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Abstract

It is widely agreed that reference-based super-resolution
(RefSR) achieves superior results by referring to simi-
lar high quality images, compared to single image super-
resolution (SISR). Intuitively, the more references, the bet-
ter performance. However, previous RefSR methods have
all focused on single-reference image training, while mul-
tiple reference images are often available in testing or
practical applications. The root cause of such training-
testing mismatch is the absence of publicly available multi-
reference SR training datasets, which greatly hinders re-
search efforts on multi-reference super-resolution. To this
end, we construct a large-scale, multi-reference super-
resolution dataset, named LMR. It contains 112,142 groups
of 300×300 training images, which is 10× of the exist-
ing largest RefSR dataset. The image size is also some
times larger. More importantly, each group is equipped
with 5 reference images with different similarity levels. Fur-
thermore, we propose a new baseline method for multi-
reference super-resolution: MRefSR, including a Multi-
Reference Attention Module (MAM) for feature fusion of an
arbitrary number of reference images, and a Spatial Aware
Filtering Module (SAFM) for the fused feature selection.
The proposed MRefSR achieves significant improvements
over state-of-the-art approaches on both quantitative and
qualitative evaluations. Our code and data are available
at: https://github.com/wdmwhh/MRefSR.

1. Introduction

Single image super-resolution (SISR) is to restore a
degraded low-resolution (LR) image to a texture-realistic
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Figure 1. Visual comparison of single-reference training RefSR
method C2-Matching [12] and our multi-reference training
MRefSR. Our MRefSR can more fully utilize arbitrary number
of multiple reference images to achieve the best results. The full-
resolution comparison is provided in supplementary material.

high-resolution (HR) image [11]. SISR has a wide range
of applications in surveillance [40], astronomy [8], medical
imaging [7], film and television [24, 14], and other indus-
tries [27, 38, 34]. With the development of deep learning,
SISR has made great progress over these years [4, 5, 16,
19, 13, 41, 32, 20, 3, 23]. Compared with SISR, reference-
based super-resolution (RefSR) can leverage relevant tex-
tures from additional similar HR reference images, so it
often achieves better performance. Similar high-definition
images can be acquired from web-searching, expertly cu-
rated data repositories or websites, etc.

Because of promising results shown by recent RefSR
methods [29, 37, 43, 42, 28, 30, 12, 21, 35], it attracts more
and more research interest. However, all these previous
RefSR methods have focused on using a single reference
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image for training, but there are often multiple reference
images available for testing or practical applications. To the
best of our knowledge, the only RefSR training dataset cur-
rently available is CUFED5 [42, 33], which has only 11,871
image pairs with a small resolution of 160×160. More im-
portantly, there is only one reference image for each LR in-
put image. However, in practical applications, multiple ref-
erence images are often encountered. For example, testing
set of CUFED5 has 126 input images and each has 5 refer-
ence images with different similarity levels. Similarly, we
can also easily find multiple reference images for any real
test case. Due to the limitation of the only available train-
ing dataset, previous RefSR methods do not make good use
of multiple reference images in testing or practical applica-
tions. The previous RefSR methods usually stitch together
several reference images to get a large resolution image as
one reference image to fit the models trained with only one
reference image. Nevertheless, if the resolution of the refer-
ence images is too large, this way of testing will exhaust the
GPU memory. Furthermore, the relationship among multi-
ple reference images is not modeled effectively. So this is
certainly much worse than a method designed specifically
for multiple reference images. Therefore, a multi-reference
RefSR training dataset and a simple but effective multi-
reference RefSR method are needed.

In this paper, we propose a large-scale, multi-reference
RefSR dataset, named LMR. The training set of LMR con-
sists of 112,142 groups of 300×300 training images, each
group containing 5 reference images of different similar-
ity levels. LMR training dataset has 10 times images more
than CUFED5, and the image size is also some times larger.
Such a sufficiently large training dataset will be beneficial
for improving the generalization ability of models. We be-
lieve this training dataset will greatly facilitate the RefSR
research as it is the first RefSR training dataset with mul-
tiple reference images. Meanwhile, the testing set of LMR
has 142 groups of images and each group with 2∼6 refer-
ence images. The side length of the testing images ranges
from 800 to 1600.

With the help of LMR, we propose a new RefSR base-
line method for multiple reference RefSR, named MRefSR.
First, we develop a Multi-Reference Attention Module
(MAM) for feature fusion from an arbitrary number of ref-
erence images. We treat the LR input feature as query, and
candidate keys and values are generated from the aligned
reference features corresponding to different reference im-
ages. Then, attention across different aligned reference
features is conducted to fuse features from different refer-
ence images. Second, since not all LR feature points can
well match the reference features, we use Spatial Aware
Filtering Module (SAFM) for fused feature selection. As
shown in Figure 1, our MRefSR effectively utilizes infor-
mation from multiple reference images to produce visually

pleasing details. In summary, our contributions are three-
fold:

• We contribute the first multi-reference RefSR dataset,
named LMR, which contains 112,142 groups of
300×300 training images and each group has 5 ref-
erence images for the input image. This dataset will
enable RefSR research from single-reference to multi-
reference images and largely promote the development
of the RefSR research field.

• We propose a novel multi-reference baseline RefSR
method MRefSR, using a multi-reference attention
module for feature fusion of an arbitrary number of
reference images, and a spatial aware filtering module
for the fused feature selection. Our method effectively
learns the relationship among multiple references and
makes the best use of them, this is also thanks to the
multi-reference dataset LRM.

• We conduct extensive experiments which demonstrate
the superiority of the proposed LMR and the poten-
tial of multi-reference RefSR methods. Our method
achieves significant improvements over state-of-the-art
approaches on both quantitative and qualitative evalu-
ations.

2. Related Work
2.1. Reference-based Image Super-Resolution

RefSR is gradually becoming an emerging research field.
Compared with SISR, RefSR is more advantageous because
it can utilize the information of additional HR reference im-
ages with similar contents. SRNTT [42] proposed an end-
to-end network structure that performs multi-scale adaptive
texture transfer from the reference image to recover the SR
image. Subsequently, TTSR [36] applied a cross-scale fea-
ture integration method to merge multi-scale reference fea-
tures. MASA [21] designed a coarse-to-fine patch match-
ing scheme to reduce the computational complexity. Con-
sequently, C2-Matching [12] got more accurate pre-offsets
of reference features to LR features by a teacher-student
correlation distillation and a dynamic DCN [2, 44] aggre-
gation module. AMSA [35] made an incremental exten-
sion of C2-Matching by introducing multi-scale aggrega-
tion and coarse-to-fine patch matching. Huang et al. [10]
also used the C2-Matching model, but added an additional
SISR network to decouple the texture transfer and the super-
resolution, which made the network parameters much larger
and the inference much slower. Recently, RRSR [39] and
DATSR [1] also introduce reciprocal learning and trans-
formers to boost the performance. Although previous meth-
ods have made great progress, all of the above methods fo-
cus on research exploration using only one single reference
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Target Ref-1 Ref-2 Ref-3 Ref-4 Ref-5

Figure 2. Two groups of sample images from our LMR training dataset. From left to right, there is one target image, one high-similarity
(H) reference image, two medium-similarity (M) reference images, and two low-similarity (L) reference images.

image due to the limitation of the only available training
dataset, CUFED5.

2.2. RefSR Datasets

To the best of our knowledge, there are five datasets com-
monly used in RefSR research: Sun80 [29], Urban100 [9],
Manga109 [22], WR-SR [12] and CUFED5 [42, 33]. How-
ever, the first four are all testing sets. The Sun80 dataset
contains 80 natural images, each with 20 web-search ref-
erence images, but these reference images are not very
similar to the corresponding LR input, so it is not suit-
able as a testing set for RefSR. The Urban100 dataset con-
tains 100 building images, lacking references. Because
of self-similarity in the building image, the corresponding
LR image is usually treated as the reference image. The
Manga109 dataset contains 109 manga images without ref-
erences. Since all the images in Manga109 are the same cat-
egory (manga cover), the previous methods randomly use
one HR image in the dataset as a reference image. The WR-
SR dataset with more diverse categories, contains 80 image
pairs, each target image accompanied by a web-searching
reference image. CUFED5 [42, 33] is the only dataset with
a training set, which has 11,871 image pairs with a small
resolution of 160×160 and only one reference image for
the LR input in each image pair. CUFED5 testing set has
126 input images and each has 5 reference images with
different similarity levels. Recently, Wang et al. [31] pro-
posed a new dataset named CameraFusion for dual-camera
super-resolution with 131 training image pairs and 15 test-
ing image pairs. Similarly, the RefVSR work [17] focuses
on the multiple-camera setting with fixed camera relative
positions. However, the images captured by specific cam-
eras is too ideal for the RefSR task. In this paper, to better

meet the demands of RefSR research, we propose LMR, a
large-scale multi-reference RefSR dataset.

3. Approach
In this section, we first introduce the proposed Large-

scale Multi-reference RefSR dataset LMR in Sec. 3.1. Sub-
sequently, we detail a new baseline RefSR method MRefSR
using multiple references in Sec. 3.2.

3.1. Construction of LMR

The MegaDepth [18] dataset was originally proposed for
single-view depth prediction. They used a large number
of Internet images from overlapping viewpoints to obtain
the dense depth by COLMAP, a state-of-the-art SfM sys-
tem [25] (for reconstructing camera poses and sparse point
clouds) and MVS system [26] (for generating dense depth
maps). The generated dense depth maps of the COLMAP
are used as the supervised targets for single-view depth pre-
diction model training. MegaDepth contains 1,070,468 in-
ternet photos of landmarks around the world and recon-
structs 196 3D landmark models from these photos. Each
photo of the same landmark varies widely in viewpoint,
scene extent, and focused buildings. The scene of finding
Internet images from overlapping viewpoints for 3D recon-
struction is very similar to finding reference images for tar-
get images to do reference-based super-resolution. Inspired
by this, the image groups in the off-the-shelf MegaDepth
dataset are very suitable for making a RefSR dataset. Con-
sequently, we propose a new large-scale multi-reference
RefSR dataset, dubbed LMR.

To construct the LMR training image patch groups, we
first perform the following preprocessing steps on the orig-
inal MegaDepth dataset to obtain similar image pairs.
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Multi-Reference Attention Module (MAM) Spatial Aware Filtering Module (SAFM)

Figure 3. The proposed Multi-Reference Attention Module (left) for the multi-reference feature fusion and the Spatial Aware Filtering
Module (right) for the fused feature selection. Both modules perform pixel-wise functions.

• Firstly, the PSNR of the target image and the candidate
reference images should be lower than 30dB to filter
duplicate images.

• Secondly, to ensure that the candidate reference im-
ages and the target image should have some similar
contents, we filter them by controlling the overlap ra-
tio Rolp of matched keypoints in the sparse 3D point
clouds.

• Thirdly, the size ratio Rs of the same object in the ref-
erence image and the target image cannot be too small,
otherwise the reference image cannot provide enough
detailed texture information.

We calculate Rs and Rolp following the existing code in
D2-Net [6], a method for image matching and 3D recon-
struction.

Further, we define three similarity levels for these image
pairs, that is high similarity (H), medium similarity (M )
and low similarity (L). A image pair is categorized as H if
the overlap ratio Rolp is greater than 30% and the size ratio
Rs is larger than 0.9, M if Rolp is greater than 10% and the
Rs is larger than 0.66, otherwise L. 1

Through the above operations, we can obtain a large
number of image groups, each containing one target image
and multiple reference images. However, due to GPU mem-
ory limitation, it is often not possible to use the entire large
image to train the network. For SISR, it is common to ran-
domly crop a patch from the image for training. While in
the case of RefSR, it is better to crop corresponding patches
with similar contents in the reference images and the tar-
get image, e.g. CUFED5 cropped 11,871 paired 160×160

1These hyper-parameters of Rolp and Rs are set empirically. By grid
search on Rolp and Rs, we balance the number of image pairs with differ-
ent similarities.

patches as the training set. For the multi-reference dataset
LMR, we first randomly crop a patch from the target image.
Then, we map the center point of the cropped patch into 3D
sparse point cloud and pick up 5 keypoints near the mapped
point, which are from 5 reference images with different sim-
ilarities (one H, two M, two L). Next, we take the selected
keypoints as centers and crop the corresponding patches. In
this way, we collect a total of 112,142 groups of 300×300
patches as the training set. The number of collected train-
ing groups is ten times larger than that of training pairs of
CUFED5, and the image size of collected training patches
is nearly four times as large as that of training patches of
CUFED5. More importantly, each group has 5 reference
image patches of different similarities. Some representative
samples are presented in Figure 2. As shown in Sec. 4, the
model trained on the LMR dataset shows good generaliza-
tion performance on other RefSR datasets, demonstrating
the effectiveness of the LMR.

In addition to the LMR training set, we also prepare a
testing set for multi-reference RefSR testing. We remove
the images containing target or reference patches that ap-
peared in the training set. From the remaining image pairs,
we construct a testing set consisting of 142 groups, each
containing a target image and 2∼6 reference images with
image side lengths between 800 and 1600.

3.2. Multi-Reference RefSR network

Equipped with the LMR dataset, we propose a multi-
reference RefSR network to make good use of multiple
reference images, dubbed MRefSR. Our MRefSR is based
on C2-Matching [12] as it is currently the open source
method with the best performance, and is easy to be started.
Note that other RefSR frameworks such as TTSR [36] are
also applicable since we aim to exploit multi-reference fea-
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tures instead of single-reference feature transfer. As C2-
Matching did, a Content Extractor (CE) is used to extract
features FLR from LR image. Multi-scale (1×, 2× and 4×)
reference features F s

Refi
are extracted by a VGG extractor,

where s = 1, 2, 4 and i ∈ {1, 2, ..., N}, N is the number
of reference images. For the sake of brevity, the s in the
following is omitted, and FRefi is used instead of F s

Refi
.

A pretrained Contrastive Correspondence Network (CCN)
is used to obtain the relative target offsets Oi of the LR in-
put and the corresponding multiple reference images. After-
wards, as shown in Figure 3, we develop a Multi-Reference
Attention Module (MAM) for the multi-reference feature
fusion and a Spatial Aware Filtering Module (SAFM) for
the fused feature selection.

Dynamic Aggregation Module in C2-Matching is used
to get the aligned features Fai

from the reference features
FRefi by the corresponding pre-offsets Oi. After that, we
introduce MAM to fuse the aligned features from different
reference images. In detail, at each feature scale, we first
generate corresponding N attention maps for the aligned
features of N reference images:

atti(x, y) = softmax(⟨Q(x, y),Ki(x, y)⟩)

=
exp(⟨Q(x, y),Ki(x, y)⟩)∑N
j=1 exp(⟨Q(x, y),Kj(x, y)⟩)

.
(1)

We use inner product to measure the similarity between
the features Q(x, y) and Ki(x, y) at the point (x, y), where
query Q is obtained from the LR input feature FLR, key
Ki and value Vi are obtained from the i-th reference image
aligned feature Fai

:

Q = convq(FLR),

Ki = convk(Fai
),

Vi = convv(Fai
),

(2)

where convq , convk and convv are convolutions with kernel
size 3×3 and stride 1. Then, we get fused reference feature
Ffref from all reference images:

Ffref (x, y) =

N∑
i=1

(atti(x, y) · Vi(x, y)). (3)

The proposed MAM enables MRefSR to handle an arbi-
trary number of reference images during training and test-
ing phases, making the MRefSR more flexible for practical
applications.

Since not all LR feature pixels can be well matched with
reference features, we use the proposed SAFM for the se-
lection of fused reference features Ffref . As shown in Fig-
ure 3, we get two masks Mmul and Madd from the concate-
nated feature of FLR and Ffref and a sigmoid function is
used to limit the range of the Mmul.

Mmul = sigmoid(f1(FLR∥Ffref )) · 2,
Madd = f2(FLR∥Ffref ),

(4)

where f1 and f2 are nonlinear mapping functions consisting
of convolution and leaky ReLU layers. At last, the Mmul

and Madd are used for the final selected reference features
Fsref :

Fsref = Ffref ⊙Mmul +Madd, (5)

where ⊙ denote element-wise multiplication.
In the end, a restoration module G takes the LR features

FLR and the selected reference features Fsref to reconstruct
the target image:

XSR = G(FLR, Fsref ). (6)

3.3. Implementation Details

We train and evaluate our MRefSR in a scale factor
4×. In detail, we train the network for 255K iterations
using Adam optimizer [15] with parameters β1 = 0.9,
β2 = 0.999, and constant learning rate of 1e-4. Each mini-
batch includes 48 groups of image patches, each consisting
of an LR input patch with size 40×40 and five reference HR
patches with size 160×160. We use three commonly used
loss functions to train our model, including reconstruction
loss Lrec, perceptual loss Lper , and adversarial loss Ladv ,
referring to supplementary material for the network train-
ing loss details. The weight coefficients for Lrec, Lper and
Ladv are set to 1, 1e-4 and 1e-6. The network is first trained
with Lrec only and then finetuned with all losses. During
training, we augment the training data by randomly hori-
zontally flipping and vertically flipping, and random 90° ro-
tation. Following the standard protocol, we generate all LR
images by bicubically downsampling the HR images with
a scale factor of 4×. All experiments run in parallel on
4 NVIDIA V100 GPUs. For the quantitative comparison,
we train MRefSR without GAN loss and perceptual loss
as other methods did. Benefiting from the large-resolution
training images of LMR, we get an LPF (Large Patch Fine-
tuning) version of the model, which is finetuned using the
large-patch training images.

4. Experiments
4.1. Datasets and Metrics

We train our network on the proposed LMR training set
and evaluate it on the testing set of LMR, CUFED5 [42, 33],
Sun80 [29] and WR-SR [12]. As mentioned earlier, LMR
and CUFED5 are two real multi-reference testing sets. Al-
though Sun80 has multiple reference images, these refer-
ence images are not very similar to the corresponding target
images. WR-SR is a single-reference testing set. When
testing on CUFED5, previous RefSR methods can stitch
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Table 1. We report PSNR/SSIM on Y channel of YCbCR space to compare among different SR methods on the testing set of LMR,
CUFED5 [42, 33], Sun80 [29], and WR-SR [12]. Methods are grouped by SISR methods (top) and reference-based methods (bottom). The
best results are marked in bold and underlined. The second best and the third best results are marked in bold and underlined, respectively.
C2-Matching-LMR means C2-Matching-rec is trained on the LMR dataset and the Ours-rec-LPF indicates that the model was finetuned
using large patch size (300×300) training images.

Method Training
Dataset

LMR CUFED5 [42, 33] Sun80 [29] WR-SR [28]
PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

SRCNN [4] CUFED5 - 25.33 / 0.745 28.26 / 0.781 27.27 / 0.767
EDSR [19] CUFED5 - 25.93 / 0.777 28.52 / 0.792 28.07 / 0.793
RCAN [41] CUFED5 - 26.33 / 0.781 29.97 / 0.814 27.91 / 0.793
RRDB [32] CUFED5 - 26.41 / 0.783 29.99 / 0.814 27.96 / 0.793
RCAN∗ [41] LMR 29.63 / 0.841 26.58 / 0.785 30.36 / 0.821 28.24 / 0.798
RRDB∗ [32] LMR 29.68 / 0.842 26.61 / 0.786 30.37 / 0.821 28.25 / 0.798
Landmark [37] CUFED5 - 24.91 / 0.718 27.68 / 0.776 -
CrossNet [43] CUFED5 - 25.48 / 0.764 28.52 / 0.793 -
SRNTT-rec [42] CUFED5 - 26.24 / 0.784 28.54 / 0.793 27.59 / 0.780
TTSR-rec [36] CUFED5 29.13 / 0.832 27.09 / 0.804 30.02 / 0.814 27.97 / 0.792
MASA-rec [21] CUFED5 29.42 / 0.837 27.54 / 0.814 30.15 / 0.815 28.19 / 0.796
C2-Matching-rec [12] CUFED5 30.01 / 0.856 28.40 / 0.846 30.18 / 0.817 28.32 / 0.801
AMSA-rec [35] CUFED5 - 28.50 / 0.849 30.29 / 0.819 -
TDF-rec [10] CUFED5 - 28.64 / 0.850 30.31 / 0.820 28.52 / 0.807
C2-Matching-LMR LMR 30.64 / 0.869 28.65 / 0.853 30.31 / 0.819 28.53 / 0.807
Ours-rec LMR 31.81 / 0.895 28.94 / 0.860 30.28 / 0.819 28.52 / 0.806
Ours-rec-LPF LMR 31.98 / 0.898 29.05 / 0.862 30.32 / 0.819 28.59 / 0.807

multiple reference images into one large reference image
according to the convention. However, the image resolu-
tion of reference images in the testing sets of LMR and
Sun80 is larger than that in CUFED5. So when other meth-
ods are tested on LMR and Sun80, each LR image is tested
with only one reference image due to GPU memory limi-
tation. With the multi-reference attention module (MAM),
our MRefSR can utilize multiple reference images for pre-
diction on the LMR, CUFED5 and Sun80 testing sets. we
adopt two quantitative metrics, PSNR and SSIM, both cal-
culated on Y channel in the transformed YCbCr color space.
To evaluate the results qualitatively, we show the visual re-
sults of different methods and conduct a user study for sub-
jective visual quality comparison.

4.2. Comparison with State-of-the-Art Methods

We compare the proposed MRefSR with previous state-
of-the-art SISR methods and single-reference RefSR meth-
ods. SISR methods include SRCNN [4], EDSR [19],
RCAN [41], RRDB [32] and ESRGAN [32]. As for single-
reference RefSR methods, Landmark [37], CrossNet [43],
SRNTT [42], TTSR [36], MASA [21], C2-Matching [12],
AMSA [35] and TDF [10] are included. For fair com-
parison, we retrain three high-performance SISR methods

RCAN, RRDB and ESRGAN, and one open-sourced top-
performing single-reference RefSR method C2-Matching
on the training set of LMR.

Quantitative evaluation. As shown in Table 1, our
MRefSR outperforms other methods by a large margin
on two real multiple reference datasets, CUFED5 and
LMR. On the most commonly used CUFED5 benchmark,
MRefSR outperforms the retrained C2-Matching-LMR by
0.29dB. Models trained on LMR can achieve better per-
formance on CUFED5, which also demonstrates the gen-
eralization ability and effectiveness of LMR. What’s more,
MRefSR shows a significant improvement of 1.15 dB over
the second best method on the LMR testing set. The above
two results demonstrate the superiority of learning the inter-
action among multiple references, further manifesting the
necessity of the LMR dataset that enables multi-reference
RefSR training. On Sun80, SISR methods RRDB∗ and
RCAN∗ get the best two results. The results gap of the top
RefSR methods AMSA-rec, TDF-rec, C2-Matching-LMR
and MRefSR are less than 0.04 dB, which further proves
the reference image and its target image in Sun80 are not
very similar. On the WR-SR benchmark, since there is only
one reference image per LR, our results are very close to
C2-matching-LMR.
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LR input Ref-1 Ref-2 Ref-3 Ref-4 Ref-5
Target HR ESRGAN MASA C2-Matching C2-Matching-

LMR
Ours

Figure 4. Qualitative comparisons on the testing set of CUFED5 (the top four examples) and LMR (the bottom four examples). We
compare our results with ESRGAN, MASA, C2-Matching, C2-Matching-LMR. All these methods are trained with GAN loss. Our method
reconstructs sharper details than other methods.

Qualitative evaluation. As shown in Figure 4, we com-
pare the results of ESRGAN, MASA, C2-Matching, C2-
Matching-LMR and our MRefSR. The top four examples
are from CUFED5, and the models trained on LMR gen-
eralize well on the CUFED5 testing set, demonstrating the
effectiveness of the proposed LMR. What’s more, the re-
sults of our MRefSR trained with multiple references are
much better than those trained with a single reference im-

age. We also show four examples from the LMR testing set,
and MRefSR can recover more texture details than other
methods.

Besides, we perform a user study to compare with
some typical methods including ESRGAN, MASA and C2-
Matching. Specifically, in each test, we present paired
super-resolution results, one of which is generated by our
MRefSR, and ask the users to choose the one with higher
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Figure 5. User study results. Values on Y-axis denote the voting
percentage of users favoring our method.

Table 2. Ablation study on the influence of MAM, SAFM and LPF.
All the methods are trained on the LMR dataset. The data results
with ⋄ means that they are tested with only one reference due to
the limitation of GPU memory.

Method LMR CUFED5
PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

Baseline(C2-Matching-LMR) 30.64 / 0.869 ⋄ 28.65 / 0.853
Baseline+MAM 31.70 / 0.894 28.85 / 0.859
Baseline+MAM+SAFM 31.81 / 0.895 28.94 / 0.860
Baseline+MAM+SAFM+LPF 31.98 / 0.898 29.05 / 0.862

visual quality. As shown in Figure 5, the users prefer our
results over the others.

4.3. Ablation Study

In this section, we verify the effectiveness of Multi-
reference Attention Module (MAM) and Spatial Aware Fil-
tering Module (SAFM). Besides, we demonstrate the bene-
fit of large-resolution training images of LMR. At last, we
also investigate the impact of number of reference images.

The effectiveness of MAM and SAFM. As shown in
Table 2, with C2-Matching-LMR as the baseline, our MAM
achieves a PSNR improvement of 1.06 dB on LMR and 0.20
dB on CUFED5. The reason why the improvement on LMR
is larger than that on CUFED5 is that C2-Matching-LMR
cannot use multiple reference images on LMR due to the
limitation of GPU memory, and MAM greatly solves this
problem. More importantly, our MAM supports an arbitrary

Bicubic Baseline +MAM +MAM+SAFM

Figure 6. Visual comparisons of ablation study on MAM and
SAFM. With MAM and SAFM, the eyes on the face are more
obvious and the lines of the windows are clearer.

Table 3. The effect of different number of reference images on
CUFED5.

#Num C2-Matching-LMR Ours
n = 1 28.474 28.663
n = 2 28.615 (+0.141) 28.869 (+0.206)
n = 3 28.651 (+0.036) 28.920 (+0.051)
n = 4 28.649 (−0.002) 28.932 (+0.012)
n = 5 28.650 (+0.001) 28.935 (+0.003)
∆ +0.176 +0.272

number of reference images, making it more flexible and
practical. On the basis of MAM, SAFM is used to adjust the
fused reference features and the PSNR scores on LMR and
CUFED5 increase to 31.81 dB and 28.94 dB, respectively.
From Figure 6, we can see with MAM and SAFM, the out-
put SR images have clearer textures. Furthermore, thanks
to the larger image size of the LMR training data, MRefSR
with large-patch (300×300) finetuning strategy (LPF) can
consistently improve the performance by roughly 0.1 dB on
LMR and CUFED5. This result reflects the advantage of
the large training images of the LMR dataset.

The effect of the number of reference images. To
study the influence of number of reference images, we con-
duct experiments on the testing set of CUFED5, in which
each LR input image has five reference images. As shown
in Table 3, as the number of reference images increases, al-
though C2-Matching-LMR has a slight improvement with
the stitching testing strategy, the gap is still smaller than the
improvement of MRefSR. What’s more, when the number
of reference images is greater than 3, the results are worse
than the case of 3 reference images, which indicates that
the stitching testing strategy neglects the interaction among
references, so the information from the fourth reference
doesn’t explore with that from the first three reference ef-
fectively in this case. In contrast, it can be seen that with
the increase of reference images, MRefSR has a stable pos-
itive gain. Last but no least, MRefSR with five references
has a PSNR increase of 0.272 dB than that with one ref-
erence, whereas C2-Matching-LMR only has a PSNR in-
crease of 0.176 dB, which further demonstrates the supe-
riority of modeling the relationship among multiple refer-
ences.

4.4. Computational Cost

Here, we present the computational cost compar-
isons between the proposed MRefSR and previous single-
reference RefSR methods, including MASA [21] and C2-
Matching [12]. The computational cost is computed on
CUFED5 [42, 33] using one NVIDIA V100 GPU. In spe-
cific, for the single-reference RefSR methods on CUFED5,
we stitch five reference images into a 2500×500 image as
the reference image for testing. Certainly, our MRefSR can
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Table 4. Computational cost and performance comparisons on the
testing set of CUFED5. C2-Matching-LMR means C2-Matching-
rec is trained on our LMR dataset.

Model MASA-rec C2-Matching-rec C2-Matching-LMR MRefSR-rec
GPU Memory (GB) 21.98 8.37 8.37 3.42

Runtime (s) 0.417 2.29 2.29 0.875
PSNR↑ 27.54 28.40 28.65 28.94
SSIM↑ 0.814 0.846 0.853 0.860

directly utilize all the reference images for testing. Table 4
reports the GPU memory, runtime and performance for each
method. Our MRefSR consumes the least GPU memory
and achieves the best performance with acceptable runtime.

5. Conclusion

In this paper, we propose a large-scale multi-reference
RefSR dataset: LMR. Unlike CUFED5, the only training
RefSR dataset available before, LMR has 5 reference
images for each LR input image. What’s more, LMR
contains 112,142 groups of 300×300 training images, 10
times the number of CUFED5, and the image size is also
larger. Besides, we propose a new multi-reference baseline
RefSR method, named MRefSR. We use a multi-reference
attention module (MAM) for feature fusion of an arbitrary
number of reference images, and a spatial aware filtering
module (SAFM) for the fused feature selection. With LMR
enabling multi-reference RefSR training, our method effec-
tively models the relationship among multiple references,
thus achieving significant improvements over state-of-
the-art approaches on both quantitative and qualitative
evaluations. And our method solves the mismatch problem
of previous methods using a single reference image for
training but testing with multiple reference images.
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