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Abstract

In instance image retrieval, considering local spatial in-
formation within an image has proven effective to boost re-
trieval performance, as demonstrated by local visual de-
scriptor based geometric verification. Nevertheless, it will
be highly valuable to make ordinary global image repre-
sentations spatial-context-aware because global represen-
tation based image retrieval is appealing thanks to its al-
gorithmic simplicity, low memory cost, and being friendly
to sophisticated data structures. To this end, we propose
a novel feature learning framework for instance image re-
trieval, which embeds local spatial context information into
the learned global feature representations. Specifically, in
parallel to the visual feature branch in a CNN backbone,
we design a spatial context branch that consists of two
modules called online token learning and distance encod-
ing. For each local descriptor learned in CNN, the for-
mer module is used to indicate the types of its surrounding
descriptors, while their spatial distribution information is
captured by the latter module. After that, the visual fea-
ture branch and the spatial context branch are fused to
produce a single global feature representation per image.
As experimentally demonstrated, with the spatial-context-
aware characteristic, we can well improve the performance
of global representation based image retrieval while main-
taining all of its appealing properties. Our code is available
at https://github.com/Zy-Zhang/SpCa.

1. Introduction

Given a query image, the purpose of instance-level im-
age retrieval is to search and retrieve the images containing
the identical object described by the query from a large-
scale image dataset. In this task, visual feature representa-
tions of images play a crucial role in measuring the sim-
ilarities between a query and candidate images. A vari-
ety of handcrafted feature-based methods [14, 38, 2] have
been proposed to significantly improve the performance in

the past two decades. Recently, due to the development
of deep learning technologies, deep feature representations
have been overtaking the position of conventional hand-
crafted ones and bringing great progress in the task of in-
stance image retrieval [1, 3, 17, 28, 15].

Generally, deep feature representations used in instance
image retrieval can be categorized into two types. One type
is global feature representation, which describes the visual
content of an image as a whole. As a multi-dimensional
vector, it can be efficiently used to measure the similarity of
two images, say, via Euclidean distance or cosine similarity.
For a retrieval task, the total number of global feature repre-
sentations is just the size of image database, and they can be
pre-extracted and economically stored for use. In addition,
one global feature representation per image works well with
the classic data structures designed for searching. The other
type is local descriptors, which describe the local informa-
tion within an image and collectively reflect the spatial in-
formation of the visual cues in an image. In image retrieval,
they are important for conducting geometric verification to
confirm if two images truly match or not. However, the
total number of local descriptors per image could be large
(e.g., 1, 000) and the verification involves non-trivial com-
putation, making this process expensive in computational
cost and memory footprint.

This situation leads to a wide use of “two-stage”
paradigm in instance image retrieval [23, 3, 17]. An ini-
tial retrieval result is firstly obtained via the global feature
representation. After that, a re-ranking step utilizes the lo-
cal descriptors to refine a small number of top-retrieved im-
ages. Nevertheless, this two-stage paradigm not only re-
sults in two separate procedures [26, 10] but also consider-
ably increases retrieval time and memory expense for prac-
tical retrieval tasks [18], due to the presence of the local
descriptor-based spatial verification step. Therefore, it will
be highly valuable to make ordinary global image represen-
tations spatial-context-aware by considering their appealing
properties of algorithmic simplicity, low memory cost, and
being friendly to data structures.

To achieve this, we propose a novel feature learning
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framework to effectively embed spatial context information
into global feature representation of images. Doing so will
help to boost the retrieval performance of global feature rep-
resentation, improving its efficacy when the local descriptor
based re-ranking becomes costly or infeasible.

Specifically, two types of information are extracted in
our framework. One is conventional visual information ob-
tained by a visual feature branch in a CNN backbone. The
other one is spatial context information that describes for
each local descriptor learned in CNN, what kind of sur-
rounding local descriptors are and how they spatially dis-
tribute on a feature map. To obtain this information, we
develop a spatial context branch that operates in parallel
to the visual feature branch in CNN. This branch consists
of two modules called online token learning and distance
encoding. The module of online token learning addresses
the “what kind” issue. A set of semantic tokens that could
be regarded as anchors in the space of local descriptors is
learned in an online manner. Comparing the tokens to the
visual words in a visual dictionary, each local descriptor can
be uniquely labelled via soft coding as a token-based iden-
tification. The module of distance encoding cares about the
“spatial distribution” issue. A probability transition based
encoding is devised to reflect the relative spatial distance
between each pair of local descriptors, so as to capture their
spatial distribution information in a feature map. After that,
the token-based identification and the spatial distribution in-
formation are integrated to produce a spatial context clue for
each local descriptor. With both visual and spatial informa-
tion, a feature fusion operation is conducted to fuse them
together to generate spatial-context-aware local descriptors.
Finally, a global pooling followed by a whitening layer is
added to embed the context-aware local descriptors into a
global feature representation for each image.

Our contributions are summarised as follows:

i. We propose an end-to-end feature learning framework to
characterise and embed spatial context information into
the process of information processing and extraction in
CNN. It makes global feature representations become
more capable for instance image retrieval.

ii. To implement the framework, we design a spatial con-
text branch. With its online token learning module, the
types of local descriptors are identified and easily com-
pared. With the distance encoding module, the informa-
tion about the spatial distribution of different types of
local descriptors around a given descriptor is obtained.

iii. To verify the efficacy of the proposed framework, we
conduct extensive experiments on instance image re-
trieval benchmark datasets, ROxford and RParis, with
one million distractors. As demonstrated, our global
feature representations effectively improve the perfor-

mance of instance image retrieval, making global repre-
sentation a more competitive option for practical tasks.

2. Related Work
In this section, we briefly review deep instance image re-

trieval, including local and global feature learning methods.

2.1. Global features

Global feature has been widely used to represent the con-
tent of images for a wide range of computer vision tasks [21,
13, 8, 36, 37, 12, 11]. Due to its compactness and efficiency,
a variety of global methods [24, 32, 35, 15] have been
proposed to learn discriminative feature representations via
deep models in the instance image retrieval community.
Some of the studies focus on applying more effective loss
functions, including triplet losses [29], list-wise losses [22],
and classification losse s [5] to train the model. Others ex-
plore how to pool the entire feature maps into a compact
feature vector while maintaining their discrepancies. For
instance, weighted-sum-pooling (CroW) [9], regional-max-
pooling (R-MAC) [29], and GeM pooling [20]. Recently,
several methods try to modify the training model architec-
ture to capture more useful information during the train-
ing process. SOLAR [15] combines normal training with
second-order information by adding self-attention modules
in the conventional CNN backbones. Token [32] jointly
learns a set of tokens and the corresponding visual represen-
tations to mimic the conventional dictionary learning plus
feature encoding scheme to represent images. Some other
studies [32, 35] propose multiple branches for CNN mod-
els to mine more complementary information and fuse them
into the final feature vectors. We follow the global feature
type to learn compact features to conduct retrieval.

2.2. Local features

Deep local descriptors [28, 30, 33, 17] have been ex-
tensively researched and made significant progress in in-
stance image retrieval [4]. The key to their success lies
in the spatial information these local descriptors hold, and
it is usually utilized by kernel alignment aggregation (e.g.,
ASMK [27]) or geometric verification (e.g., RANSAC [6])
for image similarity measure. In recent studies, several
methods [26, 10] individually train a matching model to di-
rectly compare the similarity of two images (or their pre-
extracted local descriptors) in a data-driven manner. How-
ever, they need more inference time and memory footprint.
Therefore, they are usually applied to only top k retrieved
images obtained by a global retrieval method as a reranking.

2.3. Learning local and global features jointly

Driven by the complementary properties of global and
local features, jointly learning the two types of features

11251



F
e
a
tu

re
 

F
u

s
io

n
 

M
o

d
u

le

CNN

Backbone

GP
+
W

Visual Feature Branch

Final Representation

Spatial Context Branch

Visual 
Tokens

Dimension 
Reduction

Probability 
Transition 

Matrix

X
Token-based 
Identification

GMM

Online Token Learning Distance Encoding

Figure 1. Overview of our framework. After an initial feature extraction by a CNN backbone, two branches of “Visual Feature Branch”
and “Spatial Context Branch” are used to extract visual and spatial context information. After that, a cross-attention module is used to
fuse the visual feature and the corresponding spatial context feature to generate spatial-context-aware visual representations for images. In
particular, “GMM” denotes the Gaussian Mixture Model process, and “GP+W” refers to global pooling followed by whitening.

becomes a straightforward idea. Recently, several studies
demonstrate the advantages of learning features in this man-
ner. DELG [3] creatively unifies the two separate learn-
ing processes into one training framework. However, even
though the training procedure is unified, the learning pro-
cesses of the two feature types are still somehow irrele-
vant. To further explore this approach, DOLG [35] and
DALG [25] firstly separate the feature extractor into two
branches to learn the local and global features and then fuse
them via a manual or learnable way to obtain compact fea-
ture representations for images. Both of them try to extract
individual visual information from the two types of features
to make them complementary to each other. However, the
powerful spatial context information held by local features
is neither exploited nor embedded into the final feature rep-
resentations. In this work, we argue that spatial context in-
formation is more beneficial than visual information from
local descriptors to the final global feature representations
for instance image retrieval. To this end, we propose a novel
feature learning framework to effectively embed the spatial
context information into final global features.

3. The Proposed Method

An overview of our framework is in Figure 1. Given an
image I, a conventional CNN backbone is used to generate
a feature map V ∈ RD×H×W , in which each spatial position
corresponds to a D-dimensional local visual descriptor. Be-
sides, a spatial context branch is split from the feature map
to extract the spatial context information of all the descrip-
tors, which is represented in the form of S ∈ RC×H×W with C
being the dimensions. After that, for each local descriptor,
its two kinds of information are fused together, say, with a
cross-attention module or a simple concatenation operation.
After the fusion, a global pooling and a fully-connected
layer are used to generate the final global spatial-context-
aware feature fspca to represent the image. In the following,

we focus on describing the spatial context branch since the
visual branch follows its original design in CNN backbones.

3.1. Spatial Context Branch

In the spatial context branch, there are two main issues
to be addressed for each spatial position on the feature map:
1) what kinds of local descriptors are there in its surround-
ing region (i.e., identification task); 2) how they spatially
distribute on the feature map (i.e., spatial distribution task).
We now introduce how we address the two issues orderly.

Token-based Identification. For existing local feature-
based retrieval methods [28, 30, 33], learning tokens to cap-
ture discriminative visual patterns in a dataset has proven
reliable to identify local descriptors. With the tokens, the
encoded features could become more robust against illumi-
nation change, the information loss due to occlusion, and
the adverse impact of the background in an image. In our
framework, we generally follow this “tokens plus encod-
ing” pipeline to identify local descriptors. However, in the
literature, the tokens are usually learned by clustering (e.g.,
by k-means) a sampled subset of local descriptors obtained
from an image dataset in an offline manner. This way sep-
arates the process of token learning from encoding, poten-
tially causing a discrepancy between the training and the
inference stages. In addition, using a sampled subset of lo-
cal descriptors could lead to learning biased tokens since
the information available in an image dataset is not fully
utilized. To improve this situation, we perform token learn-
ing via an online mini-batch based Gaussian Mixture Model
(GMM) process. This helps to adequately utilize all the lo-
cal descriptors to learn tokens and makes our framework
fully end-to-end trainable.

Specifically, we model the distribution of local descrip-
tors by a K-component Gaussian mixture model p(v|Θ) =∑

k αkN(v;µk,Σk), where v denotes the a local descriptor,
while αk, µk, and Σk = σ

2
k ID denote the prior probability, the
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mean, and the (spherical) covariance matrix for component
k, respectively. In this case, token learning boils down to the
parameter estimation for this Gaussian mixture model. At
the beginning, µ and σ2 are randomly generated and α is set
as 1/K. After that, we conduct the Expectation and Max-
imization (EM) process for all the local descriptors within
each mini-batch. To be concise, we show the key results
below and the details can be found in the literature [16].

Within each mini-batch, for the E-Step, the probability
that the ith local descriptor vi belongs to the kth component
can be expressed as

ωik =
αkN(vi;µk,Σk)∑K
j=1 α jN(vi;µ j,Σ j)

(1)

For M-Step, the prior probability, the mean and the covari-
ance are updated as

αk ← αk + β
(∑

i ωik

HW
− αk

)
µk ← µk + β

(∑
i ωikvi∑

i ωik
− µk

)
σ2

k ← σ
2
k + β

(∑
i ωik∥vi − µk∥

2∑
i ωik

− σ2
k

)
,

(2)

where HW is the number of local descriptors obtained from
an image, and β is a momentum to make the estimation pro-
cess more stable in the mini-batch clustering [16]. One E-
Step and M-Step are conducted in each iteration during the
training.

After the above process, (µ1,µ2, · · · ,µK) represents the
learned tokens. ωi = (ωi1, ωi2, · · · , ωiK) ∈ RK obtained by
Eq. (1) can be used as the token-based identification for lo-
cal descriptor vi since it represents the posterior probability
that this descriptor belongs to each of the K components.

Spatial Distribution. To extract spatial distribution infor-
mation for a local descriptor vi, the distances of this de-
scriptor to all the descriptors V = {v j, j = 1, 2, . . . ,HW}
presented on the same feature map should be effectively
measured and collected. To achieve this, simply using the
coordinate distances among them is inadequate. We utilize
a probability transition score obtained by applying random
walk on the graph constituted by all the local descriptors as
the nodes to measure the distances. By doing so, more pos-
sible paths among the local descriptors will be considered
and the number of random walk steps could also be used to
control the spatial scale in the distance measurement. In-
spired by the literature [11], we perform the spatial distri-
bution extraction as an aggregation of the encoded distances
between vi and all v j ∈ V . By “encoded,” we mean that the
distance is measured by a probability transition process as
explained below.

Given an undirected graph with an affinity matrix A, the
distance of its nodes v and u can be encoded by a probability
transition score ζ obtained via l steps of random walk

ζ(v, u)(l) = (Ml)vu, M1 = AD−1, Ml = Ml−1 · M, (3)

where M1 denotes the random walk matrix, D−1 refers to
the normalization matrix of the graph, and l is the number
of random walk steps. Based on this, the distance of a node
v from all nodes u in a target set S can be represented by an
aggregation operation as

ζ(v, S )(l) = agg({ζ(v, u)(l)|u ∈ S }) (4)

Linking the above result to our case, the undirected graph
consists of all the local descriptors V in an image, and they
collectively form the target set S in this distance encoding
process. In addition, we compute the affinity matrix A based
on the coordinate distance on the feature map as

Ai j = exp(−co dist(vi, v j)), (1 ≤ i, j ≤ HW), (5)

where co dist(·, ·) denotes the Euclidean distance between
the coordinates of two local descriptors. After that, the en-
coded distance can be obtained by applying Eq. (3). Fur-
thermore, we enrich Eq. (4) by considering the learned
token-based identification (i.e., the posteriori probability ω
obtained in Eq. (1)), and this leads to an instantiated “agg”
operation in Eq. (4) to produce the spatial context feature
for local descriptor vi.

s(l)
i ≜ ζ(vi, S )(l) =

HW∑
j=1

ζ(vi, v j)(l)ω j. (6)

Recall that the token-based identification ωi can be treated
as a vector of probability transition scores between local de-
scriptor vi and each of the learned tokens µ. By combining
the encoded distance and the token-based identification, the
spatial context feature si in Eq. (6) essentially reflects the
probability transition scores between node vi and the tokens
µ when regarding the spatial structure of the given H × W
feature map as a (static) transition matrix. This is illustrated
in Figure 2. That means the spatial distribution information
is used to control the extraction of the spatial context fea-
tures. In this sense, the spatial distribution information is
effectively embedded into the spatial context features. At
last, we define the final spatial context feature for the local
descriptor vi obtained through an l-step random walk as

si = s(1)
i ⊕ s(2)

i ⊕ · · · ⊕ s(l)
i , (7)

where ⊕ denotes concatenation operation. The concatena-
tion of the features obtained after each of the l steps consid-
ers the spatial context information at various scales.
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Figure 2. Spatial context feature generation. See the detailed de-
scription after Eq. (6).

3.2. Fusion of Visual and Spatial Information

With both visual and spatial context information avail-
able, a proper fusion scheme is needed to make them com-
plement to benefit the final feature representation. To ac-
complish it, various feature fusion schemes could be used,
including concatenation, orthogonal fusion [35], Hadamard
product, or cross-attention fusion. We utilize a cross-
attention module for information fusion in our method since
it is commonly used to align features from different modali-
ties in the recent literature. Meanwhile, we provide an abla-
tion study on all the four fusion schemes in the experimental
part. For the cross-attention scheme, the spatial context fea-
ture S = (s1, s2, · · · , sHW ) is projected into the same space
as the visual feature V with a linear projection layer. After
that, both of them are flattened into sequences and mapped
into Queries (Q), Keys (K), and Values (V), respectively, to
put through into the cross-attention layer:

Q = pro j(V),K = pro j(S),V = pro j(S)

F∗spca = so f tmax
(
Q · K⊤
√

D

)
· V

Fspca = F∗spca +MLP(F∗spca)

(8)

where MLP denotes a feed-forward layer and Fspca denotes
the spatial-context-aware feature sequence. After that, the
feature sequence is rearranged as a feature map, followed
by a global pooling and a fully-connected layer to generate
a global feature representation vector fspca.

3.3. Objective Function for Training

Following previous state-of-the-art work [3, 35, 32], we
train our model on a dataset with object class annotations
and utilize ArcFace margin loss [5] with learnable parame-

ters Ŵ ∈ RD×N to train the whole model:

L = − log
 exp(γ × AF(ŵ⊤t f̂spca, 1))∑

n exp(γ × AF(ŵ⊤n f̂spca, yn))

 (9)

where ŵt denotes the tth column of Ŵ and f̂spca is the
L2-normalized fspca. y is the one-hot label vector and t is
the index to indicate the true class (i.e., yt = 1). n is the
total number of classes in the dataset. γ is a scaling fac-
tor. AF(·) refers to the ArcFace cosine similarity and it is
calculated as

AF(s, c) =
 cos(acos(s) + m), if c = 1

s, if c = 0
(10)

where s is the cosine similarity between ŵt and f̂spca, m is
the ArcFace margin and c indicates if this is the true class.

4. Experimental Result
4.1. Dataset and Evaluation Metric

Our model is trained on “Google Landmark v2 clean”
dataset, which is a clean subset of Google Landmark v2
[31]. It contains 1,580,470 images of 81,313 landmark
classes, and it has been widely used in existing meth-
ods [35, 32, 3] as the training dataset. To make a fair
comparison, we follow the previous work [32, 35] to ran-
domly divide the dataset into two subsets ‘train’/‘val’ with
80%/20% split. For evaluation, we use two widely used
benchmark datasets, ROxford and RParis [19] to test our
model. Both datasets have 70 query images but contain
4,993 and 6,322 gallery images, respectively. In addition,
a 1M distractor set [19] is added to test our model for the
case of large-scale retrieval. We use mean average precision
(mAP), as the criterion of retrieval performance for both
“Medium” and “Hard” splits of ROxford and RParis.

4.2. Implementation Details

We use ResNet101/ResNet50 [8] as the CNN backbone
to learn visual features. For image augmentation, random
crop and color jittering are used first, and all the augmented
images are resized into 512 × 512 pixels as the model in-
put. The model is trained on 4 Nvidia V100-SXM2-32GB
GPU cards with a batch size of 128 for 50 epochs. We use
SGD optimizer with a momentum of 0.9. A warming-up of
5-epoch’s training is used to initialize the learning rate from
0.0001 to the base learning rate of 0.005. As for the ArcFace
loss, the margin m and the scale γ are empirically set as 0.2
and 45. For the global pooling, we utilize GeM [20] pooling
with the fixed coefficient p = 3 during the whole training.
β in the M-Step of GMM is empirically set as 0.999. In ad-
dition, we set the number of random walk steps l as 3 and
the number of tokens as K = 16. The dimensions of the
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Method Medium Hard
ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

Global features + local features re-ranking
R101-DELG [3]+SP 81.20 69.10 87.20 71.50 64.00 47.50 72.80 48.70
R101-DELG [3]+SP† 81.82 70.15 88.64 76.14 64.97 49.54 76.81 53.62

Global features
R101-R-MAC [7] 60.90 39.30 78.90 54.80 32.40 12.50 59.40 28.00
R101-GeM [20] 64.70 45.20 77.20 52.30 38.50 19.90 56.30 24.70
R101-SOLAR [15] 69.90 53.50 81.60 59.20 47.90 29.90 64.50 33.40
R101-DELG [3] 76.30 63.70 86.60 70.60 55.60 37.50 72.40 46.90
R101-GLAM [24] 78.60 68.00 88.50 73.50 60.20 43.50 76.80 53.10
Swin-S-DALG [25] 79.94 - 90.04 - 57.55 - 79.06 -
R101-DOLG [35]⋆ 81.50 77.43 91.02 83.29 61.10 54.81 80.30 66.69
R101-Token [32] 82.28 70.52 89.34 76.66 66.57 47.27 78.56 55.90
R101-Token [32]† 77.82 66.74 87.93 75.22 60.10 43.07 74.66 53.19
R101-DOLG [35]† 78.35 (75.51) (88.48) (78.25) 58.59 (52.36) (75.39) (61.85)
R101-DELG [3]† 79.82 67.85 87.21 72.45 61.16 42.58 73.84 50.79
R101-SOLAR [15]† (81.63) 71.84 88.21 72.86 (63.29) 45.28 75.21 51.26
R50-SpCacro (Ours) 79.91 72.78 87.43 78.01 59.27 49.26 73.14 58.3
R50-SpCacat (Ours) 81.55 73.20 88.60 78.23 61.19 48.76 76.21 60.91
R101-SpCacro (Ours) 82.73 77.84 90.20 79.12 65.60 53.35 79.29 65.84
R101-SpCacat (Ours) 83.24 77.82 90.56 79.48 65.85 53.27 79.97 64.98

Table 1. Performance (mAP) comparison with recent state-of-the-art instance image retrieval methods on datasets ROxford5k and
RParis6k [19]. R101 and R50 denote ResNet101 and ResNet50. Swin-S denotes Swin-Transformer-small [13]. The subscripts cro and
cat refer to cross-attention and concatenation feature fusion strategies. SP denotes spatial verification via RANSAC. † denotes our re-
implementation. ⋆ means no query cropping. Results in gray are those reported in the published papers. The best and second best
performances are highlighted in bold and with underlines, respectively. The best previous performance is shown in brackets.

final global feature are set as 2048. For inference, the mul-
tiple scales [0.3535, 0.5, 0.7071, 1.0, 1.4142] are applied to
each original image to extract the feature representations.
To fuse the features obtained from different scales, they are
L2-normalized, summed, and normalized again to generate
the final global features for retrieval.

4.3. Comparison with State-of-the-art Methods

Setting for fair comparison Note that there are setting
differences among the previous state-of-the-art methods.
For example, they are different at 1) pretrained model
sources for initialization (Caffe1, PyTorch2, and Face-
book3); 2) training datasets (SfM-120k [20], GLDv1 [17],
GLDv2 [31], and different 80%/20% split); 3) the number
of multiple scales used at the inference stage (e.g., 3, 5,
or 7); 4) with or without query cropping scheme. These
discrepancies could affect the fairness of the comparison if
not well handled. To address this situation, we carefully
re-implement multiple SOTA methods by using their offi-
cially published codes and the training parameters reported
in their papers, while keeping the same settings for the

1http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/imagenet
2https://pytorch.org/vision/stable/models/generated/torchvision.models
3https://github.com/facebookresearch/pycls

above factors between these methods and ours. Specifically,
to ensure fair comparison, our experimental study utilizes
the same 80% of GLDv2-clean [31] as the training dataset,
the same remaining 20% of GLDv2-clean as the validation
dataset, the same pretrained model from PyTorch for initial-
ization, and the same 5 scales with query cropping scheme
for inference to conduct instance image retrieval.

Retrieval results Two groups of state-of-the-art meth-
ods are compared in this experimental study: 1) methods
based on global feature representations. They include two
milestone works R-MAC [7] and GeM [20] and another
six more recent works including DELG [3], SOLAR [15],
GLAM [24], DOLG [35], DALG [25], and Token [32]; 2)
a method using global feature based initial retrieval plus
local feature based re-ranking scheme, DELG+SP [3], is
included as well. Also, note that we focus on global fea-
ture based image retrieval in this paper, and we do not con-
sider training a verification model [10] or adding any post-
processing steps like diffusion or query expansion to boost
retrieval performance [34].

The retrieval result is reported in Table 1. The methods
under “Global features” are partitioned into three sections.
The results in gray color are those reported in the original
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published papers. Since they involve different settings as
discussed above, the results are included here mainly as a
reference. Following the gray-colored results are those ob-
tained by our re-implementation for the sake of fair compar-
ison, and they are used to compare with our methods shown
at the bottom of this table.

As seen, our method R101-SpCa (where “SpCa” is short
for “Spatial-context-aware”), with either cross-attention
( cro) or concatenation ( cat) fusion strategy, clearly out-
performs the others on all the test cases. Compared with the
closest results obtained by DOLG and SOLAR, our method
achieves 1.6% and 2.0% performance gain on the Medium
split of ROxford and RParis, respectively. And higher im-
provements of 2.5% and 4.5% are obtained on the Hard split
of the two datasets. After the 1M distractors are added,
our method still demonstrates its excellent retrieval perfor-
mance. All these results validate the efficacy of our method.

Compared with the global initial retrieval plus local fea-
ture re-ranking scheme, our method still maintains its ad-
vantage. As listed in Table 1, even without using the pair-
wised re-ranking step as done in R101-DELG+SP [3], our
method has outperformed it by around 2% on all dataset
splits. More importantly, our method costs no extra infer-
ence time as taken by the re-ranking step. In addition, the
memory footprint of our global feature representation (i.e.,
a 2048-dimensional vector per image) is also much less than
that used by the local descriptor (there are usually 1, 000
vectors per image, each of which is of 128 dimensions)
based re-ranking. This again shows the computational ad-
vantage brought by our method.

Computational Overhead We report the number of pa-
rameters, feature extraction latency, and memory footprint
for different SOTA models in Table 2. As seen, our
method is comparable to that of DOLG in terms of com-
putational overhead and comparable to that of Token in
terms of the number of parameters. Also, our method
takes the same memory footprint as the others that gener-
ate 2048-dimensional vectors as feature representations.

Method #Para (M) Latency (ms) Mem. (MB)
On ROxford

SOLAR [15] 52.5 110 39.0
DELG [3] 44.5 104 39.0
Token [32] 76.6 112 19.5
DOLG [35] 61.5 150 9.7
SpCa (Ours) 76.8 153 39.0

Table 2. Latency is measured on a 1080Ti GPU for a 1024 × 1024
image with 3 scaling factors [1,

√
2, 1/

√
2].

4.4. Ablation Studies

In this study, we uniformly utilize ResNet50 as the CNN
backbone and set the token number and the number of ran-
dom walk steps as K = 8 and l = 1, respectively, for all the
following experiments if not mentioned otherwise. In addi-
tion, all the models are trained by 25 epochs. More ablation
studies utilizing ResNet101 are provided in the Appendix.

Global OTL DE Medium Hard
ROxf RPar ROxf RPar

✓ 77.51 87.82 54.76 73.82
✓ ✓ 78.82 88.21 58.73 74.03
✓ ✓ ✓ 79.64 89.06 60.90 76.97

Table 3. Ablation studies on the impact of different components in
the spatial context branch. The baseline containing only the visual
feature branch is shown in the first row. OTL and DE denote online
token learning and distance encoding, respectively.

Impact of each component in spatial context branch
The proposed spatial context branch consists of two compo-
nents which are online token learning and distance encod-
ing. We validate the contribution of each of the components
by adding them one by one to a bare visual feature branch.
In particular, for the first comparison, we directly set the
whole probability transition matrix M as a unit matrix (i.e.,
all of its entries are “1”) to erase the distance encoding in-
formation. By doing so, only the token-based identification
generated by the online token learning module is involved in
the final global features. As seen in Table 3, with this single
module (2nd row), the retrieval performance could be im-
proved from 77.51% to 78.82% and 87.82% to 88.21% on
ROxf-Medium and RPar-Medium, respectively. It shows
the benefit of utilizing the tokens to identify the local de-
scriptors. After adding the distance encoding module, the
spatial distribution information is involved. It can be seen,
with the complete branch (3rd row), the retrieval perfor-
mance is further improved, especially on Hard splits. The
performance (mAP) is increased from 58.73% to 60.90%
and 74.03% to 76.97% on ROxf-Hard and RPar-hard, re-
spectively. This verifies the importance of capturing the
spatial distribution information with the distance encoding
module. Altogether, this result demonstrates the effective-
ness of the spatial context branch as a whole in our method.

Fusion Strategy Medium Hard
ROxf RPar ROxf RPar

Orthogonal 79.04 86.69 59.49 72.87
Hadamard 79.83 87.90 59.44 74.60
Concatenation 79.94 88.45 60.72 76.00
Cross-Attention 79.64 89.06 60.90 76.97

Table 4. Ablation studies on the impact of fusion strategy.
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Fusion Strategy We validate the impact of different fea-
ture fusion strategies, including concatenation, orthogo-
nal [35], Hadamard product, and cross-attention to fuse the
information learned by our two branches in Table 4. As
seen, the cross-attention scheme outperforms all the others
in most cases except on the Medium split of ROxford. It
demonstrates the effectiveness of utilizing cross-attention as
the feature fusion strategy. Compared with cross-attention,
orthogonal and Hadamard product perform worse. Surpris-
ingly, we find simply concatenating the information from
two branches has been able to obtain competitive perfor-
mance. The result obtained by the concatenation strategy
has been included in Table 1 too.

Token Number (K) Medium Hard
ROxf RPar ROxf RPar

4 80.76 88.35 62.02 75.33
8 79.64 89.06 60.90 76.97

16 81.22 88.61 62.41 75.78
24 80.46 89.42 61.87 77.01
32 80.11 88.28 60.64 75.06

Table 5. Ablation studies on the impact of token number.

Number of Tokens We investigate the impact of the to-
ken number in Table 5. As seen, when the number is 16,
the performance on ROxford is much better than other op-
tions. Meanwhile, when we utilize 24 tokens, the perfor-
mance onRParis outperforms the others instead. We believe
the optimal token number is related to the characteristic of
the test dataset. When the number is too small, only a few
visual prototypes could be explored to describe the whole
dataset, leading to incomplete spatial context information
extraction. Conversely, if the number is too large, more
noisy tokens will be included. This could adversely impact
the token-based identification process and consequently de-
crease the final retrieval performance. In our experiment,
we just empirically use K = 16 since we do not access any
test dataset during the training stage.

Random Walk (l) Medium Hard
ROxf RPar ROxf RPar

1 79.64 89.06 60.90 76.97
2 80.76 88.88 62.15 76.24
3 81.31 89.64 62.57 77.48
4 80.25 88.54 61.12 75.61

Table 6. Ablation studies on the impact of random walk steps.

Number of Random Walk Steps To inspect how many
random walk steps are needed to encode the distance for
our spatial context information extraction, we apply differ-
ent number of random walk steps l = {1, 2, 3, 4}. As seen in

Table 6, l = 3 gives the best performance. When the step
number is small (such as 1 or 2), only a small area around
the nodes in the matrix M of Eq. (3) is considered for the
final distance encoding process. Meanwhile, with the num-
ber of steps increased, the random walk process tends to
converge and its results become similar (i.e., s(l) ≈ s(l+1) in
Eq. (6)). Keeping adding or concatenating this information
leads to redundant or even noisy information to the distance
encoding, and thus adversely impacts the spatial context in-
formation extracted and further undermines retrieval.

Qualitative Results We demonstrate two images re-
trieved from ROxford. In addition, we provide the clas-
sification activation map obtained by using query feature
representation as classification projection weights. As seen
in Figure 3, in addition to the most discriminative part of
the queried object (as shown in the second column obtained
by DELG), the proposed SpCa focuses more on the spatial-
context area. This makes the ranking of the true positive
image dramatically increased compared with DELG.

Query: ashmolean DELG SpCa Ranking: 76th -> 20th

Ranking: 30th -> 11thQuery: cornmarket DELG SpCa

Figure 3. Qualitative results and the activation maps.

5. Conclusion

Motivated by the benefit of using local descriptor based
geometric verification in a re-ranking step, we propose a
novel feature learning framework that effectively embeds
the spatial context information into the global visual feature
representation for instance image retrieval. To mine the spa-
tial context information, a spatial context branch consisting
of an online token learning module and a distance encod-
ing module is proposed. The former module is utilized to
identify the type of each local descriptor on a feature map.
The latter is used to capture the information on how the
surrounding descriptors are spatially distributed. By fusing
visual and spatial context information together, our frame-
work learns spatial-context-aware global feature represen-
tations for images to conduct retrieval. Extensive experi-
ments demonstrate the effectiveness of the proposed frame-
work for retrieval. In future work, we will explore the in-
corporation of other types of information into global feature
representations to further improve instance image retrieval.
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