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Abstract

Text-to-image generative models often reflect the biases
of the training data, leading to unequal representations of
underrepresented groups. This study investigates inclusive
text-to-image generative models that generate images based
on human-written prompts and ensure the resulting images
are uniformly distributed across attributes of interest. Un-
fortunately, directly expressing the desired attributes in the
prompt often leads to sub-optimal results due to linguistic
ambiguity or model misrepresentation. Hence, this paper
proposes a drastically different approach that adheres to the
maxim that ““a picture is worth a thousand words”. We show
that, for some attributes, images can represent concepts
more expressively than text. For instance, categories of skin
tones are typically hard to specify by text but can be eas-
ily represented by example images. Building upon these in-
sights, we propose a novel approach, ITI-GEN!, that lever-
ages readily available reference images for Inclusive Text-
to-Image GENeration. The key idea is learning a set of
prompt embeddings to generate images that can effectively
represent all desired attribute categories. More importantly,
ITI-GEN requires no model fine-tuning, making it computa-
tionally efficient to augment existing text-to-image models.
Extensive experiments demonstrate that ITI-GEN largely
improves over state-of-the-art models to generate inclusive
images from a prompt.

1. Introduction

In recent years we have witnessed a remarkable leap in
text-based visual content creation, driven by breakthroughs
in generative modeling [69, 27, 59, 58, 63] and the access to
large-scale multimodal datasets [67, 35]. Particularly, pub-
licly released models, such as Stable Diffusion [63], have
matured to the point where they can produce highly realis-
tic images based on human-written prompts.

However, one major drawback of existing text-to-image
models is that they inherit biases from the training data [0,

IProject page: https://czhang0528.github.io/iti-gen

Sigi Chai !
Fernando De la Torre !

2

Chen Henry Wu!  Dmitry Lagun

2 Google

(a) Original (b) Hard Prompts

[...] {without, no,

etc.} eyegl

BN N8
22 B

wlo eyeglasses 92% :
w/ eyeglasses [l 8%

L

wl/o eyeglasses

w/ eyeglasses

(c) Inclusive Text-to-lmage Generation, ITI-GEN (ours)

{,}9 E>

Reference Images

w/o eyeglasses 50%
w/ eyeglasses 50%

generated images without eyeglasses D generated images with eyeglasses

a headshot of a person

Figure 1. (a) Given a human-written prompt (“a headshot of a per-
son”), existing text-to-image models [63] can hardly synthesize
pictures representing minority groups (i.e., people with eyeglasses
in this example). (b) Conventional hard prompt searching [18]
is sub-optimal due to linguistic ambiguity. (c) We address these
problems by leveraging a small set of reference images for inclu-
sive text-to-image generation (ITI-GEN).

58, 63, 12, 5] and thus have yet to exhibit inclusiveness —
the generated images based on the input text may reflect
stereotypes, leading to the exclusion of certain attributes or
minority groups. For instance, given the prompt “a headshot
of a person”, Figure 1(a) shows how a state-of-the-art sys-
tem generates about 92% images of subjects without eye-
glasses, and only 8% with eyeglasses, showing a clear bias
towards people without eyeglasses. Alternatively, as shown
in Figure 1(b), one could specify the attribute in the prompt,
resulting in better outcomes; however, this will still result
in a sub-optimal solution due to linguistic ambiguity. While
inclusiveness has been critical to responsible Al, existing
text-to-image models are still lagging [12, 5, 55, 53, 46]. In
this work, we propose a new method that achieves inclusive-
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ness” in text-to-image generation using only a few example
images, as illustrated in Figure 1(c).

To advance inclusive generation, a straightforward way
is to retrain or fine-tune the model upon request, using truly
inclusive training data [17, 82]. Doing so, however, is in-
surmountably challenging as collecting large-scale train-
ing data that is balanced/inclusive across all attributes of
interest is impractical, and training generative models is
highly compute-intensive [67, 65, 17]. Another principled
approach towards inclusiveness is to specify or enumerate
each category in natural language (i.e., hard prompt search-
ing) [18, 55]. However, many categories are difficult to
specify with natural language (e.g., skin tone) or cannot be
well synthesized by the existing models due to linguistic
ambiguity or model misrepresentation [29].

At first glance, these seem to paint a grim picture for in-
clusive text-to-image generation. However, we argue that
instead of specifying attributes explicitly using descriptive
natural language, images can represent specific concepts or
attributes more efficiently. Observing the availability of
a shared vision-language embedding in many multimodal
generative models [56], we raise the question: can we learn
inclusive prompt embeddings using images as guidance?

To achieve this goal, we introduce ITI-GEN, a novel
and practical framework that creates discriminative prompts
based on readily available reference images for Inclusive
Text-to-Image GENeration. Concretely, we leverage the
vision-language pre-trained CLIP model [56] to obtain the
embeddings of the reference images and learnable prompts.
In the joint embedding space, we design a new training ob-
jective to align the directions of the image and prompt fea-
tures. The core idea is to translate the visual attribute dif-
ferences into natural language differences such that the gen-
erated images based on the learned prompts can effectively
represent all desired categories. By equalizing the sampling
process over the learned prompts, our method guarantees
inclusiveness for text-to-image generation.

We validate our framework with Stable Diffusion [63].
ITI-GEN can leverage reference images from different do-
mains, including human faces [43, 34, 20] and scenes [68],
to achieve inclusive generation in single or multiple at-
tributes of interest. ITI-GEN needs neither prompt speci-
fication nor model fine-tuning, bypassing the problems of
linguistic ambiguity as well as computational complexity.
Moreover, ITI-GEN is compatible with the existing text-
based image generation models (e.g., ControlNet [81] and
instruction-based image editing models [7]) in a plug-and-
play manner. To the best of our knowledge, this is the first
method that allows inclusive text-to-image generation over
a frozen model and obtains competitive results throughout.

2Few works [12, 5] have studied fairness issues in text-to-image genera-
tion but mainly focused on social biases (e.g., perceived gender, ethnicity).
This paper incorporates a broader spectrum of attributes.

2. Related Work

Text-to-Image Generative Models. Text-based image gen-
eration has been widely studied with numerous model ar-
chitectures and learning paradigms [48, 62, 71, 59, 23,
79, 18, 19, 9, 69, 78, 16, 17, 38]. Recently, the over-
whelming success of diffusion-based text-to-image mod-
els [58, 66, 58, 51] has attracted significant attention. A key
factor to this success is their ability to deal with large-scale
multimodal datasets [67, 35, 11]. Thus, questions concern-
ing inclusiveness while learning with biased datasets remain
a crucial open problem [12, 5, 3].

Bias Mitigation in Text-to-Image Generation. While fair-
ness has been studied extensively in discriminative mod-
els [73, 74, 75, 42], research on developing fair genera-
tive models is limited [83, 30, 22, 14, 46]. Most efforts
focus on GAN-based models [13, 57, 31, 60, 80, 36, 77,
70, 33, 47], restricting their applicability to the emerging
diffusion-based text-to-image models. Recently, there have
been some efforts to address this limitation. For instance,
Bansal et al. [5] proposed to diversify model outputs by eth-
ical intervention®. Ding et al. [18] proposed to directly add
attribute words to the prompt. However, these hard prompt
searching methods have limitations such as being opaque
and laborious [5], and not always generating diverse im-
ages reliably [29, 5]. In this work, we incorporate a broad
spectrum of attributes beyond social groups. Moreover, we
learn inclusive prompts in the continuous embedding space,
requiring no hard prompt specification.

To learn a fair generative model, Wu et al. [76] employed
off-the-shelf models, such as CLIP [56] and pre-trained
classifiers, as guidance. Choi et al. [13] used a reference
dataset to train the model via sample re-weighting. In con-
trast, we use reference data in a drastically different way —
treating the images as proxy signals to guide prompt learn-
ing but without retraining the text-to-image model.

Image-Guided Prompt Tuning. Our method is inspired
by Prompt Tuning (PT) [41, 32]. Typically, PT methods
insert small learnable modules (e.g., tokens) into the pre-
trained models and fine-tune these modules with down-
stream tasks while freezing the model parameters. Recently,
PT has been leveraged in personalized text-to-image gen-
eration [24, 64, 39]. By providing several reference im-
ages with the customized subject, they use a special to-
ken to represent the object by optimizing the token embed-
ding [24, 39] or the diffusion models [64, 39]. This moti-
vates us to learn the specific token embedding for each at-
tribute category for inclusiveness. However, we note that
the previously mentioned methods for personalization do
not effectively capture the attributes in the images. Thus, we
propose to optimize the directions of the attribute-specific

3e.g., appending “irrespective of their gender” to the end of a neutral
prompt “a photo of a lawyer” for generating diverse pictures w.r.t. genders.
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Figure 2. Illustration of Inclusive Text-to-Image GENeration (ITI-GEN) with the example of two binary attributes: perceived gender
and skin tone. (a) Given an input prompt, (b) ITI-GEN learns discriminative token embeddings to represent each category of every target
attribute. (¢) By injecting the learned tokens after the original input prompt, ITI-GEN synthesizes an inclusive prompt set that can be used
to (d) sample equal (or controllable) numbers of images for any category combination. Further, our framework can be easily extended
to multi-category multi-attribute scenarios of inclusive text-to-image generation. Note that, in practice, multi-category skin tones beyond
{“light”, “dark™} as in this example may be challenging to specify with language (see Figure 3). Please see Section 3.1 for details.

prompts in the joint vision-language embedding space, by-
passing training text-to-image generative models.

3. Inclusive Text-to-Image Generation

To drive the progress of Inclusive Text-to-Image Genera-
tion, we propose ITI-GEN, which creates inclusive prompts
that represent various attributes and their combinations.
This is particularly challenging for attributes that are dif-
ficult to describe in language or underrepresented. To ad-
dress this, ITI-GEN uses readily available reference images
as guidance, enabling unambiguous specification of differ-
ent attributes. Figure 2 illustrates the overall framework. In
this section, we first introduce the framework of ITI-GEN
in Section 3.1, then describe the details of the learning strat-
egy in Section 3.2, and finally discuss the key properties of
ITI-GEN in Section 3.3.

3.1. Overview

Problem Statement. Given a pre-trained text-to-image
generative model G and a human-written prompt (e.g., “a
headshot of a person”) tokenized as T' € RP*¢, where p is
the number of tokens and e is the dimension of the embed-
ding space, we aim to sample equal (or controllable) num-
bers of images that can represent any category combination
given the attribute set A. Formally,

contains M different attributes (e.g., perceived gender, skin
tone, efc.), where aj* records a mutually exclusive category
(e.g., a specific type of skin tone) in attribute A4,,, and K,
denotes the number of categories in A,,,. Note that K,,, may
vary among different attributes.

Inclusive Prompt Set. Inspired by [41, 32], we propose
prompt tuning for inclusive generation. Specifically, for a
given category a}® within attribute A,,, we inject g learn-
able tokens S}* € R?*¢ after the original T to construct a
new prompt PJ* = [T'; S7*] € RPT9)*¢ By querying the
model G with P/, we can generate images exhibiting the
characteristics of the corresponding category a;*. To differ-
entiate the new tokens S} from the original prompt T', we
refer to them as inclusive tokens.

When jointly considering M attributes, we aggregate M

separate inclusive tokens S} ,S2 ..., S to represent a
specific category combination (a; , agz, adl), eg., the

concept of (“woman”, “dark skin”, ...,
expect to create a unique Solog...oM,

= f(S5,

that can be injected after T' to generate images for this par-
ticular category combination. The aggregation function f
in Equation 2 should be able to take various numbers of at-
tributes while maintaining the permutation invariant prop-
erty* with respect to attributes. Common options include
element-wise average, sum, and max operations. Follow-
ing [49], we adopt element-wise sum to preserve the text
semantics without losing information®. Finally, we define
the inclusive prompt set as follows:
M

Ptolal = {Poloz..AoM = [T; Z
m=1

1<o1 <Ky,...,1 <oy < Ky}

¢ young”). We thus

Soloz.. ng?"‘)sé\f\/[) (2)

] € RPFa)xe |

3

4That is, the output of f should be the same even if we permute the
indices m of the attributes in A (cf. Equation 1).

SPlease see Appendix E.2 for more analysis and other options for ag-
gregating multiple tokens, e.g., concatenation.
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By uniformly sampling the prompts from Py, as the con-
ditions to generate images using the generative model G,
we achieve inclusiveness across all attributes (see Figure 2).
More generally speaking, the distribution of the generated
data is directly correlated to the distribution of the prompts,
which can be easily controlled.

In contrast to specifying the category name in discrete
language space [5, 18], we optimize prompts entirely in the
continuous embedding space. Additionally, we only up-
date the attribute-specific embeddings — the colors e and

in Equation 3 indicate frozen and parameters,
respectively. This decoupled optimization mechanism thus
provides the advantage of using the learned inclusive to-
kens in a plug-and-play manner across various applications,
as will be demonstrated in Section 3.3 and Section 4.3. We
elaborate on the learning process in the following section.

3.2. Learning Inclusive Prompts

Reference Image Set. We propose using reference images
to guide prompt learning, as they can provide more expres-
sive signals to describe attributes that may be challenging
to articulate through language. Specifically, we assume the
availability of a reference image set D% = { (7", y™)} NV,
for a target attribute A,,,, where N,, is the dataset size and
ym € A, (defined in Equation 1) indicates the category to
which x,, belongs. When considering multiple attributes,
we only need a reference dataset for each attribute, rather
than one large balanced dataset with all attribute labels. This
property is extremely beneficial, as it is much easier to ob-
tain a dataset that captures only the distribution of one at-
tribute (i.e., the marginal distribution) rather than one that
captures the joint distribution of all attributes.

Aligning Prompts to Images with CLIP. Given reference
image sets for the target attributes, can we learn prompts
that align the attributes in the images? Recently, pre-trained
large-scale multimodal models have demonstrated strong
capabilities in connecting vision and language. One such
model is CLIP [56], which aligns visual concepts with text
embeddings by jointly training a text encoder Fix and an
image encoder Eing. The output of the pre-trained CLIP
text encoder has also been used as the condition for text-
guided image generation [63, 58], opening up an opportu-
nity to align prompts to reference images without the need
to modify the text-to-image models.

One straightforward solution is to maximize the similar-
ity between the prompt and the reference image embeddings
in the CLIP space, as suggested by [56]. However, we found
it deficient for two reasons. First, this objective forces the
prompt to focus on the overall visual information in the im-
ages, rather than the specific attribute of interest. Second,
the generated images from the learned prompt often exhibit
adversarial effects or significant quality degradation, poten-
tially due to image features distorting the prompt embed-
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Figure 3. Translating visual differences into text embedding
differences. Given reference images of a multi-category attribute
(e.g., skin tone), we learn the inclusive tokens by direction align-
ment between and prompts, ensuring that the visual dif-
ference matches the learned language description. In addition, we
propose semantic consistency loss to address language drift. Im-
ages are from FAIR benchmark [20]. Details are in Section 3.2.

ding. To address these, we propose direction alignment and
semantic consistency losses, as described below.

Direction Alignment Loss. Instead of directly maximizing
the similarity between the prompts and the images, we draw
inspiration from [54, 25] to induce the direction between
the prompt P/ and P;" to be aligned with the direction
between the averaged embeddings of the reference images
corresponding to a pair of categories a;* and a;’ in A,,.
This alignment of pairwise categories direction serves as a
proxy task for guiding the prompts to learn the visual differ-
ence among images from category a;" and a’* (Figure 3).

Specifically, we define the direction alignment loss Lg;,
to maximize the cosine similarity between the image direc-
tion and the prompt direction as follows:

Li(S, 8] =1— (A7 (6,5), Ap(i,)). 4

Here, the image direction Ay is defined as the difference
of the averaged image embeddings between two categories
of the attribute A,,. Let X}* = ﬁ Zy;y:akm Eimg(2]7)
be the averaged image embedding for category aj*; |By| is
the number of images from category a;’* in each mini-batch.

We denote the image direction as follows:

AT (i, ) = X" — X o)

Similarly, the prompt direction Ap is defined as the dif-
ference of the averaged prompt embeddings between two
categories. Let P = %}J‘I > Pepr Eiexi(P) be the av-
eraged prompt embedding for attribute ay'. Specifically,
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Pi* = {P € Pow | 0m = k} is a collection of prompts
containing all the category combinations for other attributes
given the category aj* for attribute .A,, (cf. Equation 3). Fi-
nally, we denote the prompt direction as follows:

Ap(i,j) =B — By (6)

By inducing the direction alignment, we aim to facilitate
the prompt learning of more meaningful and nuanced dif-
ferences between images from different categories.

Semantic Consistency Loss. We observe that direction
alignment loss alone may result in language drift [45, 40,
64] — the prompts slowly lose syntactic and semantic prop-
erties of language as they only focus on solving the align-
ment task. To resolve this issue, we design a semantic con-
sistency objective to regularize the training by maximizing
the cosine similarity between the learning prompts and the
original input prompt (see Figure 3):

£2,(S7,87) = max (0, = (B (P), Eex(T))) (1)
where P € P;/™ UP/" and A is a hyperparameter (see an
analysis in Section 4.3). This loss is crucial for generating
high-quality images that remain faithful to the input prompt.
Optimization. Building upon L. and L7, , our total train-
ing loss for learning the inclusive tokens of a pair of cate-
gories in attribute A, is written as follows:
m (Sm7 SJm) _ giLr(Szm7 S;n) + Lm

pair\*~¢ sem

(5", 85"). (®)

At each iteration, we update the embeddings of inclusive to-
kens of all the categories from only one attribute but freeze
the parameters of inclusive tokens for all other attributes.
The final objective during the whole learning process is:

M

Liotal = Z pmair(szm’ Sjm)7 )

m=1

where the enumerates all pairwise cate-
gories for one attribute A, at each iteration, while the outer
summation alters the attribute across the iteration.

3.3. Key Properties of ITI-GEN

Generalizability. Unlike personalization methods that train
the embeddings for a specific model (because they use dif-
fusion losses [24, 39, 64)), the tokens learned by ITI-GEN
are transferable between different models. We highlight two
use cases for these tokens. (1) In-domain generation. We
use the user-specified prompt 7' to learn the inclusive to-
kens and then apply them back to T" to generate inclusive
images. (2) Train-once-for-all. As shown in Equation 3, the
newly introduced inclusive tokens do not change the orig-
inal prompt 7", which implies that the learned tokens can

be compatible with a different human-written prompt. For
human face images, an example 7" for training can be any
neutral prompt, e.g., “a headshot of a person”. After train-
ing, inclusive tokens can be used to handle out-of-domain
prompts (e.g., “a photo of a doctor”) or facilitate differ-
ent models [81, 7] in a plug-and-play manner, justifying the
generalizability of our approach.

Data, Memory, and Computational Efficiency. ITI-GEN
uses averaged image features to guide prompt learning, in-
dicating that (1) only a few dozen images per category are
sufficient, and (2) a balanced distribution across categories
within an attribute is not required. ITI-GEN keeps the text-
to-image model intact and only updates the inclusive to-
kens, allowing it to circumvent the costly back-propagation
step in the diffusion model. Training with a single attribute
takes approximately 5 minutes (1 A4500 GPU). In practice,
we set the length® (¢ in Equation 3) of inclusive tokens to
3 (which is less than 10KB) for all attribute categories of
interest in our study. Hence, when scaling up to scenarios
with multiple attributes, ITI-GEN always has low memory
requirements for both training and storing inclusive tokens.

Comparison to Image Editing Methods. Our direction
alignment loss may be reminiscent of the directional CLIP
loss employed in image editing methods [25, 37]. How-
ever, they are fundamentally different. First, our ITI-GEN
is designed to promote the inclusiveness, while image edit-
ing methods focus on single image manipulation. Second,
image editing methods modify the source image according
to the change in texts (from source to target), whereas I'TI-
GEN learns prompts by leveraging changes in images from
one category to another. This key difference suggests a sig-
nificant distinction: the two methods are learning the task
from completely different directions.

4. Experiments

We validate ITI-GEN for inclusive text-to-image gener-
ation on various attributes and scenarios. We begin by intro-
ducing the experimental setup in Section 4.1, then present
the main results in Section 4.2, and finally, show detailed
ablation studies and applications in Section 4.3. Please see
Appendix for additional details, results, and analyses.

4.1. Setup

Datasets. We construct reference image sets and investi-
gate a variety of attributes based on the following datasets.
(1) CelebA [43] is a face attributes dataset and each image
with 40 binary attribute annotations. We experiment with
these binary attributes and their combinations. (2) FAIR
benchmark (FAIR) [20] is a recently proposed synthetic
face dataset used for skin tone estimation. Following [20],

The token length used here is generalizable across the attributes we
studied in this paper. See Appendix E.1 for a detailed ablation study.
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Table 1. Comparison with baseline methods with (a) single attribute and (b) multiple attributes. Reference images are from CelebA.
We use CLIP [56] as the attribute classifier [12, 14]. ITI-GEN achieves competitive results for both settings. SD: vanilla stable diffusion.
EI ethical intervention. HPS: hard prompt searching. PD: prompt debiasing. CD: custom diffusion. See Appendix F for more results.

(a) Single Attribute \ (b) Multiple Attributes

Method ‘ ]D)%;ile \L Dﬁl‘mg ~L Dlp(all‘e skin J/ Diyﬁglass J, Dr[gtslache \L D;‘(r?“ile \L ‘D;‘lilexyoung \L Drlzlzilexyoungxeyeglass ~L Dr;];ileXyoungxeyeglassxsmile ~L
SD [63] | 0.343  0.578 0.308 0.375 0.111 0.134 0.882 1.187 1.406

EI [5] 0.143 0423 0.644 0.531 0.693 0.189 0.361 1.054 1.311

HPS[18] |1 x107° 0.027 2.8 x10~® 0.371 0.241 4.4 %1073 3.5 x1073 0.399 0.476

PD[14] | 0322 0.131 0.165 0.272 0.063 0.146 - - -

CD[39] | 0309 0.284 0.074 0.301 0.246 0.469 - - -
ITI-GEN[2 x107°2 x10™* 0 2x107* 45x107* 2.5 x107°| 1.3 x10~* 0.061 0.094
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Without eyeglasses
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Perceived woman
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Figure 4. Qualitative results of the combination of four binary attributes (the last column in Table 1). The input prompt (T") is “a
headshot of a person”. By using the learned inclusive tokens (cf. Equation 3), ITI-GEN can inclusively generate images with all attribute
combinations. Images across each tuple are sampled using the same random seed. More examples are included in Appendix F.

FAIR benchmark LHQ

CelebA FairFace
Figure 5. Examples of reference images. CelebA [43] and Fair-
Face [34] are real-face datasets with different resolutions and fo-
cuses. FAIR benchmark [20] is a synthetic dataset used for skin
tone estimation. Landscape (LHQ) [68] contains images from nat-
ural scenes. ITI-GEN can leverage various image sources to ben-
efit inclusive text-to-image generation for various attributes.

we use the ground-truth albedos to classify each facial crop
into one of six skin tone levels [21] and use FAIR for in-
clusiveness on skin tone type. (3) FairFace [34]7 contains
face images with annotations for 2 perceived gender and 9
perceived age categories. (4) Landscapes HQ (LHQ) [68]
provides unlabeled natural scene images. With the annota-

7We note that, while the FairFace dataset contains race categories, we
focus instead on skin tone in this study. This is because skin tone is more
readily inferable from pixels, whereas racial identities are better under-
stood as social concepts that are neither immutable nor biological in na-
ture [8, 15, 61, 4]; furthermore, phenotypic variation of skin tone within
racial identification groups is well documented [50].

tion tool from [72], each image can be labeled with 6 quality
(e.g., colorfulness, brightness) and 6 abstraction (e.g., scary,
aesthetic) attributes. Figure 5 shows example images.

Experimental Protocols. We only require that a reference
image set captures a marginal distribution for each attribute
(cf. Section 3.2). Note that, while images from CelebA
and FairFace are annotated with multiple attributes, we use
only the attribute label for each target category but not oth-
ers. We randomly select 25 reference images per category
as our default setting (and ablate it in Section 4.3). For at-
tribute settings, we consider single binary attribute, multi-
category attributes, and multiple attributes in the domains
of human faces and scenes. We study both in-domain and
train-once-for-all generations (cf. Section 3.3) and further
provide qualitative and quantitative analyses for each setup.

Quantitative Metrics. We use two metrics to quantify
distribution diversity and image quality. (1) Distribution
Discrepancy (D). Following [12, 14], we use the CLIP
model to predict the attributes in the images. For attributes
that CLIP might be erroneous, we leverage pre-trained clas-
sifiers [34] combined with human evaluations. Specifi-
cally, for skin tone, which is extreme difficult to obtain
an accurate scale [1, 2, 28], we adopt the most commonly
used Fitzpatrick skin type [10] combined with off-the-shelf
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Figure 6. Multi-category distribution with “a headshot of a per-
son”. For a reliable evaluation, the results of (a) are evaluated
using classifiers in [34], and (b) are evaluated using existing mod-
els [10, 20]. The generated images from ITI-GEN are more uni-
formly distributed across different sub-groups than the baseline

Stable Diffusion. See Figure 7 for qualitative results.

models [20] for evaluation. (2) FID. We report the FID
score [26, 52] (FFHQ [35]) to measure the image quality.
Please see Appendix D for more details.

Baselines. We compare ITI-GEN to the following methods.
(1) Stable Diffusion (SD) [63] without any modification. (2)
Ethical Intervention (EI) [5] that edits the prompt by adding
attribute-related interventions. (3) Hard Prompt Searching
(HPS) [18] that directly expresses the desired attribute cat-
egory in the prompt. (4) Prompts Debiasing (PD) [14] that
calibrates the bias in the text embedding by using the at-
tribute category names. (5) Custom Diffusion (CD) [39]
that fine-tunes the text-to-image model with reference im-
ages based on Textual Inversion [24, 64].

Implementation Details. We use Stable Diffusion [63] (sd-
v1-4) as the base model for all methods and show compat-
ibility with ControlNet [81] and InstructPix2Pix [7]. ITI-
GEN is model agnostic as long as they take token embed-
dings as the inputs. We set A = 0.8 in L, across all exper-
iments and show that A can be robustly selected according
to the prior knowledge (see Section 4.3). All the inclusive
tokens are initiated as zero vectors®. We set the length of the
inclusive tokens to 3 in all experiments. There is no addi-
tional hyper-parameter in our framework. The total number
of the parameters for the inclusive tokens that need to be op-
timized is Zn]\le K,, x 3 x 768, where M is the number of
attributes, K, is the category number for attribute m, and
768 is the dimension of the embedding (e in Equation 3).
We train the models with 30 epochs on a batch size of 16
and a learning rate of 0.01. During training, we leverage
image augmentations used in the CLIP image encoder.

4.2. Main Results

Single Binary Attribute. To demonstrate the capability
of ITI-GEN to sample images with a variety of face at-
tributes, we construct 40 distinct reference image sets based
on attributes from CelebA [43]. Each represents a specific

8We investigated other options such as random initialization but did not
see notable differences in both generation quality and training speed.
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Figure 7. Results of ITI-GEN on multi-category attributes for
Genderx Age (Figure 6(a)) and Gender x Skin Tone (Figure 6(b)).
Examples are randomly picked with “a headshot of a person”.

binary attribute and contains an equal number of images
(50%) for the positive and negative categories’. Table 1(a)
shows a comparison to state-of-the-art methods. We evalu-
ate 5 text prompts — “a headshot of a {person, professor,
doctor, worker, firefighter}” — and sample 200 images per
prompt for each attribute, resulting in 40K generated im-
ages. We highlight the averaged results across 5 prompts of
6 attributes. We provide complete results in Appendix F.2.
ITI-GEN achieves near-perfect performance on balancing
each binary attribute, justifying our motivation: using sepa-
rate inclusive tokens is beneficial in generating images that
are uniformly distributed across attribute categories.

Multiple Attributes. Given multiple reference image sets
(each captures the marginal distribution for an attribute),
can ITI-GEN generate diverse images across any category
combination of the attributes? We provide an affirmative
answer and present results in Table 1(b) and Figure 4. As
we observe, ITI-GEN produces diverse and high-quality
images with significantly lower distribution discrepancies
compared to baseline methods. We attribute this to the ag-
gregation operation of inclusive tokens (Equation 3), allow-
ing ITI-GEN to disentangle the learning of different inclu-
sive tokens with images in marginal distributions.

Multi-Category Attributes. We further investigate multi-
category attributes including perceived age and skin tone.
Specifically, we consider two challenging settings: (1) Per-
ceived Gender x Age (Figure 6(a)), and (2) Perceived Gen-
der x Skin Tone (Figure 6(b)). ITI-GEN achieves inclu-
siveness across all setups, especially on extremely under-
represented categories for age (< 10 and > 50 years old
in Figure 6(a)). More surprisingly (Figure 6(b)), ITI-GEN
can leverage synthetic images (from FAIR) and jointly learn

9We found that different ratios do not lead to notable differences. We
provide an analysis of learning with imbalanced data in Appendix E.3.
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4%

Baseline

ITI-GEN
Figure 8. ITI-GEN with perception attributes on scene images.
The tokens of “colorfulness” are trained with “a photo of a natural
scene” and applied to “a castle on the cliff” in this example (train-
once-for-all in Section 3.3). ITI-GEN (right) enables the baseline
Stable Diffusion (left) to generate images with different levels of
colorfulness. Same seed for each row. Better viewed in color. See
Appendix E.5 for results of other attributes, e.g., scary, brightness.

70 1x10°%
65 69.9 -o-FID —-KL
60.4 605 604 |5y 106
60 ® ®
10 25 50 75 100

# reference images per category (CelebA)
Figure 9. Ablation on the quantity of reference images. More
reference images (> 10) help possibly due to more diversity and
less noise. ITI-GEN is robust in the low data regime (Section 3.3).

from different data sources (CelebA for gender and FAIR
for skin tone), demonstrating great potential for bootstrap-
ping inclusive data generation with graphics engines.

Other Domains. Besides human faces, we apply ITI-GEN
to another domain: scene images. We claim that the inclu-
sive text-to-image generation accounts for attributes from
not only humans but also scenes, objects, or even environ-
mental factors. Specifically, we use images from LHQ [68]
as guidance to learn inclusive tokens and generate images
with diverse subjective perception attributes. As illustrated
in Figure 8, ITI-GEN can enrich the generated images to
multiple levels of colorfulness'’, justifying the generaliz-
ability of our method to the attributes in different domains.

4.3. Ablations and Applications

Reference Images. Figure 9 illustrates the impact of the
quantity of reference images per attribute category, telling
that ITI-GEN can produce high-quality images using very
few reference data without sacrificing inclusiveness (KL).
In addition, as indicated in Table 2, ITI-GEN consistently
generates realistic images regardless of reference sources

10Note that the subjective attributes we explore here are different from
artistic styles (e.g., painting, cartoon) in image-to-image translation (e.g.,
[25]). Understanding the attributes related to quality and look of images
may be intuitive for humans but remain non-trivial for generative models.

Table 2. Ablation on reference image sources and Lsm. ITI-
GEN produces lower FID than the baseline Stable Diffusion. Se-
mantic consistency loss Lsm plays a key role in quality control.

Method Source Lsem FID|
Baseline [63] - - 67.40
CelebA [43] ‘)/( (+17.40) 2(7)32

ITI-GEN FairFace [34] '; Goon) gi}?
RO e

A headshot of a doctor

4ol
)

A headshot of a firefighter h
Baseline ITI-GEN
Figure 10. Train-once-for-all generalization. Inclusive tokens of
ITI-GEN trained with a neutral prompt (“a headshot of a person’)
can be applied to out-of-domain prompts in these two examples to
alleviate stereotypes. See Appendix F.6 for more results.

(see examples in Figure 4 and Figure 7). More interestingly,
we found that using synthetic images (i.e., FAIR [20]) is
slightly better than real data [43, 34]. We hypothesize that
the background noise in real images degrades the quality.

Semantic Consistency Loss Lgey. Again in Table 2, we
compare ITI-GEN with and without Lg.,,. With the help of
the semantic constraint (Figure 3), we regularize the learned
embeddings not too far from the original prompt. We show
evidence to verify this insight: the averaged CLIP similarity
scores of text features between the hard prompts of 40 at-
tributes in CelebA and the original prompt is 0.8 (the A we
used), suggesting that the hyper-parameter can be robustly
chosen based on prior linguistic knowledge.

Train-once-for-all Generalization. As shown in Figure 8,
inclusive tokens can be applied to user-specified prompts in
a plug-and-play manner (Section 3.2). In Figure 10, we pro-
vide more examples of professional prompts to demonstrate
the ability of train-once-for-all generation.

Compatibility with ControlNet [81]. ITI-GEN achieves
inclusiveness by learning attribute-specific prompts with-
out modifying the original text-to-image model, potentially
benefiting various downstream vision-language tasks. In
Figure 11, we demonstrate its compatibility with Control-
Net [81], a state-of-the-art model capable of conditioning
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Pose:

+

Prompt:
photo of a
famous
woman

i (& . { LA
ControlNet + ITI-GEN (Skin Tone)
Figure 11. Compatibility with models using additional condi-
tions, e.g., human pose (left). ITI-GEN promotes inclusiveness
of ControlNet [81] by using the inclusive tokens of six skin tone
types (right). The tokens are trained with “a headshot of a person”
guided by images from FAIR dataset [20], and applied here in a
train-once-for-all manner (Section 3.3). See Appendix F.7 for ad-
ditional results on versatile conditions, e.g., depth, segmentation.

on a variety of inputs beyond text. Interestingly, we ob-
serve an intriguing feature where the newly introduced to-
kens may implicitly entangle other biases or contrasts inher-
ent in the reference image sets, such as clothing style. Nev-
ertheless, we emphasize that disentanglement of attributes
is not the primary concern of this study. ITI-GEN achieves
competitive results in distributional control for the intended
attributes (e.g., skin tone in Figure 11) — aggregating to-
kens learned from marginal distributions implicitly disen-
tangles the known attributes of interest.

Compatibility with InstructPix2Pix (IP2P) [7]. Note that,
achieving fully unsupervised disentanglement is a challeng-
ing task [44]. Previous attempts in image generation often
resort to additional supervision, either through the use of
reference data [13], classifiers learned from a joint distribu-
tion [70], or even more robust controls such as instruction-
based image editing [7]. Here, we show that ITI-GEN can
potentially disentangle the target attribute by incorporating
InstructPix2Pix [7] — to improve the inclusiveness of IP2P
on the target attribute, while ensuring minimal changes to
other features such as clothing and background. Results are
shown in Figure 12, telling that ITI-GEN can be an effec-
tive method to condition diffusion on contrastive image sets,
e.g., images taken by different cameras, art by unknown
artists, and maybe even different identities of people.

5. Conclusion and Discussion

We present a new method for inclusive text-to-image
generation. Our main contribution lies in a new direction:
leveraging readily available reference images to improve

Instruction:
turn her into

IP2P IP2P + ITI-GEN (Skin Tone)
Figure 12. Compatibility with instruction-based image editing
methods. Given an image and a written instruction (top-left), In-
structPix2Pix (IP2P) [7] follows the instruction to edit the image
(bottom-left). ITI-GEN (right) enables inclusive instruction-based
image editing. Similar to Figure 11, the inclusive tokens used in
this example are trained in a train-once-for-all manner.

the inclusiveness of text-to-image generation. This problem
is timely and challenging [6, 5, 14, 22, 12]. Our key insight
is learning separate token embeddings to represent differ-
ent attributes of interest via image guidance. The proposed
ITI-GEN method is simple, compact, generalizable, and ef-
fective on various applications. Specifically, ITI-GEN has
several advantages: (1) scalable to multiple attributes and
different domains using relatively small numbers of im-
ages; (2) can be used in a plug-and-play manner to out-
of-distribution, relatively complex prompts; (3) efficient in
both training and inference; (4) compatible with the text-to-
image generative models that support additional conditions
or instructions. We conduct extensive experiments to verify
the effectiveness of the proposed method on multiple do-
mains, offering insights into various modeling choices and
mechanisms of ITI-GEN. We incorporate a broad spectrum
of attributes in both human faces and scenes. We hope that
our results and insights can encourage more future works
on exploring inclusive data generation.

Limitations. ITI-GEN can handle a wide range of gen-
eral attributes, such as perceived gender and skin tone, and
excels in cases where “Hard Prompt” struggles. However,
there remain several limitations. First, ITI-GEN does not
always provide optimal results for very subtle facial at-
tributes (Appendix F.2) or for the combinations of highly
entangled attributes (Appendix F.3). Second, ITI-GEN still
requires dozens of reference images for each category as
guidance. It is possible that the reference images may intro-
duce biases or inaccuracies. One mitigation strategy is to in-
tegrate ITI-GEN with models that offer robust controls [7],
such as the one highlighted in Figure 12.

Acknowledgments. We thank Oliver Wang, Jianjin Xu, and
Or Patashnik for their feedback on the drafts of this paper.
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