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Abstract

Transformer-based methods have demonstrated impres-
sive results on single-image super-resolution (SISR) task.
However, self-attention mechanism is computationally ex-
pensive when applied to the entire image. As a result,
current approaches divide low-resolution input images into
small patches, which are processed separately and then
fused to generate high-resolution images. Nevertheless,
this conventional regular patch division is too coarse and
lacks interpretability, resulting in artifacts and non-similar
structure interference during attention operations. To ad-
dress these challenges, we propose a novel super token in-
teraction network (SPIN). Our method employs superpix-
els to cluster local similar pixels to form the explicable lo-
cal regions and utilizes intra-superpixel attention to enable
local information interaction. It is interpretable because
only similar regions complement each other and dissimi-
lar regions are excluded. Moreover, we design a super-
pixel cross-attention module to facilitate information prop-
agation via the surrogation of superpixels. Extensive ex-
periments demonstrate that the proposed SPIN model per-
forms favorably against the state-of-the-art SR methods in
terms of accuracy and lightweight. Code is available at
https://github.com/ArcticHare105/SPIN .

1. Introduction

Single image super-resolution (SISR) is a crucial task in
computer vision that aims to enhance the resolution and vi-
sual quality of low-resolution (LR) images. The goal of
SISR is to generate a high-resolution (HR) image from a
given LR image, which can be particularly useful in appli-
cations where high-quality images are necessary, such as
medical imaging, surveillance, and digital photography.

Since the pioneering work of Dong et al. [5], numerous
neural networks have been developed to tackle the challenge
of reconstructing high-quality images from low-resolution
inputs. Some of the CNN-based methods use deeper and
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Figure 1. PSNR and model parameters for ×4 super-resolution
on Set5. We compare our SPIN with state-of-the-art lightweight
Transformer-based and CNN-based models, including SwinIR-
light [20], ESRT [26], ELAN-light[43], and IMDN [12], etc.

more complex architectures to achieve better performance.
However, these methods come with a trade-off of increased
computational resources and higher cost, which can limit
their application scenarios.

Attention mechanism [37] has been proven to have sig-
nificant effects on both high-level vision tasks and low-level
fields, including super-resolution (SR). Attention mecha-
nisms allow the network to selectively focus on relevant re-
gions of the input, which can improve the quality of the
SR output. Capitalized on attention mechanisms, trans-
formers have been applied to SR tasks such as SwinIR [20]
and ESRT [26]. These models highlight the importance of
global feature extraction abilities in SISR. Furthermore, to
improve the efficiency, ELAN [43] proposes a group-wise
self-attention module and shared the weights when calculat-
ing the association of patches. However, the attention mech-
anism has high computational complexity and memory con-
sumption, which requires dividing large images into small
patches for separate processing. While this strategy en-
hances the efficiency of transformer-based models, it results
in some problems. Dividing patches based on a fixed shape
leads to the splitting up of continuous structures, which hin-
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ders the use of similar information in other areas to enhance
image details. Moreover, the local attention mechanism ap-
plied within each patch involves irrelevant regions in com-
putation, leading to undesirable inferences.

To address these issues, we propose a novel approach
that integrates local and global attention mechanisms with
fine superpixel partition. We start with CNN-based shallow
feature extraction on the pixels of the input image and per-
form local clustering to group adjacent pixels into superpix-
els. We then obtain local regions by clustering superpixels
based on similarity and perform local feature extraction on
them separately. Unlike the previous approaches [20, 43]
using fixed shape patch division, which was only used for
improving parallel computation efficiency, our strategy for
region division is more interpretable, allowing for more
flexible and adaptive division of the input image, and pre-
venting the splitting up of continuous structures. We then
introduce Superpixel Cross Attention module to enable in-
formation interaction in the long-range via the surrogation
of superpixels. Furthermore, we design an Intra-Superpixel
Attention (ISPA) mechanism applied to the pixels of super-
pixels, extending the original attention operation only in the
regular image area. This ensures that local attention mech-
anism information interactions occur in similar areas, elim-
inating interference and irrelevant computation. These two
proposed attention mechanisms interlace with each other
and cooperate in local and global feature extraction. As
shown in Fig. 1, the proposed SPIN has a good trade-off
between PSNR and model size.

Our contributions are summarized below:
(a) We present a novel super-resolution model that com-

bines superpixel clustering with the transformer structure,
resulting in a more interpretable framework.

(b) We propose Intra-Superpixel Attention (ISPA) and
Superpixel Cross Attention (SPCA) modules that operate
within and between superpixels, enabling computation in
irregular areas while maintaining the ability to capture long-
range dependencies.

(c) The experiments demonstrate that the proposed
method achieves better SR reconstruction performance
compared to state-of-the-art lightweight SR methods.

2. Related Work

2.1. Deep Networks for Super-Resolution

With the recent advancements in deep learning, neu-
ral network-based methods have become the mainstream
solutions for single image super-resolution (SR). SRCNN
[5] uses a three-layer CNN network to reconstruct a high-
resolution (HR) image from its bicubically downsampled
low-resolution (LR) image. To further improve accuracy,
recent CNN-based methods have employed more complex
and effective structures. For example, Kim et al. [15] ap-

ply a deep CNN-based architecture with residual learning
to improve SR accuracy.

Attention mechanisms have also been introduced in SR
to extract the most important and informative features. For
instance, Zhang et al. [44] use a channel attention mecha-
nism, while Hu et al. [10] combine spatial attention with
channel attention in SR. Furthermore, inspired by the suc-
cess of ViT [6] in high-level vision tasks, Chen et al. [4] in-
troduces Transformer into SR, but it required large amount
of parameters. To reduce the model size, SwinIR [20] ap-
plies the Swin Transformer [24] framework to SR by divid-
ing the entire image into small windows with a fixed size
of 8 × 8 and shifting the windows when applying multi-
head attention mechanisms. While these above methods
have been effective in extracting informative features, they
may require a large number of parameters.

2.2. Lightweight Super-Resolution Methods

Lightweight is a critical consideration for deep SR mod-
els, and many approaches have been proposed to im-
prove their efficiency. For example, FSRCNN [5] and ES-
PCN [34] utilize a post-upsampling technique to reduce the
computational burden, while CARN [1] uses group convo-
lutions and a cascading mechanism to improve efficiency
but impaired the performance. IMDN [12] applies the three-
step-distillation to extract features and a slice operation to
divide the extracted features, yet brings inflexibility. Lat-
ticeNet [28] introduces lattice blocks with low calculation
complexity. BSRN [19] designs a depth-wise separable
convolution to reduce model complexity and utilizes at-
tention mechanisms to improve the SR reconstruction per-
formance. Meanwhile, Lightweight Transformer-based SR
approaches are proposed to reduce the model complexity,
e.g., by reducing the calculated tokens by using window-
based attention [20] and adopting shifted convolution and
group-wise self-attention [43]. Although these approaches
are lightweight and efficient, the quality of SR reconstruc-
tion still keeps room for improvement.

2.3. Pixel Clustering for Image Processing

Pixel clustering is a well-studied task in image process-
ing, and recent advancements in deep learning methods
have shown significant progress in this area. One common
approach to pixel clustering is to use CNNs to generate
pixel-level embeddings that group similar pixels together.
For example, Liu et al. [23] develop a deep affinity network
that learns pixel-wise affinities to cluster pixels. Similarly,
Sun et al. [35] propose a network that learns pixel-level
representations to cluster image patches.

In addition to using CNNs to generate pixel-level em-
beddings, clustering algorithms can also be applied to CNN
features to group similar pixels into clusters. Jégou et al.
[14] introduce a one-shot clustering method that uses CNN
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Figure 2. Configuration of the proposed method. The proposed network is mainly composed of the proposed Super-Pixel Interaction (SPI)
blocks, which consist of four components: Superpixel Aggregation (SPA), Superpixel Cross Attention (SPCA), Intra-Superpixel Attention
(ISPA) and local attention. The SPA module is responsible for aggregating information from the superpixels in the input image, the SPCA
module captures the interactions between pixels via the surrogation of superpixels, while ISPA module captures the interactions among
pixels within each superpixel. Local attention is adopted to enhance the interaction within local regions.

features to generate initial clusters, which are then further
refined using a clustering algorithm. Li et al. [17] propose
a weakly supervised clustering method that uses CNN fea-
tures and a sparse labeling scheme to cluster pixels into ob-
ject regions. These approaches leverage the power of both
CNNs and clustering algorithms, enabling more accurate
and efficient pixel clustering in image processing tasks.

Recently, there has been a growing interest in using
graph convolutional networks (GCNs) for pixel clustering.
GCNs are capable of modeling the dependencies between
pixels in an image by constructing a graph representation of
the image, where each pixel is a node, and the edges repre-
sent the relationships between pixels. This enables GCNs to
capture more complex and non-local interactions between
pixels, compared to traditional CNNs. For example, Zeng
et al. [40] propose a GCN-based framework for hyperspec-
tral image classification that uses two clustering strategies
to exploit multi-hop correlations. The first clustering strat-
egy groups similar pixels based on their spectral similarity,
while the second clustering strategy groups pixels based on
their spatial adjacency.

Although pixel clustering has demonstrated promising
results in various image processing tasks, it has not been
effectively applied in super-resolution applications.

3. Proposed Method

The architecture of the proposed model is shown in Fig.
2, which mainly consists of the proposed Super-Pixel In-
teraction (SPI) blocks. Before SPI blocks, we utilize an
encoder, which is a 3 × 3 convolution, to embed the low-
resolution image ILR to a high-dimensional feature space.
Given the encoder, we can get the shallow feature xemb as:

xemb = fencoder(ILR), (1)

where fencoder denotes the encoder of the proposed model.
Then, we stack K SPI blocks on top of the encoder to

extract deeper features that contain both rich low-level and
high-level information of the input image. Each SPI block
includes four components: Superpixel Aggregation (SPA),
Superpixel Cross Attention (SPCA), Intra-Superpixel At-
tention (ISPA), and local Attention.

The input feature of each block is first aggregated into
superpixels via the SPA module. Then, the ISPA module
captures the dependencies and interactions of pixels within
each superpixel, while the SPCA module captures the de-
pendencies and interactions between long-range pixels. In
order to enhance the interaction between pixels within lo-
cal regions, we utilize a local attention module, which uses
window-based attention [24, 20, 21], after the ISPA and the
SPCA module. We use overlapped patches to strengthen
feature interaction. Formally, for the i-th SPI block, the
whole process can be formulated as:

si = fSPA(xi−1),

xi = xi−1 + flocal(fISPA(fSPCA(xi−1, si)))
(2)

where si denotes the features of superpixels in the i-th SPI
block, f(·) denotes the function of each individual compo-
nent. Following previous works, the residual connection is
used to ease the whole training process.

After the K SPI blocks, we adopt 3×3 convolutional lay-
ers and the pixel-shuffle operation [34] to obtain the global
residual information, which is added to the upsampled im-
age of ILR for resolving the high-resolution image ISR.

3.1. The SPA Module

Different from previous methods that divide the input
image or feature into regular patches, we propose to par-
tition the input feature into superpixels. Compared with the
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Figure 3. The Superpixel Aggregation (SPA) module of our
method, which initializes the superpixel by average pooling and
then updates them in an iterative way.

regular patches that may easily crop connected regions into
different patches, the superpixel-wise partition can percep-
tually group similar pixels together, which can depict more
precise boundaries, reducing the risk of generating blurry
and inaccurate boundaries.

Specifically, in the process of superpixel aggregation,
we utilize the soft k-means-based superpixel algorithm in
SSN [13]. Given the visual tokens x ∈ RN×C (where
N = H × W is the number of visual tokens), each token
x(i) ∈ RC is assumed to belong to one of M superpixels
s ∈ RM×C , making it necessary to compute the association
between visual tokens and superpixel tokens.

Formally, the process of superpixel aggregation is an
Expectation-Maximization-like process, which contains to-
tal T iterations. Firstly, as shown in Fig. 3, we sample initial
super tokens s0 by averaging tokens in regular grids, called
Patchify. Suppose the grid size is Hs×Ws, then the number
of super tokens is M = H

Hs
× W

Ws
. For the t-th iteration, we

calculate the association map as:

At(ij) = e−∥x(i)−st−1(j)∥2
2 , (3)

where At ∈ RN×M is the association map and At(ij) is
the value at the i-th row and the j-th column. Note that,
superpixel aggregation only calculates the association map
from each token to surrounding superpixels, which guaran-
tees the locality of superpixels, making it also efficient in
terms of both computation and memory [13].

After that, we can obtain the superpixels st as the
weighted sum of visual tokens, defined as:

st(j) =
1

zt(j)

∑
i
At(ij)x(i), (4)

where zt(j) =
∑

i A
t(ij) denotes the normalization term

along the column. After T iterations, we can obtain the
final association map AT . For simplicity, we omit the su-
perscript in the following sections.

3.2. The SPCA Module

Since the superpixels capture only the locality and inter-
connection of pixels in local regions, which may lack the
capacity of capturing long-range dependencies for super-
resolution. Here, we utilize the self-attention paradigm [37]
to enhance long-range communication via the surrogation
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Figure 4. The proposed Superpixel Cross Attention (SPCA) mod-
ule. We first propagate information from pixels to superpixels
and then distribute the aggregated information to pixels by cross-
attention mechanism.

of superpixels, which can help to make use of the comple-
mentarity between features to produce high-quality super-
resolution images. Since pixel features are highly similar
to the belonging superpixel features, making superpixels
a promising surrogation to propagate information between
pixels as much as possible.

As shown in Fig. 4, given the superpixel features s ∈
RM×C , where M denotes the number of superpixels, and
the flattened pixel features x ∈ RHW×C . We employ the
attention mechanism [37] to first propagate the pixel infor-
mation to superpixels. Specifically, we use linear projec-
tions to calculate the query: Qs ∈ RM×D, key: Kx ∈
RHW×D, and value: Vx ∈ RHW×C as:

Qs = sWs
q, Kx = xWx

k , Vx = xWx
v (5)

where Ws
q ∈ RC×D, Ws

k ∈ RC×D, Ws
v ∈ RC×C are

weight matrices according to query, key and value, respec-
tively. The output can be obtained by first calculating the
similarity between the query and key and using it as the
weights to aggregate the value, which can be formulated as:

su = softmax(Qs(Kx)T /
√
D)Vx, (6)

where
√
D is a scaling factor to avoid vanishing gradients,

su is the updated superpixel features. Note that, unlike su-
perpixel aggregation, this process does not take neighbor
restrictions into account, ensuring the propagation of long-
range information.

Once information has been propagated from pixels to su-
perpixels, it becomes necessary to distribute the aggregated
information back to pixels, so as to achieve the informa-
tion propagation between pixels. Here, we further employ
the attention mechanism. Specifically, we utilize another
weight matrix Wx

q to obtain the query from pixel features.
To reduce the number of parameters, we directly use the su-
perpixel features Qs as the key, and the updated superpixel
features as the value, and utilize cross attention to map the
updated superpixel features back to the pixel level. Simi-
lar to the Transformer block [37], we also adopt the Feed
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Figure 5. The proposed Intra-Superpixel Attention (ISPA) module.
We select top-N pixels which are most similar to each superpixel
for intra-superpixel attention. Feature integration is adopted to in-
tegrate those “ignored” pixels.

Forward Network (FFN) after the above process. Our FFN
contains a layer normalization [2] layer, after which we uti-
lize feature gating [33] to modulate the input feature and
channel attention [9] to extract global information. After
that, two fully-connected layers and GELU [8] activation
function are used.

3.3. The ISPA Module

Given the association map, an intuitive way to improve
the quality of super-resolution images is to utilize the com-
plementarity of similar pixels within the same superpixel.
To achieve this, we need to obtain the corresponding pix-
els of each superpixel. However, different superpixels may
contain different numbers of pixels, which makes it difficult
to conduct parallel processing and also result in unexpected
memory consumption, because there are always some su-
perpixels that include a large number of pixels.

To address this issue, as shown in Fig. 5, we resort to
the association map AT and select top-N pixels which are
most similar to each superpixel. Suppose the affiliated pix-
els of one superpixel is f = {x(i)}N ∈ RN×C , where N
denotes the number of selected pixels. We follow the stan-
dard self-attention mechanism [37], i.e., Eq. 5 and Eq. 6,
to conduct intra-superpixel attention, which includes weight
matrices Wf

q , Wf
k and Wf

v for query, key and value pro-
jection. After the intra-superpixel interaction, we disperse
the refined pixel features back to their respective positions
within the image, utilizing the indices generated during the
top-N selection process.

The top-N selection may lead to some “ignored” pixels,
i.e., those pixels are not included in any superpixels. For
those “ignored” pixels, we utilize the value projection Wf

v

to project them to obtain the updated features, which are
then integrated with those pixels that are updated by intra-
superpixel interaction. Similar to the SPCA module, we
adopt the same FFN after the ISPA module.

4. Experiments

In this section, we describe in detail the ablation experi-
ments for each module and the performance of our method
for different-scale super-resolution tasks.

4.1. Datasets

We use DIV2K [36] as the training set, which is a
high-definition dataset including images of various natu-
ral scenes. This dataset includes 900 high-resolution im-
ages, the first 800 images are used for training, and the
last 100 images for validation. Following RCAN [44], the
LR samples are generated using a double triple downsam-
pling method. In addition, we evaluate our method on five
commonly used benchmarks including Set5 [3], Set14 [41],
BSDS100 [29], Urban100 [11], and Manga109 [30].

4.2. Implementation Details

During training, the initial learning rate is set to 5e-4,
and the training procedure stops after 1000 epochs. The op-
timizer used is the Adam optimizer with β1 of 0.9 and β2 of
0.999. To train the models, we employ randomly rotating
90◦, 180◦, 270◦, and horizontal flip for data augmentation.
In the final model, the output channel is set to 40 for all
blocks. We set the number of the SPI block to 8 and employ
distinct initial patches for superpixel aggregation across var-
ious SPI blocks, spanning from 12 to 24.

For evaluations, we mainly use the commonly used eval-
uation metrics, including peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). We follow RCAN [44] to
measure the metrics on the Y channel after converting RGB
to YCbCr format.

4.3. Comparison with Light-weight Models

We compare our model with state-of-the-art light-weight
SR models, including CNN-based models of CARN [1],
IMDN [12], LatticeNet [28], etc., and transformer-based
models of ESRT [26] and SwinIR [20] and ELAN [43].
Quantitative comparison. The quantitative metrics of dif-
ferent methods are reported in Table 1. We can observe that
the transformer-based models [20, 26, 43] consistently out-
perform those CNN-based methods [1, 12, 38, 16, 18, 22,
42] in terms of PSNR and SSIM, by leveraging the long-
range similarity between image patches. However, they
always divide the image into regular patches, which may
break the object, boundaries, etc. in the input image.

In contrast, our method leverages superpixels to en-
able interpretable and continuous region division for Trans-
former. We obtain the best or the second-best PSNR/SSIM
scores on all five benchmark datasets and on all three scales.
Moreover, the number of parameters is smaller than those of
existing transformer-based methods.
Qualitative comparison. Fig. 6 displays visual compar-
isons for scale factor ×4 on Urban100, BSDS100, and Set14
datasets. The results indicate that the proposed SPIN can
effectively restore textures that have been largely damaged,
as long as corresponding non-local information is available
in the LR images. In contrast, deep SISR models that lack
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Table 1. Average PSNR/SSIM comparison with other advance CNN-based and Transformer-based SISR models. The best and the second-
best results are highlighted and underlined, respectively.

Methods Scale Params
Set5 Set14 BSDS100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CARN [1]

×2

1592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [12] 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
AWSRN-M [38] 1063K 38.04/0.9605 33.66/0.9181 32.21/ 0.9000 32.23/0.9294 38.66/0.9772
MADNet [16] 878K 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233 -
LAPAR-A [18] 548K 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
RFDN [22] 534K 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
GLADSR [42] 812K 37.99/0.9608 33.63/0.9179 32.16/0.8996 32.16/0.9283 -
LatticeNet+ [28] 756K 38.15/0.9610 33.78/0.9193 32.25/0.9004 32.29/0.9291 -
SMSR [39] 985K 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
DRSAN [32] 690K 38.11/0.9609 33.64/0.9185 32.21/0.9005 32.35/0.9304 -
LatticeNet-CL [27] 756K 38.09/0.9608 33.70/0.9188 32.21/0.9000 32.29/0.9291 -
SwinIR-light [20] 878K 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783
ESRT [26] 677K 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774
ELAN-light [43] 582K 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782
SPIN (Ours) 497K 38.20/0.9615 33.90/0.9215 32.31/0.9015 32.79/0.9340 39.18/0.9784
CARN [1]

×3

1592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.43/0.9427
IMDN [12] 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
AWSRN-M [38] 1143K 34.42/0.9275 30.32/0.8419 29.13/0.8059 28.26/0.8545 33.64/0.9450
MADNet [16] 930K 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439 -
LAPAR-A [18] 594K 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
RFDN [22] 541K 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
GLADSR [42] 821K 34.41/0.9272 30.37/0.8418 29.08/0.8050 28.24/0.8537 -
LatticeNet+ [28] 765K 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 -
SMSR [39] 993K 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
DRSAN [32] 740K 34.50/0.9278 30.39/0.8437 29.13/0.8065 28.35/0.8566 -
LatticeNet-CL [27] 765K 34.46/0.9275 30.37/0.8422 29.12/0.8054 28.23/0.8525 -
SwinIR-light [20] 886K 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478
ESRT [26] 770K 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455
ELAN-light [43] 590K 34.64/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478
SPIN (Ours) 569K 34.65/0.9293 30.57/0.8464 29.23/0.8089 28.71/0.8627 34.24/0.9489
CARN [1]

×4

1592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070
IMDN [12] 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
AWSRN-M [38] 1254K 32.21/0.8954 28.65/0.7832 27.60/0.7368 26.15/0.7884 30.56/0.9093
MADNet [16] 1002K 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746 -
LAPAR-A [18] 659K 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
RFDN [22] 550K 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
GLADSR [42] 826K 32.14/0.8940 28.62/0.7813 27.59/0.7361 26.12/0.7851 -
LatticeNet+ [28] 777K 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 -
SMSR [39] 1006K 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
DRSAN [32] 730K 32.30/0.8954 28.66/0.7838 27.61/0.7381 26.26/0.7920 -
LatticeNet-CL [27] 777K 32.30/0.8958 28.65/0.7822 27.59/0.7365 26.19/0.7855 -
SwinIR-light [20] 897K 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151
ESRT [26] 751K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
ELAN-light [43] 601K 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150
SPIN (Ours) 555K 32.48/0.8983 28.80/0.7862 27.70/0.7415 26.55/0.7998 30.98/0.9156

non-local attention are unable to reconstruct damaged tex-
tures accurately. For example, when comparing the recon-
struction results for image ‘B100/148026’, it is evident that
our model produces results that are very close to the HR,
whereas other competitive SISR models without non-local
attention such as CARN [1] and IMDN [12] are not suited
for recovering such severely damaged regions.

Additionally, when compared with other attention-based
deep SISR methods like ESRT [26], SwinIR-light [20] and

ELAN-light [43], our SPIN model still maintains supe-
rior reconstruction quality. Besides, for the image ‘Ur-
ban100/img020’, even without much textural information,
our method can also accurately recover the damaged image.

5. Ablation Study

We further conduct ablation studies to better understand
and evaluate each component in the proposed SPIN. For fair
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Bicubic ESRTCARN IMDN

Urban100/img076.png HROursELAN-lightSwinIR-light

Bicubic ESRTCARN IMDN

Figure 6. Qualitative comparison of state-of-the-art classic and lightweight Transformer-based SR models for ×4 upscaling task. The
Ours(SPIN) can restore more accurate and sharper details than the other models.

comparisons with the designed baselines, we implement all
experiments based on ×4 SPIN and train them under the
same setting. The experimental results in Table 2 are mea-

sured on DIV2K-val [36] and Manga109 [31] datasets.

Effectiveness of ISPA and SPCA. The ISPA module and
the SPCA module perform an important role in our method
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Table 2. Average PSNR/SSIM comparison of different settings of our model under ×4 setting.

Methods
Set5 Set14 BSDS100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Only ISPA 32.36/0.8967 28.69/0.7828 27.62/0.7380 26.30/0.7919 30.63/0.9110
Only SPCA 32.31/0.8961 28.68/0.7831 27.63/0.7385 26.34/0.7928 30.62/0.9111
Parallel 32.45/0.8975 28.80/0.7851 27.69/0.7401 26.52/0.7972 30.96/0.9143
SVQ 32.30/0.8962 28.71/0.7831 27.63/0.7380 26.28/0.7909 30.59/0.9104
Patch 32.40/0.8972 28.70/0.7840 27.64/0.7395 26.34/0.7944 30.70/0.9123
Full 32.48/0.8983 28.80/0.7862 27.70/0.7415 26.55/0.7998 30.98/0.9156

to capture the long-range and short-range information for
recovering damaged images. To evaluate the effectiveness
of the proposed modules, we show their performance in Ta-
ble 2. Specifically, we evaluate the setting of using only the
ISPA module or the SPCA module. To guarantee a fair com-
parison with our base setting, we use the 12 blocks to ensure
a similar number of parameters with our final model. It is
evident that utilizing only one module results in a decline
in performance, as it lacks either short-range or long-range
information. Moreover, we also try to adopt the parallel set-
ting, where the inter- and intra-interaction are performed in
a parallel way in the block. As we can see, this way obtains
slightly inferior performance to our final setting, but still
largely outperforms the above two settings, demonstrating
the necessity of simultaneously capturing long-range and
short-range information. In our final setting, we choose the
sequential implementation due to its better performance.
Pixel Aggregation. To evaluate the effectiveness of our
proposed pixel aggregation, we validate two other pixel ag-
gregation strategies in Table 2. The first strategy is to use the
process of soft vector quantization (SVQ) or the Gaussian
Mixture Model (GMM). Specifically, soft vector quantiza-
tion is similar to our superpixel aggregation, but without
the restriction of only calculating similarity among neigh-
bor pixels. Therefore, the affinities between pixels and su-
perpixels are non-local.

As shown, this strategy actually obtains slightly poor
performance than ours. The reason may be that soft vector
quantization places equal emphasis on all pixels in the im-
age, without considering the spatial relationships between
them, which could lead to ambiguousness between regions.
As stated in LAM [7], the important pixels of each pixel
in the input LR image with respect to the SR image are
usually located in the neighborhood. Furthermore, we also
try to utilize only the local attention module in our method,
which actually resembles Swin Transformer [25] but with-
out window-shift. The result is predictably inferior to ours
since the regular patches usually destroy the structural in-
formation of the object, boundaries, etc., demonstrating the
effectiveness of our method.
Depth of the network. We evaluate the influence of the
depth of the proposed network. We mainly change the num-
ber of blocks of the network, from 4 blocks to 10 blocks.
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Figure 7. Performance (PSNR and SSIM) of SPIN under ×4 set-
ting with different numbers of blocks on the Set5 dataset.

As shown in Fig. 7, with the number of blocks increasing,
the performance of our network is also improved. However,
when the number of blocks is larger than 8, the performance
starts to drop. We think the reason may be that the over-
parameterized network overfits the training data, leading to
poor generalization ability on other benchmarks.

6. Conclusion
In this paper, we have proposed a novel approach

called the Super Token Interaction Network (SPIN), which
leverages superpixels to group local similar pixels into
interpretable local regions. Our method employs intra-
superpixel attention to facilitate local information interac-
tion within irregular local superpixel areas, while the super-
pixel cross-attention module facilitates long-range informa-
tion interaction via the surrogation of superpixels. Exten-
sive experiments demonstrate that SPIN outperforms state-
of-the-art super-resolution methods in terms of accuracy
and lightweight. In addition, the proposed method offers
a promising solution to the challenge of processing entire
images with interpretable region division.
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