Eu-
RoC), bottom: Helmet (ETH3D). DROID-SLAM [41] re-
constructions obtained with TSDF-Fusion [10].

(ATE) RMSE. The reconstruction metrics include Accuracy
[cm], Completion [cm], Completion Ratio [< 5cm %], and
F-score [< 5cm %]. For the evaluation, we remove regions
not observed by any camera. Furthermore, using ground
truth trajectory for depth rendering, we evaluate the Depth
L1 metric [53] by computing the absolute error between
rendered depths from estimated and ground truth meshes.
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ElasticFusion: AUC 2.69
BundleFusion: AUC 2.59

Figure 6: RGB-D ETH3D-SLAM test benchmark. Num-
ber of successful trajectories (y-axis) as a function of the
ATE RMSE (x-axis). Maximum ATE RMSE: 2cm. Results
by published SLAM systems [41, 32, 26, 45, 13] and ours.

4.4. Comparison with state-of-the-art SLAM

Here, we evaluate GO-SLAM in synthetic and real-
world scenarios and compare it to state-of-the-art SLAM
systems in monocular, stereo, and RGB-D settings.

TUM RGB-D (Monocular & RGB-D). In this dataset,
we compare with monocular and RGBD SLAM systems.
In Tab. 1 (left), we focus on the former methods: traditional
SLAM [26, 6] with point-based representation fails on cam-
era tracking on most of the challenging sequences. Among
all deep-learning-based methods [39, 11, 41], GO-SLAM
with online LC and full BA achieves the lowest average tra-
jectory error. Furthermore, following [53], we also evaluate
our method on RGB-D input. Tab. 1 (right) illustrates the
clear superiority of our pose estimation compared to recent
NeRF-base RGB-D SLAM [35, 53], effectively shrinking
the gap with traditional SLAM systems.

EuRoC (Stereo & Monocular). Tab. 2 (left) shows
the camera trajectory error of GO-SLAM for all stereo se-
quences compared to stereo SLAM methods. While exist-
ing systems based on neural implicit representation are de-
signed for monocular [52, 20, 31, 9] or RGB-D [35, 53]
input only, our method predicts trajectories comparable to
state-of-the-art stereo SLAM [26, 6, 15, 41], while also
producing globally dense and consistent 3D reconstruc-
tion, as shown in Fig. 5. Compared to the noisy result of
DROID-SLAM with several holes and floating points, GO-
SLAM produces a more complete, smoother surface and a
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Scene ID 0000 0054 0233 0465 0059 0106 0169 0181
Avg.# Frames 5578 6629 7643 6306 1807 2324 2034 2349

R
G

B
-D

iMAP∗ [35] 55.95 70.11 86.42 85.03 32.06 17.50 70.51 32.10 56.21
NICE-SLAM [53] 8.64 20.93 9.00 22.31 12.25 8.09 10.28 12.93 13.05
DROID-SLAM [41] (VO) 8.00 29.28 6.75 11.37 11.30 9.97 8.64 7.38 11.59
DROID-SLAM [41] 5.36 8.89 4.90 8.32 7.72 7.06 8.01 6.97 7.15
Ours 5.35 8.75 4.78 8.15 7.52 7.03 7.74 6.84 7.02

M
on

o.

ORB-SLAM3 [6] 73.93 243.26 25.01 181.86 90.67 178.13 60.15 104.93 119.74
DROID-SLAM [41] (VO) 11.05 204.31 71.08 117.84 67.26 11.20 16.21 9.94 63.61
DROID-SLAM [41] 5.48 197.71 72.23 114.36 9.00 6.76 7.86 7.41 52.60
Ours 5.94 13.29 5.31 79.51 8.27 8.07 8.42 8.29 17.59

Table 3: ATE[cm] on ScanNet dataset [12]. For DROID-SLAM [41], we also report results for the visual odometry (VO)
variant, which does not include the final global bundle adjustment. Results of iMAP∗ and NICE-SLAM are from [53].

RGB-D Mono.

iMAP∗ [35] NICE-SLAM [53] Ours Orbeez-SLAM [9] NeRF-SLAM [31]‡ DROID-SLAM [41] Li et al. [20] NICER-SLAM [52] ‡ Ours

ATE RMSE[cm] ↓ - 1.95 0.34 - - 0.42 0.46 1.88 0.39

Depth L1[cm] ↓ 7.64 3.53 3.38 11.88 4.49 - - - 4.39

Acc.[cm] ↓ 6.95 2.85 2.50 - - 5.03 4.03 3.65 3.81
Comp.[cm] ↓ 5.33 3.00 3.74 - - 8.49 4.20 4.16 4.79
Comp. Ratio[<5cm %] ↓ 66.60 89.33 88.09 - - 64.72 79.60 79.37 78.00

Avg. FPS ↑ 10 ≪ 1 8 ≈ 20 10 21 3 ≪ 1 8

Table 4: Reconstruction results and ATE[cm] on the Replica dataset (average over 8 scenes). The results of iMAP∗ [35]
are adopted from NICE-SLAM [53], while results for other methods are taken from the respective original papers. ‡ denotes
concurrent works yet unpublished.

Sampling Strategy Avg.
Latest Stratified Top-Ranked F-score ↑

✓ ✗ ✗ 49.55
✓ ✓ ✗ 83.13
✓ ✓ ✓ 85.56

Table 5: Impact of keyframe selection. We report average
F-score achieved by different sampling strategies.

cleaner reconstruction. In the Tab. 2 (right), we also report
the results of monocular SLAM. Specifically, NeRF-based
SLAM [20] without online BA fails in most cases, while
our approach gives accurate predictions in all sequences.

ETH3D-SLAM (RGB-D). The ETH3D-SLAM dataset
provides a public online leaderboard for RGB-D SLAM
evaluation. The results in Fig. 6 demonstrate the signif-
icant advantage of our deep-learning-based method over
published RGB-D SLAM systems with point- [26], surfel-
[32, 45] or voxel-based [13] representations. Similarly to
our approach, BundleFusion [13] targets globally consis-
tent reconstruction. However, its pose estimation is highly
susceptible to errors, resulting in inferior reconstruction as
shown in Fig. 5, whereas our method yields smoother re-
construction with photometrically convincing rendering.

ScanNet (Monocular & RGB-D). For an exhaustive
evaluation, we test SLAM methods on both short (se-
quences with less than 5000 frames) and long, complex se-

quences. Tab. 3 shows that, although DROID-SLAM [41]
performs well on short sequences and RGB-D inputs, its
accuracy drops dramatically when processing longer se-
quences in the monocular setting, even performing a final
global bundle adjustment. In contrast, GO-SLAM consis-
tently yields the best results, thanks to online loop closing
and full BA. Furthermore, as anticipated in Fig. 1, due to
the absence of global optimization to eliminate the accumu-
lated trajectory error, NeRF-based SLAM, e.g., iMAP, and
NICE-SLAM [53] provide significantly poorer results for
pose estimation and 3D reconstruction.

Replica (Monocular & RGB-D). Finally, Tab. 4 shows
pose and reconstruction performance achieved by GO-
SLAM on the Replica dataset [33]. Our system achieves
comparable accuracy with respect to existing RGB-D meth-
ods [53] and concurrent monocular [52, 20] ones. How-
ever, none of the latter runs in real-time, whereas GO-
SLAM achieves a frame rate of 8 FPS with maximum GPU
memory consuming 18 GB. Although iMAP [35] alone
can achieve a similar speed as GO-SLAM (10 FPS), it
yields much worse results. In particular, close to ours,
NeRF-SLAM [31] is a concurrent, monocular SLAM sys-
tem based on DROID-SLAM [41], running at nearly 10
FPS. However, their system lacks BA, which GO-SLAM
provides. Moreover, NeRF-SLAM and Orbeez-SLAM [9]
lack dense 3D reconstruction results, limiting the compari-
son. We can only compare on depth rendering quality, for
which GO-SLAM achieves better results.
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Lc Ldep Lsdf Leik Avg. F-score ↑
✓ ✗ ✗ ✗ 34.64
✓ ✓ ✗ ✗ 83.50
✓ ✗ ✓ ✗ 84.00
✓ ✓ ✓ ✗ 84.83
✓ ✓ ✓ ✓ 85.56

Table 6: Impact of single losses. We report average F-score
achieved with different losses configurations.

Skipping Speedup Avg. Avg. ATE
Frames F-score ↑ RMSE [cm] ↓
None 1× 85.56 7.02
1/2 2× 84.67 7.08
3/4 4× 84.80 7.16
7/8 8× 84.41 7.28

Table 7: Impact of frames skipping. We report average
F-score and ATE when running in real-time.

4.5. Ablation Study

We conclude by studying the impact of the novel designs
in the proposed GO-SLAM with RGB-D input.

Keyframe Selection. In Tab. 5, we investigate the im-
pact of different keyframe selection strategies by comput-
ing the mean F-score in eight sequences of the Replica
dataset [33]. The experimental results prove that updating
the 3D model with the latest keyframes or stratified sam-
pling is not sufficient to obtain the best results. Monitoring
the pose and depth of each frame continuously and updating
the 3D model according to the largest change is crucial for
globally consistent reconstruction.

Losses. Tab. 6 evaluates on Replica the effectiveness of
each loss term. Results show that the RGB loss alone can-
not lead to satisfying results. Geometric supervision, such
as depth or SDF loss, provides similar accuracy while inte-
grating all terms produces the best results.

Skipping frames to run in real-time. Tab. 7 shows our
GO-SLAM accuracy when skipping RGB-D frames to run
at 2×, 4×, 8× speed. Remarkably, both mapping accuracy
(avg. F-score on Replica [33]) and tracking performance
(avg. ATE RMSE on ScanNet [12]) only experience min-
imal degradation, proving that GO-SLAM is 1) robust to
large view changes and 2) ready for real-time usage.

Loop Closing and Full BA. Finally, we study the im-
pact of our efficient loop closing and online full BA on
eight scenes of ScanNet [12]. Our baseline DROID-SLAM
(VO) [41] (without LC and Full BA) achieves high speed
but suffers from a large trajectory error, as shown in Tab. 8.
Our efficient LC significantly reduces drift with negligible
speed reduction. Introducing Full BA slows down GO-
SLAM, but improves global pose estimation significantly.

Avg. ATE RMSE [cm] ↓ avg. FPS ↑
w/o LC & w/o Full BA 11.59 30

w/ LC 8.83 20
w/ Full BA 7.11 12

w/ LC & w/ Full BA 7.02 10

Table 8: Impact of loop closing and full BA. We report
average ATE and FPS with/without our main contributions.

Method CPU Processing GPU Consuming Avg. Comp.
Frequency [GHz] Memory [G]↓ FPS↑ Ratio[<5cm %] ↑

iMAP∗ [35] 3.80 10.13 10 66.60
NICE-SLAM [53] 3.80 11.72 ≪ 1 89.33

DROID-SLAM [41] 3.50 14.34 21 70.52
Ours 3.50 15.63 8 88.09

Table 9: Hardware requirements and performance. All
results are obtained by running on NVIDIA RTX 3090 GPU
and Replica dataset [33] with RGB-D input.

Finally, our full system integrating LC and full BA achieves
the best results in pose estimation and 3D reconstruction
(see Fig. 3), while enabling real-time performance.

4.6. CPU/GPU Requirements.

We conclude by measuring hardware requirements on
the Replica dataset [33]. In Tab. 9 we present several met-
rics including CPU requirements, maximum GPU memory
consumption, average frames per second, and final accu-
racy, showcasing the performance of various SLAM algo-
rithms during the reconstruction of an entire scene. Specifi-
cally, our SLAM system stands out by achieving an optimal
balance between CPU/GPU requirements and SLAM per-
formance, combining high accuracy with speed.

5. Conclusions

We introduced a novel, real-time deep-learning-based
SLAM algorithm that achieves globally consistent recon-
struction with monocular, stereo, or RGB-D input. Our
approach explicitly detects loop closures and performs on-
line full BA to minimize trajectory error. Based on NeRF,
our 3D reconstruction provides an efficient, compact, and
multi-resolution representation. Moreover, our approach
continuously updates the dense 3D reconstruction to adapt
to the newly-optimized global geometry at high frequency.
Our experiments demonstrate the algorithm’s robustness in
reliably tracking and densely mapping even in large-scale
scenes, especially on long monocular trajectories with no
depth information, achieving state-of-the-art performance
on various datasets.
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[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. In CVPR, pages 6290–6301, 2022.

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, pages 5855–5864, 2021.

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, pages 5470–
5479, 2022.

[4] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan
Leutenegger, and Andrew J Davison. Codeslam—learning
a compact, optimisable representation for dense visual slam.
In CVPR, pages 2560–2568, 2018.

[5] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W Achte-
lik, and Roland Siegwart. The euroc micro aerial vehicle
datasets. IJRR, 35(10):1157–1163, 2016.

[6] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,
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Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
reintegration. ACM TOG, 36(4):1, 2017.

[14] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct
sparse odometry. IEEE TPAMI, 40(3):611–625, 2017.

[15] Christian Forster, Zichao Zhang, Michael Gassner, Manuel
Werlberger, and Davide Scaramuzza. Svo: Semidirect visual
odometry for monocular and multicamera systems. IEEE
Transactions on Robotics, 33(2):249–265, 2016.

[16] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, pages
5501–5510, 2022.

[17] David Gallup, Marc Pollefeys, and Jan-Michael Frahm. 3d
reconstruction using an n-layer heightmap. In PR, pages 1–
10. Springer, 2010.

[18] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. arXiv preprint arXiv:2002.10099, 2020.

[19] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-
Min Hu. Di-fusion: Online implicit 3d reconstruction with
deep priors. In CVPR, pages 8932–8941, 2021.

[20] Heng Li, Xiaodong Gu, Weihao Yuan, Luwei Yang, Zilong
Dong, and Ping Tan. Dense rgb slam with neural implicit
maps. ICLR, 2023.

[21] Kejie Li, Yansong Tang, Victor Adrian Prisacariu, and
Philip HS Torr. Bnv-fusion: dense 3d reconstruction using
bi-level neural volume fusion. In CVPR, pages 6166–6175,
2022.

[22] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
In ICCV, pages 5741–5751, 2021.

[23] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, pages 405–421, 2020.

[24] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM TOG, 41(4):1–15, 2022.

[25] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[26] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017.

[27] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012.

[28] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and track-
ing. In IEEE ISMAR, pages 127–136. IEEE, 2011.

[29] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
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