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Figure 1: The implicit surfaces learnt via (a) conventional scheme which suffers from noisy background geometry representations. In
this work, we introduce (b) an object-aware volumetric scene representation by automatically recognizing rays as object-intersected or
object-bypassed, aiming to highlight the key object surface in the foreground. (c) Such object surface benefits a series of applications, e.g.,
3D scene composition, object moving/editing, and even skeleton assignment.

Abstract

Recent progress on multi-view 3D object reconstruction
has featured neural implicit surfaces via learning high-
fidelity radiance fields. However, most approaches hinge
on the visual hull derived from cost-expensive silhouette
masks to obtain object surfaces. In this paper, we pro-
pose a novel Object-aware Radiance Fields (ORF) to au-
tomatically learn an object-aware geometry reconstruction.
The geometric correspondences between multi-view 2D ob-
ject regions and 3D implicit/explicit object surfaces are
additionally exploited to boost the learning of object sur-
faces. Technically, a critical transparency discriminator is
designed to distinguish the object-intersected and object-
bypassed rays based on the estimated 2D object regions,
leading to 3D implicit object surfaces. Such implicit sur-
faces can be directly converted into explicit object surfaces
(e.g., meshes) via marching cubes. Then, we build the geo-
metric correspondence between 2D planes and 3D meshes
by rasterization, and project the estimated object regions
into 3D explicit object surfaces by aggregating the object
information across multiple views. The aggregated object
information in 3D explicit object surfaces is further repro-
jected back to 2D planes, aiming to update 2D object re-
gions and enforce them to be multi-view consistent. Exten-
sive experiments on DTU and BlendedMVS verify the capa-
bility of ORF to produce comparable surfaces against the
state-of-the-art models that demand silhouette masks.

1. Introduction

Multi-view 3D reconstruction, i.e., the task of recon-
structing 3D geometry/surface of objects from multi-view
2D images, has played a fundamental challenge to computer
vision and computer graphics communities for decades. In
the early stage, the mainstream solution is the classical
Multi-View Stereo (MVS) [3, 5, 12, 20, 34, 35] that exploits
photometric consistency across different camera views to
learn explicit geometry representations (e.g., meshes or
voxel grids). The ultimate reconstruction relies heavily on
the quality of cross-view matching. In practice, such match-
ing often fails to associate objects with sparse textures, re-
sulting in severe artifact or missing parts on surfaces. To
address this issue, recent studies turn their focus on inves-
tigating how to represent 3D surfaces as implicit geometry
representations. Many consider learning a continuous im-
plicit function that formulates neural implicit surfaces in
occupancy field [25, 31] or signed distance field [29]. In
between, surface rendering techniques [27, 47, 49] are de-
signed to optimize these fields, leading to impressive recon-
struction quality via differentiable rendering from images.
Nevertheless, learning such implicit geometry representa-
tions requires additional object masks of scenes, since the
color of each ray is assumed to only correspond to a single
point where a surface intersects with this ray. Moreover,
the gradient of differentiable rendering is only backpropa-
gated to the local surface near intersection, resulting in a
sub-optimal solution for neural implicit surfaces.
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To mitigate these limitations of local gradient propaga-
tion and the demand for the input object masks during fields
optimization, a series of volume rendering based neural ra-
diance fields techniques [9, 28, 41, 46] start to emerge.
Recently, the seminal work of NeRF [26] builds up the
foundation of volumetric scene in neural radiance fields for
view synthesis, and performs classical volume rendering
via alpha-compositing colors of the sampled points along
rays. The subsequent methods further remould classical
volume rendering by imposing implicit surface representa-
tions, e.g., occupancy network [28] or signed distance func-
tion [9, 41, 46]. These approaches produce more accurate
surfaces by reconstructing the holistic scenery. Neverthe-
less, the learnt implicit surfaces are inevitably composed of
rich geometry representations in both foreground and back-
ground (Figure 1 (a)), which are not distinguished during
radiance fields optimization. Accordingly, existing tech-
niques utilize additional cost-expensive silhouette masks to
trim the learnt 3D meshes derived from implicit surfaces.
The removal of vertices and/or surfaces outside the visual
hull directly highlights the geometry of the key objects in
the foreground, yielding object surfaces.

In this work, we devise a new Object-aware Radiance
Field (ORF), which goes one step further to eliminate the
need of the visual hull derived from human-annotated object
masks in scenes for learning object surfaces. Our launch-
ing point is to introduce an object-aware volumetric scene
representation by inferring the foreground/object and back-
ground radiance fields on-the-fly. Both the geometric corre-
spondences between multi-view 2D object regions and 3D
implicit or explicit object surfaces are exploited to boost
the learning of object-aware volumetric scene representa-
tion. ORF is henceforth able to encourage the reconstruc-
tion of foreground/object geometry without additional 3D
supervision of visual hull. Specifically, we first estimate
2D object regions directly based on the multi-view images.
Next, on the basis of the estimated 2D object regions, ORF
capitalizes on a transparency discriminator to automatically
recognize the transparency of each ray in the radiance field.
A low transparency indicates that the ray intersects with the
object, and rays with high transparency are considered to
be object-bypassed. Such predicted transparency of rays is
further regarded as prior information to regularize the radi-
ance field in an object-aware manner. Especially, as shown
in Figure 1 (b), all the sampled rays are divided into object-
intersected rays and object-bypassed rays according to pre-
dictions given by the transparency discriminator, leading to
3D implicit object surfaces. After that, we leverage march-
ing cubes to directly convert the 3D implicit object surfaces
into 3D explicit object surfaces. The inherent geometric
correspondence between 2D planes and 3D explicit object
surfaces are thus constructed via rasterization. This geo-
metric correspondence enables the projection from the es-

timated 2D object regions into 3D explicit object surfaces,
and meanwhile the object information across multiple views
are aggregated. Furthermore, ORF projects the aggregated
object information in 3D explicit object surfaces back to 2D
planes, thereby updating the 2D object regions and enforc-
ing them multi-view consistent. The whole process refines
the estimated 2D object regions and 3D implicit/explicit ob-
ject surfaces, pursuing an object reconstruction without triv-
ial background surfaces.

In sum, we have made the following contributions: (I)
ORF designs a transparency discriminator to automatically
capture useful object-aware inductive bias, which further
supervises radiance fields to learn object-aware geometry
reconstruction. (II) ORF additionally mines the inherent
geometric correspondence between multi-view 2D object
regions and 3D object surfaces to refine them along with
volume rendering. (III) We evaluate ORF on two widely-
used benchmarks (DTU and BlendedMVS), demonstrating
the effectiveness of our proposal.

2. Related Work
Multi-view 3D Reconstruction is one of the fundamen-

tal tasks in 3D vision, which attempts to reconstruct the 3D
geometry from images captured from multiple views. The
early works on this task has proceeded along two differ-
ent dimensions: matching features across views [4, 34] and
representing shapes with a voxel grid [1, 5, 10, 20, 30, 36,
38, 39]. The first dimension reconstructs the 3D scenes by
matching the pixels with similar appearance, and usually
requires the complex designs for fusing depth information
[8, 24] or meshing [17, 18]. The second dimension repre-
sents the 3D geometry as a volume grid and is limited by the
cubic increase of memory requirements. After that, inspired
by the recent advance of deep learning techniques, deep
neural networks are exploited as an alternative of hand-
designed traditional components in 3D reconstruction. For
instance, the visual feature for matching [14, 21, 23, 40, 48],
depth fusion [11, 33] and depth map prediction [15, 43, 44]
can be learnt by neural networks, leading to better perfor-
mances thanks to the high learning capacity of deep models.

Instead of explicitly reconstructing the 3D geometry, the
neural implicit surfaces are introduced to encode the char-
acteristics of 3D scenes by neural networks. Specifically,
the surfaces are represented by a neural network which out-
puts either an occupancy field [25, 31] or a Signed Distance
Function (SDF) [29]. In this scheme, the implicit represen-
tations of surfaces are learnt via surface rendering [27, 47]
which determines the radiance directly on the surface of an
object and provides a differentiable rendering formulation
using implicit gradients. Recently, Neural Radiance Fields
(NeRF) [26] is proposed to implicitly represent scenes by
volume rendering which learns alpha-compositing of the
radiance field along camera rays, which benefits 3D con-
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tent creation tasks [51, 6, 7, 42]. The main focus of NeRF
is the quality of novel view synthesis, but the geometry
is not guaranteed. To promote the quality of learnt sur-
faces, Unisurf [28] unifies radiance fields and occupancy-
based implicit surfaces, enabling plausible reconstruction.
VolSDF [46] and NeuS [41] exploit SDF as implicit surface
representations and obtain better results. NeuralWarp [9]
further boosts up the reconstruction by integrating photo
consistency between multi-view images.

Our work also falls into the category of learning neu-
ral implicit surfaces with volume rendering. Despite the
progress in improving rendering quality or surface extrac-
tion, the way to reconstruct object surfaces without requir-
ing the visual hull derived from object masks in scenes has
not been fully explored. The related work of DFFs [19] dis-
tills off-the-shelf 2D vision encoders into a 3D feature field
to enable the decomposition of scenes conditioning on user-
specified queries. Different from [19], our ORF exploits
the geometric correspondence between multi-view 2D ob-
ject regions and 3D object surfaces to automatically sepa-
rate objects and background, and enhance the quality of the
learnt object surfaces.

3. Object-aware Radiance Fields
This section first reviews the standard scheme to rep-

resent scenes via radiance fields without the consideration
of object region separation (Section 3.1). Next, we de-
scribe how the designed transparency discriminator in our
ORF distinguishes the object-intersected rays and object-
bypassed rays in radiance fields based on the estimated ob-
ject regions. And then we introduce how to learn an object-
aware radiance field by optimizing rays separately with the
help of the transparency discriminator (Section 3.2). Fur-
thermore, we design a novel rasterization-based aggrega-
tion mechanism to additionally construct the geometric cor-
respondence between 2D object regions and 3D object sur-
faces via rasterization. Such geometric correspondence en-
ables the aggregation of object information from 2D planes
to 3D explicit object surfaces. The aggregated object infor-
mation in turn updates the 2D object regions in a multi-view
consistent manner, pursuing a more high-fidelity object re-
constructions (Section 3.3). Figure 2 depicts an overview of
our ORF architecture.

3.1. Representing Scene via Radiance Fields

Neural radiance field and its recent variants aim to rep-
resent 3D scenes by two implicit functions, i.e., geome-
try function and radiance function, which are approximated
via two individual neural networks. The geometry network
models the geometric structure of 3D scenes, and the ra-
diance network encodes the color emitted by any region
in space from all directions. The two networks represent
the characteristics in the 3D scene and codetermine the ren-

dered novel views. When rendering the target view R taken
from the direction d, the rendered color R(p) of each pixel
p is computed by both geometry network G and radiance
network C in a differentiable way. Specifically, we first sam-
ple Np points xi, i = 1, ..., Np along the corresponding ray
R(p) going through the camera center and the target pixel
p. Note that here we omit the notations of target pixel for
simplicity. The surface normal ni, the occupancy value αi

and the radiance value ci are measured by the geometry net-
work G and the radiance network C as

ni, αi = G(xi),

ci = C(xi,ni,d).
(1)

The rendering of the scene at pixel p is approximated as a
weighted summation of radiance values ci at each sampled
point by using the occupancy values as the weights:

R(p) =

Np∑
i=1

αi

∏
j<i

(1− αj)ci, (2)

where
∏

j<i(1−αj) is to simulate the occlusion caused by
the opaque pixels in front of the target pixel. As a practical
choice, we utilize transformed Signed Distance Field (SDF)
encoding [41, 46] as the geometry function. Eq. (2) is ac-
tually the discrete approximation of an integral along the
camera ray by sampling a limited number of points. The
sampling strategies have been discussed in [26, 28, 41, 46]
to improve the geometry estimation.

At training stage, the two neural networks are jointly
optimized by encouraging the reconstruction of the given
views of the 3D scene. Given one reference view Ir, the
reconstruction loss for p ∈ Ir is calculated by the L1 dis-
tance between the reference view Ir and the neural volume
rendering results R as

Lrec = |Ir(p)−R(p)|, (3)

where |·| is the L1 loss. This loss function simply treats each
camera ray corresponding to p equally and constrains the
difference between the input pixel and the rendered result,
while ignoring the distinction of rays that either intersect or
bypass the objects. As a result, the implicit 3D model of-
ten contains some trivial surfaces of the background regions
(Figure 1), and thus requires the object masks derived visual
hull to execute an additional trimming step at inference.

3.2. Learning Object-aware Radiance Fields

To alleviate these issues, we propose to automatically
distinguish the object-intersected and object-bypassed rays,
making the learnt radiance fields object-aware without man-
ually annotating the visual hull for each scene. To materi-
alize this idea, here we first elaborate how to achieve the
high-quality ray/transparency prediction via a devised trans-
parency discriminator (Figure 2 (a)), followed by the learn-
ing scheme with different objectives (Figure 2 (b)).
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(b) Learning Object-aware Radiance Fields
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Figure 2: An overview of the proposed Object-aware Radiance Fields (ORF) framework for learning neural implicit surfaces.

Transparency Discriminator. Formally, we consider
the ray R(p) derived from pixel p of the reference view
Ir. One intuitive way to inspect whether the R(p) inter-
sects with the object is to predict the probability that the
pixel p belongs to the estimated object regions Or from
the perspective of Ir. Note that here we employ an off-
the-shelf salient object segmentation model [32] to learn
the prior knowledge of generic salient objects. Replacing
the saliency model with other segmentation models is flex-
ible to generalize to other reconstruction scenarios. Such
saliency map generated from Ir provides coarse object in-
formation that indicates the 2D object regions Or. How-
ever, the complex object appearance and challenging vari-
ation of views probably affect the quality of object infor-
mation. As such, we further design a transparency discrim-
inator that jointly exploits the 2D object regions estimated
from different views for ray discrimination in radiance field.

In particular, given a reference image Ir and multiple
source images (Isi , i = 1, . . . , Ns) captured from different
viewpoints, we can roughly estimate the object regions in
each image individually via salient object segmentation. Let
Or and Os

i (i = 1, . . . , Ns) denote the corresponding 2D
object regions. We start from the ray R(p) corresponding
to pixel p ∈ Ir that intersects with the implicit surface for
the first time at point x+ in the radiance field. To locate the
point x+ in the world coordinates, we sample points along
R(p) from its corresponding camera center and feed the
sampled points into the geometry network G in order. Then,
following [46], the signed distance between each sampled
point and its nearest surface is derived from the output of

G. The first point we sampled that has a positive signed
distance is regarded as x+.

After that, we mine the geometric correspondence be-
tween 3D implicit surfaces and 2D planes by projecting the
point x+ into the 2D plane of each source image. By de-
noting the projection as πs

i (x
+) (i = 1, . . . , Ns) in source

image coordinates, we formulate πs
i (x

+) as:

πs
i (x

+) = Ks
i (R

s
ix

+ + tsi ), (4)

where Ks
i is the internal calibration matrix of the i-th source

camera, and (Rs
i , t

s
i ) are the extrinsic parameters of the

camera (Rs
i : 3 × 3 rotation matrix, tsi : 3-dim translation

vector). In this way, each projection associates the point x+

in world coordinates to pixels in source images.
Based on the estimated 2D object regions from multiple

views Or and Os
i (i = 1, . . . , Ns), a transparency discrimi-

nator is devised to predict the transparency T (R(p)). Here
the transparency can be interpreted as the probability that
the ray R(p) bypasses the target object. Specifically, in an
effort to take all 2D object regions into account, we measure
the transparency for R(p) by averaging the probabilities of
pixels belonging to objects in multiple views with regard to
the same point x+:

T (R(p)) = 1−
Or(p) +

∑Ns
i=1 O

s
i (π

s
i (x

+))

1 +Ns
. (5)

Such formulation assumes that the intersection point x+ are
observed by each source camera without any occlusion. But
in practice, the intersection points may be projected outside
of the source images or occluded by other surfaces which
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are closer to the source cameras. To tackle this issue, we ex-
tend the formulation in Eq. (5) with a binary indicator V (·):

T (R(p)) = 1−
Or(p) +

∑Ns
i=1 V (πs

i (x
+))Os

i (π
s
i (x

+))

1 +
∑Ns

i=1 V (πs
i (x

+))
.

(6)
We set V (πs

i (x
+)) as 1 when x+ is within the maximum

area that can be captured by the camera of Isi and mean-
while it is also the first intersection between ray R(πs

i (x
+))

and implicit surfaces. In the implementation, we first check
if the πs

i (x
+) locates inside the source image Isi . Then

we estimate the first intersection point of ray R(πs
i (x

+))
and check whether it is nearby x+. Accordingly, our
transparency discriminator is able to identify an object-
intersected ray with low transparency, and a ray with high
transparency is considered to bypass the object.

Objective. After classifying each ray via the trans-
parency discriminator, we assign different objectives to dif-
ferent kinds of rays, pursuing an object-aware radiance
field. Figure 2 (b) shows an overview of the learning
scheme for our ORF. In general, given a group of multi-
view images of the target object, camera rays associated
with pixels in images are utilized for volume rendering to
optimize the radiance field, as described in Section 3.1. In
the radiance field, a ray may terminate at the surface of ob-
jects (blue and golden), the ground plane (orange), or the
point at infinity (green). To differentiate these kinds of rays,
we feed them into a transparency discriminator and classify
them as object-intersected or object-bypassed according to
object regions estimated from the multi-view images.

Specifically, for the object-intersected ray whose pre-
dicted transparency is less than 0.5, we learn in advance
that the ray will go through the target object. Hence, we
additionally constrain the ray to have high occupancy as a
supplement to the reconstruction loss in Eq. (3):

Locc = −log(

Np∑
i=1

αi

∏
j<i

(1− αj)), T (R(p)) ≤ 0.5. (7)

In contrast, for the object-bypassed ray with T (R(p)) >
0.5, the occupancy is enforced to be small to ensure that no
trivial surface appears in the background regions:

Locc = −log(1−
Np∑
i=1

αi

∏
j<i

(1− αj)), T (R(p)) > 0.5. (8)

In addition, we do not require the rendering of object-
bypassed ray to reconstruct the input color, which means the
reconstruction loss |Ir(p) − R(p)| is omitted when R(p)
is object-bypassed.

Hence, the overall objective function integrates the re-
construction loss between the reference view and the ren-
dered results in Eq. (3), and the occupancy regularization
loss in Eq. (7) and Eq. (8). To further enhance the qual-
ity of the learnt surfaces, we also consider two extra losses

following the recent works. The first one is the eikonal loss
Leik [13] which encourages the geometry network to out-
put a function similar to a signed distance field. The second
one is the patch warping loss Lwarp [9] to improve the re-
construction ability by warping the existing patches from
the reference views. We measure the overall objective as:

L = λ1Lrec + λ2Locc + λ3Leik + λ4Lwarp, (9)

where λ1 = 1, λ2 = 0.1, λ3 = 0.1, and λ4 = 1 are the
trade-off parameters. Here we set λ3 and λ4 following [9],
and λ2 is determined through experimental study.

3.3. Rasterization-based Aggregation

The new rasterization-based aggregation mechanism ad-
ditionally exploits the geometric correspondence between
3D explicit surfaces and 2D planes. This design aims to
further refine the quality of the estimated 2D object regions
and make them multi-view consistent.

Technically, as shown in Figure 2 (c), the mechanism
first converts the 3D implicit surfaces (i.e., geometry net-
work G) into explicit surfaces (a explicit polygonal 3D rep-
resentation like mesh) via marching cubes [22]. After that,
we compute the projection from the 3D explicit surfaces
(i.e., triangles) to the pixels of 2D images I by rasteriza-
tion. Here the rasterization refers to the typical process of
taking a triangle and figuring out which pixels it covers [37].
Formally, let ∆j denote the j-th triangle in the mesh, which
corresponds to a set of pixels Pj

i ⊆ Oi in the i-th view.
Note that the pixel set Pj

i is set as empty when ∆j is in-
visible to the camera due to invalid projections (e.g., the
triangle is projected outside the image) or occlusion. Such
correspondence between triangles and pixels enables the ag-
gregation of the object information of 2D object regions into
3D explicit surface ∆j . In particular, we aggregate the ob-
ject probabilities of all the pixels belonging to the triangle
∆j from multiple views, yielding the triangle-level object
probability of Oagg(∆

j):

Oagg(∆
j) =

∑|I|
i=1

∑
p∈Pj

i
Oi(p)

ϵ+
∑|I|

i=1

∑
p∈Pj

i
1

, (10)

where ϵ is a constant term added to the denominator for nu-
merical stability. After traversing all the 3D surfaces with
the triangle-level aggregation (Eq. (10)), we re-project the
triangle-level object probabilities of 3D surfaces back to 2D
images. More specifically, for one pixel p ∈ Pj

i ⊆ Oi in
each viewpoint, the object probability of Oi(p) is updated
as the same triangle-level object probability Oagg(∆

j). By
doing so, the updated 2D multi-view object regions are en-
forced to be consistent across different views.
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Table 1: Comparisons of our ORF with other volume rendering techniques on DTU dataset for learning neural implicit surfaces. Here all
the involved techniques do not use object masks as additional supervision for training. The top part reports the reconstruction performances
when using object masks to trim the estimated meshes, and the bottom part directly compares the reconstruction performances of the
estimated meshes without using object masks. The best performances are marked in bold and the second-best results are underlined.

ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

with object masks: using the visual hull derived from human-annotated object masks for mesh trimming
NeRF [26] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49
Unisurf [28] 1.32 1.36 1.72 0.44 1.35 0.79 0.80 1.49 1.37 0.89 0.59 1.47 0.46 0.59 0.62 1.02
VolSDF [46] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS [41] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84
NeuralWarp [9] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68

without object masks: without mask-dependent trimming at inference
VolSDF [46] 1.25 1.70 1.31 0.91 2.90 1.08 0.90 1.62 1.24 1.09 0.70 1.39 0.59 0.71 0.87 1.22
NeuS [41] 1.59 1.98 1.44 0.95 1.82 0.74 0.64 1.63 1.30 1.41 0.59 1.33 0.44 0.51 0.54 1.13
NeuralWarp [9] 0.97 2.54 1.52 0.41 2.54 0.74 0.79 1.06 1.53 1.40 0.75 0.72 0.39 0.57 0.62 1.10
ORF 0.56 0.69 0.43 0.45 0.74 0.85 0.75 0.76 0.86 0.71 0.61 0.69 0.38 0.81 0.52 0.65

4. Experiments
We evaluate the effectiveness of ORF on DTU [16] and

BlendedMVS [45] for multi-view 3D reconstruction. We
first show both qualitative and quantitative results of ORF in
comparison to existing techniques on DTU. Next, we con-
duct experimental analysis to validate the designs in ORF.
Finally, we perform the qualitative comparison over sam-
ples derived from BlendedMVS for evaluation.

4.1. Datasets and Experimental Settings

DTU is a popular multi-view 3D reconstruction bench-
mark, which consists of 80 scenes with large variability in
materials, appearance and geometry of objects. For each
scene, the dataset provides 49 or 64 images (resolution:
1,600×1,200) captured from multiple camera views. The
ground-truth point cloud of each scene is acquired with laser
sensor. In our experiments, we follow [9, 28, 41, 46, 47]
to use the selected 15 scenes in DTU for comparison. We
strictly follow [9, 41] and use the official evaluation code of
DTU [16] to compute the quantitative metrics. Specifically,
the point clouds of objects (w/o background) in DTU are re-
garded as ground truth (GT). For a reconstructed mesh, we
sample points on triangle surfaces in an evenly spaced man-
ner (radius=0.2 as in [16]). Then, we report the final recon-
struction score by averaging the accuracy and completeness
of the sampled points (SP) (i.e., the chamfer distances of
SP→GT and GT→SP). It is also worthy to note that existing
volume rendering techniques commonly use the additional
object regions manually annotated by [27, 47] to trim the
predicted mesh for only evaluating the reconstruction inside
the visual hull. In contrast, our ORF learns an object-aware
volumetric scene representation and directly constructs the
3D geometry of objects in the scene without the use of the
visual hull derived from annotated object regions of scenes.

BlendedMVS is a large-scale benchmark for multi-view
3D reconstruction, including 113 scenes with multi-view

images. Compared to DTU, the backgrounds in Blended-
MVS are more complex. We select samples from the low-
res set of BlendedMVS, and each scene is equipped with 24
to 64 images (resolution: 768×576). Note that the ground
truth of object regions for each image is not available.

Implementation Details. The whole network of ORF
is built over VolSDF [46], and we adopt the same architec-
ture as in existing volume rendering methods [28, 46, 47]
for fair comparison. The whole network uses sphere ini-
tialization [2]. During training, we train our ORF with a
two-stage strategy. We first optimize the network with the
reconstruction loss and eikonal loss under the same setting
in VolSDF (100k iterations with learning rate exponentially
decayed from 5e-4 to 5e-5, batch size: 1,024 rays). Next,
the network is fine-tuned with the overall objective in Eq.
(9) (100k iterations with learning rate of 5e-4, batch size:
512 rays). The object probability is calculated by the trans-
parency discriminator in each forward pass using the latest
radiance field. The mesh extraction for rasterization-based
aggregation is only conducted once after the first training
stage of ORF.

4.2. Comparison on DTU Dataset

Quantitative Results. We compare with several neural
surface reconstruction techniques under two different eval-
uation settings for fair comparison: 1) baselines using the
visual hull derived from human-annotated object masks for
mesh trimming, 2) all re-implemented SDF-based baselines
and our ORF without mask-dependent trimming at infer-
ence. Such two settings are denoted as with/without ob-
ject masks, respectively. All the mentioned baselines are
grouped into three directions: volume rendering with classi-
cal radiance fields [26], occupancy network [28], and SDF-
based (Signed Distance Function) fields [46, 41, 9]. Ta-
ble 1 summarizes the performance comparisons on each
evaluation scenario. Note that all baselines and our ORF
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Figure 3: Comparisons on qualitative results of our ORF with other neural radiance fields techniques on DTU dataset for 3D geometry
reconstruction with or without object masks at inference. * denotes our implementation of VolSDF.

do not use human-annotated object masks of scenes to op-
timize geometry/radiance nets during training. At infer-
ence, these baselines commonly require masks to remove
the background of the learnt mesh. Instead, ORF can di-
rectly produce the object mesh without masks.

In general, our ORF exhibits better reconstruction qual-
ity against all these baselines. Remarkably, ORF achieves
0.65 in the metric of Chamfer distance without the use of
the visual hull derived from object masks in scenes, which
is better than the reconstruction accuracy (0.68) of Neural-
Warp when exploiting demands object masks at inference.
The results generally highlight the key advantage of learn-
ing object-aware geometry reconstruction for neural im-
plicit surfaces. Specifically, under the evaluation scenario
with object masks, NeRF produces unsatisfactory recon-
struction results since the lack of 3D geometry constraints.
Unisurf unifies volume/surface rendering and enables better
results. VolSDF, NeuS, and NeuralWarp exploit SDF and
obtain promising reconstructions. Nevertheless, a perfor-
mance drop is observed for each SDF-based method when
object masks are unavailable at inference, since the primary
estimated mesh contains more trivial geometry of the back-
ground. In contrast, our ORF achieves competitive recon-
struction accuracy through learning an object-aware radi-
ance field without the use of object masks derived visual
hull. This confirms the effectiveness of exploring object
awareness via transparency discriminator and rasterization-
based aggregation.

Qualitative Results. We then visually examine the re-
construction quality of our proposal by comparing ORF
with three SDF-based approaches (VolSDF, NeuS, Neural-
Warp) on five selected scenes from DTU dataset. Figure 3
shows the qualitative results of the reconstructed meshes.

Note that here we show the reconstruction results of the two
different evaluation settings (with or without object masks
at inference for trimming estimated meshes). In general,
all the three approaches reconstruct high-fidelity object sur-
faces after mask-dependent mesh trimming. In between, by
constraining volume rendering with photo-consistency ob-
jective across multiple views, NeuralWarp produces more
accurate surfaces with high-fidelity details (e.g., the bricks
with sparse textures in the first two scenes) against VolSDF
and NeuS. Furthermore, when the object masks are unavail-
able, the output meshes of each baselines become noisy
with more trivial geometry and even some artifact of the
background. In contrast, under this challenging setting, our
ORF performs visually on par with the NeuralWarp, while
requiring no object mask dependent mesh trimming at in-
ference. The results again validate the merit of our ORF.

4.3. Experimental Analysis

Ablation Study. Here we investigate how each design
in our ORF influences the overall reconstruction perfor-
mance. Table 2 and Figure 4 details the performances and
the corresponding qualitative results across different ablated
runs of ORF, respectively. We start from a basic SDF-
based radiance field without ray discrimination (i.e., Neu-
ralWarp), which achieves 1.10 of Chamfer distance. The
estimated mesh of this basic model inevitably contains triv-
ial background geometry. Next, by solely using the out-
puts of salient object segmentation (Saliency) to distinguish
object-intersected and object-bypassed rays, we observe a
clear performance boost and the background is effectively
screened. However, the independently estimated object
probability of each 2D object region may be inaccurate and
inconsistent across different viewpoints, resulting in error
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Table 2: Ablation study on each design in ORF on DTU dataset.

Transparency Discriminator Rasterization-based Chamfer
Saliency +Multiview +Verifier Aggregation Distance

1.10
! 0.90
! ! 0.87
! ! ! 0.76
! ! ! ! 0.65

Image NeuralWarp + Saliency +  Multiview + Verifier
+ Aggregation 

(ORF)

Figure 4: Comparisons on qualitative results by using different
ablated runs of our ORF on DTU dataset for 3D geometry recon-
struction object masks dependent mesh trimming at inference.

accumulation and holes in the reconstructions. To address
this issue, we enhance the strategy of transparency discrimi-
nation by jointly exploiting the 2D object regions estimated
from multiple views (Multiview), leading to slightly bet-
ter reconstruction. We then leverage the projection verifi-
cation strategy (Verifier) to screen out invalid projections
(e.g., the points are projected outside of the source images
or occluded by other surfaces), which further boosts up the
reconstruction. Finally, by capitalizing on Rasterization-
based Aggregation to refine the estimated 2D object re-
gions, the mIoU of object regions is improved from 94% to
97% and ORF achieves the highest reconstruction quality.

Effect of the Trade-off Parameter λ2. To clarify the
effect of the trade-off parameter λ2 in Eq. (9), we detail
the reconstruction performances (i.e., Chamfer distances)
with different trade-off parameters in Table 3. In the ex-
treme case of λ2 = 0, no occupancy regularization objec-
tive for foreground and background rays is utilized and the
whole model degenerates to the conventional SDF-based
approach. When enlarging λ2 as 0.05, a better reconstruc-
tion accuracy is attained, which basically demonstrates that
the foreground-aware inductive bias benefits volume ren-
dering. The performance change is relatively smooth when
λ2 varies in the range from 0.05 to 0.20, and the best re-
construction accuracy is attained when λ2 = 0.10. Further-
more, the reconstruction accuracy slightly decreases when
λ2 ≥ 0.30. We speculate that this may be the result of am-
plifying the noise of ray discrimination if we set a higher
weight to occupancy regularization objective.

Effect of the Saliency Model’s Performance. To ver-
ify how the quality of saliency influences the reconstruc-
tion, we perform salient object segmentation using another
two models and obtain additional two versions of saliency
maps. We evaluate the three different versions of saliency
for both reconstruction and segmentation tasks on DTU (re-

Table 3: Effect of the trade-off parameter λ2 in ORF on DTU.

λ2 0.00 0.05 0.10 0.20 0.30 0.40 0.50

Chamfer Dist. 1.10 0.66 0.65 0.67 0.69 0.70 0.71

Image

VolSDF*

Neural
Warp

ORF

Figure 5: Comparisons on qualitative results of our ORF with
other techniques on BlendedMVS for 3D geometry reconstruction
without object masks at inference. * denotes our re-implemented
VolSDF without the hand-crafted parametrization in NeRF++.

construction: 0.65, 0.67, 0.67; segmentation: 94%, 93%,
91% mean IoU). The results show that the saliency segmen-
tation performance on DTU has almost saturated, and the
reconstruction performances of ORF only fluctuate within
the range of 0.02, which eases the difficulty on choosing
saliency segmentation model in practice.

4.4. Comparison on BlendedMVS Dataset

Figure 5 further showcases the geometry reconstruction
results with different techniques for six scenes in Blended-
MVS. It is worthy to note that VolSDF originally utilizes an
additional hand-crafted parametrization as in NeRF++ [50]
to tackle the complex backgrounds by modeling the vol-
ume outside a radius 3 sphere with another NeRF net-
work. For fair comparison, here we re-implement VolSDF
by removing this parametrization. Similar to the observa-
tions on DTU under the setting without object masks, both
VolSDF and NeuralWarp produce high-fidelity object sur-
faces, while more trivial background geometry is inevitably
included. Instead, our ORF nicely removes the trivial ge-
ometry and performs nearly on par with these approaches.

5. Conclusions
In this work, we circumvent the use of object masks de-

rived visual hull, and shape a new paradigm of learning
object-aware geometry reconstruction for neural implicit
surfaces. To verify our claim, we novelly remould the clas-
sical neural radiance fields by involving a new transparency
discriminator to distinguish object-intersected and object-
bypassed rays on-the-fly. Such ray discrimination serves as
object-aware inductive bias to enable a reconstruction of 3D
geometry of the key object in the scene. Moreover, we ex-
ploit the geometric correspondence between multi-view 2D
object regions and 3D implicit/explicit surfaces to facilitate
the learning of object surfaces. Extensive experiments con-
ducted on DTU and BlendedMVS validate our proposal.
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