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Abstract

Explanation supervision is a technique in which the
model is guided by human-generated explanations during
training. This technique aims to improve the predictability
of the model by incorporating human understanding of the
prediction process into the training phase. This is a chal-
lenging task since it relies on the accuracy of human an-
notation labels. To obtain high-quality explanation annota-
tions, using multiple annotations to do explanation supervi-
sion is a reasonable method. However, how to use multiple
annotations to improve accuracy is particularly challenging
due to the following: 1) The noisiness of annotations from
different annotators; 2) The lack of pre-given information
about the corresponding relationship between annotations
and annotators; 3) Missing annotations since some images
are not labeled by all annotators. To solve these challenges,
we propose a Multi-annotated explanation-guided learn-
ing (MAGI) framework to do explanation supervision with
comprehensive and high-quality generated annotations. We
first propose a novel generative model to generate anno-
tations from all annotators and infer them using a newly
proposed variational inference-based technique by learning
the characteristics of each annotator. We also incorporate
an alignment mechanism into the generative model to infer
the correspondence between annotations and annotators in
the training process. Extensive experiments on two datasets
from the medical imaging domain demonstrate the effective-
ness of our proposed framework in handling noisy annota-
tions while obtaining superior prediction performance com-
pared with previous SOTA.

1. Introduction

In medical imaging, deep learning models are often used
to provide predictions for tasks such as diagnosing diseases
and they have shown exceptional performance [11, 40, 42,
33, 16, 44, 45]. However, these models can be seen as a
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Figure 1: An example showing the challenges present in
explanation supervision: (a) Model-generated explanations
still lack accuracy compared with human annotation. (b)
The model performance heavily relies on the quality of hu-
man explanation labels, which is often inconsistent and in-
complete among different annotators.

“black box”, making it difficult for clinicians to understand
why a particular diagnosis was made [1]. An important line
of research to tackle such limitations is to provide post-
hoc explanations of the model behavior [12, 27, 31]. A
popular way to achieve this in computer vision is through
the use of attention maps, which highlight specific regions
of an image that are most relevant for the model’s predic-
tion [31]. Despite the attention mechanism being an in-
creasingly prominent component in deep neural networks
(DNNs) as a means of explanation, little research has been
done to analyze whether attention is trustworthy and how to
further improve it until recently.

Recently, explanation supervision, a technique that
jointly optimizes prediction loss and explanation loss be-
tween ground-truth annotations and model-generated expla-
nations, has started to show promising effects in improving
both the predictability and interpretability of deep neural
networks [9, 13, 34]. By injecting explanation as a supervi-
sion signal, models aim to explain the decision-making pro-
cess at either the local or global level. Global explanations
provide a general understanding of how the model works
across the entire dataset, while local explanation techniques
are applied for each input data and are therefore more com-
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monly used [12]. Depending on the type of data, local ex-
planation techniques can be further summarized into several
categories: 1) visual explanation, 2) rationale attention, and
3) feature attribution alignment [12]. While most research
focuses on text and tabular data, supervising explanations
on image data is relatively under-explored [36, 29, 28].

Human annotations are often subjective, which gives
rise to the need for multiple annotations on a single image
from different annotators. Learning from multiple annota-
tions from diverse annotators can provide a more diverse
range of insights, which can help to improve the accuracy
and reliability of the annotations [18]. However, the chal-
lenge with multi-annotation is that different annotators may
have different levels of expertise, and therefore their anno-
tations are often inconsistent. While previous works aim to
improve model performance by incorporating annotations
from multiple annotators (e.g., Figure 1), these approaches
suffer from several limitations: 1) The noisiness of anno-
tations from different annotators due to the personality
attributes. In medical imaging, the quality of annotations
can vary based on the personality of annotators, such as at-
tention to detail and experience. For example, as shown
in Figure 1, annotator 1 acts more aggressively than an-
notator 2 when marking the nodule location. 2) The lack
of prior information about the corresponding relation-
ship between annotations and annotators. Due to privacy
concerns and difficulty in data collection, there is often no
pre-given information about the relationship between anno-
tations and annotators. This makes it difficult to learn the
persistent behavioral characteristics specific to each anno-
tator. 3) Missing annotations as not all the annotators
will label each image. Multiple annotations for a medical
image (e.g., CT scan) may be missing due to various factors
such as technical limitations, time constraints, or insuffi-
cient resources. However, the lack of multiple annotations
can limit the accuracy and reliability of medical image in-
terpretation, which may impact patient diagnosis and treat-
ment outcomes. To address the above challenges, we pro-
pose a novel explanation supervision framework that deals
with the inconsistent quality of annotation labels among dif-
ferent annotators. This work makes several contributions,
which can be summarized as follows:

• Introducing a novel framework for explanation super-
vision that incorporates multiple explanation annota-
tions. The proposed framework is supervised by class la-
bels and multiple explanation annotations aggregated by
learnable weights for each annotator.

• Proposing a new generative model to generate missing
annotations. The generative model is inferred based on
a newly proposed variational inference technique and can
learn the characteristics of each annotator when generat-
ing annotations.

• Developing a novel alignment mechanism and incorpo-

rated into proposed generative model to infer the cor-
respondence between annotations and annotators in the
training process. This novel alignment mechanism can
convert the correspondence inference problem to a linear
sum assignment problem.

• Conducting extensive experiments with a variety of eval-
uation metrics on two medical datasets demonstrates our
effectiveness in improving model predictability and gen-
erating robust consensus labels via our generative model
to noisy annotations.

2. Related Work
Medical Image Diagnosis Early detection of nodules can
lead to more effective treatment and improved patient
outcomes. Deep learning-based approaches have shown
particularly promising results in terms of medical image
classification, particularly convolutional neural networks
(CNNs) [40, 42, 33, 16, 44, 6]. [42] presents a novel ap-
proach to automatically detect pulmonary nodules in CT
scans using convolutional neural networks (CNNs) that are
based on maximum intensity projection (MIP). [33] pro-
poses a novel multi-view CNN architecture that uses mul-
tiple views of the same nodule as inputs, which achieves
higher classification accuracy than single-view methods,
demonstrating the potential of multi-view approaches for
medical image classification. Despite the impressive results
achieved by these studies, a major limitation is the lack
of interpretability due to the “black-box” nature of neural
networks. This limits the potential clinical utility of these
methods, as physicians may require justifications to make
informed decisions about patient care.
Explanation Supervision The integration of human knowl-
edge into interpretable models has been extensively stud-
ied in NLP and tabular data through techniques such as at-
tribution and feature regularization [3, 1, 5, 4]. In recent
years, there has been increasing awareness of the impor-
tance of visual explanations. One prominent approach in-
volves obtaining local explanations through saliency maps,
which highlight the input features that contribute the most
to a model’s prediction [23, 31]. HAICS [34] is a concep-
tual framework for image classification that uses human an-
notation in the form of scribble annotations as the explana-
tion supervision signal. However, such approaches depend
heavily on the annotation quality, which is often inaccurate
and prone to biases. To address these problems, [13] pro-
posed a novel objective that can handle inaccurate, incom-
plete, and inconsistent boundaries of human annotations.
Multi-annotation Multi-annotation occurs when a dataset
is labeled by several annotators, aiming to increase the an-
notations’ reliability and accuracy [18]. The challenge with
multi-annotation is that different annotators may have dif-
ferent levels of expertise, and therefore their annotations
are often inconsistent. In order to build accurate and reli-
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able machine learning models, it is essential to first eval-
uate the reliability of each annotator. Several existing
techniques have been proposed to evaluate the annotation
quality, such as Expectation Maximization(EM) based ap-
proaches and annotator confusion estimation-based meth-
ods [26, 39, 19, 38]. However, one major limitation of
these approaches is that they require the global identifi-
cation of annotators, which is not always feasible [37].
When the identity of the annotator is unknown, it’s harder
to make a judgment of the quality locally, and therefore
simple aggregation method is more favorable. The Simple-
mean method calculates the mean loss over each annota-
tion of each sample to train the model. The Weighted-
minimum loss-based method only uses the annotation with
the smallest loss with the model prediction for error propa-
gation [22, 24]. The Aggregation method, which is the most
commonly used, uses a majority vote or consensus-based
approach [18, 8, 25].

3. Problem Formulation

Suppose we have a dataset (I, E, y) = {(Ii, Ei, yi)}Ni=1,
where N is the sample size, Ii ∈ RC×H×W represents
the original image with C,H,W denoting the number of
channels, height, and width, yi ∈ R denotes the class la-
bel of the original image. Ei =

{
Ei,u ∈ RH×W

}U

u=1
for

i = 1, . . . , N represents U explanation annotation masks of
the class label yi, and U denotes the number of annotators
annotating the explanation annotation.

The goal of explanation supervision is to learn the map-
ping function f of the backbone classifier for input images I
to class labels y: f : I → y by the supervision of both class
labels and multiple explanation annotations. More formally,
the objective function is:

min

N∑
i=1

(LPred (f (Ii) , yi)︸ ︷︷ ︸
prediction loss

+LExp (m(f(Ii)), n(Ei))︸ ︷︷ ︸
robust explanation loss

) (1)

, where m(·) denotes the model explanation method (such
as CAM [43], GradCAM [32], and DeepLIFT [35]), n(·)
denotes the multiple annotation aggregation methods (such
as consensus or weighted average), LExp is the explanation
loss to measure the difference between model-generated ex-
planation and human-labeled explanation annotations (such
as the L1 loss) and LPred is the prediction loss (such as
the cross-entropy loss). However, three challenges must be
overcome to achieve this goal: 1) Variant annotation qual-
ity caused by different personalities of annotators. 2) The
lack of information about the corresponding relationship
between annotations and annotators. 3) Images are not al-
ways annotated by all annotators and different images have
different missing patterns, which results in instability and
unreliability of supervision.

4. Multi-annotated explanation guided learn-
ing framework

To address the aforementioned challenges at the end of
Section 3, we propose a MAGI framework. Specifically, to
address the challenge of missing annotation, we introduce
our proposed generative model to learn the characteristic
of annotators and generate missing annotations. To address
the challenge of lack of correspondence between annota-
tions and annotators, we introduce an innovative alignment
mechanism to infer the correspondence in the training pro-
cess of the generative model. Finally, we present the overall
objective and architecture of our proposed framework.

4.1. Multiple annotation generative model

To handle the challenge of missing annotations and com-
plete the missing pieces, we propose to model the generative
process of how the annotators generate annotations for dif-
ferent images. Given the latent variable of annotators’ char-
acteristics, the image, and ground truth annotation, an anno-
tation of an image by an annotator will be generated. Here
the information about the characteristics of annotators is un-
known and will be inferred when learning the generative
models. Concretely, we introduce the annotator character-
istic variable c =

{
cu ∈ Rk1

}U

u=1
to model the characteris-

tics of an annotator such as personality, attention to detail,
and knowledge, the visual annotation variable zT ∈ Rk2 to
model the visual feature of the annotation T , and the image
visual variable zI ∈ Rk3 to model the visual feature of the
original image I , where k1, k2, k3 denotes the dimension of
three latent variables respectively.

To learn this model, we aim to maximize the marginal
likelihood of the observed Eu in expectation over the dis-
tribution of the latent variables (zI , zT , cu). The posterior
of cu and zI , zT can be written as p(zI , zT , cu|I, T,Au)

to infer the latent variable zI , zT , and cu, where {Au}Uu=1

denotes all annotations annotated by an annotator with char-
acteristic cu in the dataset. To be more specific, Au =
{Ei,u}Ni=1 and Eu ∈ Au. Since the true posterior distri-
bution is intractable, we solve it based on the variational
inference where another distribution q(zI , zT , cu|I, T,Au)
is used to approximate the true posterior. In the generation
process, three latent variables (zI , zT , cu) are concatenated
together to generate examples.

The goal of our model is to learn the conditional dis-
tribution of Eu given (zI , zT , cu) for latent representation
learning and data generation. We propose to achieve this
by maximizing the variational lower bound on the log-
likelihood p(Eu) of our model. Given an approximate pos-
terior q(zI , zT , cu|I, T,Au), we use Jensen’s inequality to
obtain the evidence lower bound (ELBO) for Eu
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log p(Eu) = logEq(zI ,zT ,cu|I,T,Au)
p(Eu, zI , zT , cu))

q(zI , zT , cu|I, T,Au)

≥ Eq(zI ,zT ,cu|I,T,Au) log
p(Eu, zI , zT , cu))

q(zI , zT , cu|I, T,Au)

= LELBO(E
u)

(2)
Since

p(Eu, zI , zT , cu) = p(Eu|zI , zT , cu)p(zI , zT , cu) (3)

The LELBO(E
u) can be rewritten as:

LELBO(E
u) = Eq(zI ,zT ,cu|I,T,Au) log p(E

u|zI , zT , cu))

+ Eq(zI ,zT ,cu|I,T,Au) log
q(zI , zT , cu)

q(zI , zT , cu|I, T,Au)

= Eq(zI ,zT ,cu|I,T,Au) log p(E
u|zI , zT , cu))

−DKL(q
(
zI , zT , cu|I, T,Au

)
∥p(zI , zT , cu))

(4)

, where the second term denotes KL divergence between the
approximate posterior q(zI , zT , cu|I, T,Au) and the prior
p(zI , zT , cu). With the assumption that prior of zI , zT , and
cu are independent of each other, namely p(zI) ⊥⊥ p(cu),
p(zT ) ⊥⊥ p(cu), and p(zI) ⊥⊥ p(zT ), zI are conditionally
independent regarding to T and Au, zT is conditionally in-
dependent regarding I and Au, and cu are conditionally in-
dependent regarding to I and T , i.e. q

(
zI , zT , cu|I, T,Au

)
= q(zI |I)q(zT |T )q(cu|Au) [41], the KL divergence term in
Equation 4 can be decomposed as follows:

DKL(q
(
zI , zT , cu|I, T,Au

)
∥p(zI , zT , cu)) =

DKL

(
q
(
zI |I

)
∥p
(
zI
))

+DKL

(
q
(
zT |T

)
∥p
(
zT
))

+DKL (q (cu|Au) ∥p(cu))
(5)

Our objective is to maximize the lower bound for the log-
likelihood:

LELBO (Eu) =

Eq(zI |I)Eq(zT |T)Eq(cu|Au)

[
log p

(
Eu | zI , zT , cu

)]
−DKL

(
q
(
zI | I

)
∥p
(
zI
))

−DKL

(
q
(
zT | T

)
∥p
(
zT
))

−DKL (q (cu | Au) ∥p(cu))
(6)

The notation for I and T is extended to I = {Ii}Ni=1 and
T = {Ti}Ni=1, signifying that there are N samples. Then,
the goal of our proposed generative model is to learn the
conditional distribution p(Ei,u|zI , zT , cu). The first term
in Equation 6 can be further derived as follows:

N∑
i=1

U∑
u=1

Eq(zI |I)Eq(zT |T)(Eq(cu|Au)

[
log p

(
Ei,u|zI , zT , cu

)]
)

=

N∑
i=1

U∑
u=1

log
(
p(Ei,u|zI , zT , cu)q

(
zI |Ii

)
q
(
zT |Ti

)
q (cu|Au)

)
=

N∑
i=1

U∑
u=1

logN (Ei,u|hϕE (gϕI (Ii), gϕT (Ti), gϕc(Au)) , σ)

=

N∑
i=1

U∑
u=1

−k(Ei,u − hϕE (gϕI (Ii), gϕT (Ti), gϕc(Au)))
2

(7)
, where N denotes Gaussian distribution and k denotes a
constant to represent constant terms omitted for log trans-
formation of the probability density function of the Gaus-
sian distribution. Here, we use gϕI

, gϕT
, and gϕc to denote

the inference model for the original image, annotation, and
all annotations from an annotator respectively, and use hϕE

to denote the generative model.
Also, since the information about the corresponding re-

lationship between annotators and annotations is unknown,
we are unable to infer annotator characteristic variables
and generate corresponding annotations. To address this
challenge, we incorporated an alignment mechanism into
our generative model to learn the mapping from annotator
characteristic variable to the corresponding annotation. To
achieve this, we introduce a learnable alignment parameter
π = {πi = Ru×v ∈ (0, 1); (v, u) ∈ [1, Vi]× [1, U ]}, and
{Vi}Ni=1 is the number of annotations for each sample in
the dataset, and Vi ≤ U for i = 1, . . . , N .

In the subsequent derivation, we denote zi,u ={
zIi , z

T
i , cu

}
as the combined latent variables for conve-

nience. Also, since the ground truth annotations {Ti}Ni=1

are always inaccessible in the real-world setting, we use ag-

gregated multiple annotations
{
Ti = n({Ei,u}Uu=1)

}N

i=1
as

ground truth annotations. We provide the graphical model
of our generative model with an alignment mechanism in
Figure 2. After incorporating the alignment mechanism, the
first term of the objective function in Equation 6 can be fur-
ther rewritten as:

log

N∏
i=1

(

Vi∑
v=1

U∑
u=1

πi,v,up(Ei,v|zi,v)q(zi,u|Ii, Ti, Au))

=

N∑
i=1

(
log

Vi∑
v=1

U∑
u=1

πi,v,uN (Ei,v|hϕE (zi,u) , σ)

)

=

N∑
i=1

(
log

Vi∑
v=1

U∑
u=1

πi,v,uN (Ei,v|hϕE (g(Ii, Ti, cu)) , σ)

)

=

N∑
i=1

Vi∑
v=1

U∑
u=1

−kπi,v,u(Ei,v − hϕE (g(Ii, Ti, cu)))
2

(8)
, where g(·) = {gϕI

, gϕT
, gϕc} denotes all inference net-

works and k denotes a constant to represent constant terms
omitted for log transformation of the probability density
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Figure 2: Probabilistic graphical model of the proposed
generative model. The left figure represents the generative
process and the right figure denotes the inference process.

function of the Gaussian distribution.

4.2. Architecture of MAGI Framework

Based on the above inference for the objective, we in-
corporate our generative model into explanation supervision
and proposed our MAGI framework, as shown in Figure 3.
We use the backbone DNN classifier to do prediction with
the supervision of both class labels and generated multiple
annotations from the proposed generative model. Details
will be described in this section.
Visual Encoder We have two visual encoders that take the
original images Ii and the aggregated annotation Ti (ag-
gregated from multiple annotations, using methods such
as consensus and random selection, serves as a proxy for
the ground truth annotation) to model the distribution of
q(zIi |Ii) and q(zTi |Ti), respectively. We introduce two
CNNs, EncI(·) and EncT (·), to infer mean and standard
derivation of the representations of Ii and Ti, i.e., µI

i , σ
I
i =

EncI(Ii;ϕI), µT
i , σ

T
i = EncT (Ti;ϕT ), where ϕI and ϕT

are the parameters of two visual encoders. Each represen-
tation is sampled using its own inferred mean and standard
derivation. For example, the representation vectors zIi are
sampled as zIi = µI

i + σI
i ∗ η, where η follows a standard

normal distribution [15].
Annotation Decoder We also have a decoder to model
the conditional distribution p(Ei,u|zIi , zTi , cu) with a CNN
model. With the image feature zIi , annotation feature zTi ,
and annotator embedding cu, the feature composition is
done by concatenation to integrate multiple features as the
inputs of the decoder Dec(·) to generate multiple annota-
tion maps. The mathematical representation is written as:

Êi,u = Dec(Concat(zIi , z
T
i , c

u);ϕE) (9)

, where Êi,u denotes the generated annotation, Concat de-
notes the operation of variable concatenation, and ϕE is the
parameter of the decoder.
Annotator Characteristic Variable We randomly initial-
ize the annotator characteristic variable c. For each annota-
tion cu ∼ N (0,diag(1)) ∈ R1×k. After initialization, we
have a k-dimensional vector where each element is sampled
from a standard Gaussian distribution. We propose to opti-
mize c using the gradient descent algorithm [10] during the
training process.

Alignment Parameter The alignment matrix π for each in-
put pair is learned by selecting the annotation most simi-
lar to the generated annotation. Specifically, in the training
stage, for each ground truth annotation, we get its corre-
sponding generated annotation by selecting the generated
annotation with minimal pixel-level L-1 distances with it.
Each generated annotation can only be paired with at most
one ground truth annotation. Therefore, the alignment ma-
trix π learning problem is converted to a linear sum assign-
ment problem [7]:

π =argmin
π

N∑
i=1

U∑
u=1

Vi∑
v=1

(πi,v,u∥Ei,v − Êi,u∥1)

s.t.

Vi∑
v=1

πi,v,u = 1 ∀i, u;
U∑

u=1

πi,v,u ≤ 1 ∀i, v

πi,v,u ∈ {0, 1}

(10)

In the context of getting the π, the Hungarian algorithm [21]
is used to solve this linear sum problem.

4.3. Overall objective

As mentioned above, our training process incorporates
three distinct loss terms to jointly optimize the prediction
capability, explanation ability, and multi-annotation gener-
ation functionality of our framework.
Prediction Loss is the cross-entropy loss of the true class
label and predicted label for the underlying DNN model:

LPred (θf ) =

N∑
i=1

Cross-Entropy((yi, f(Ii))) (11)

Generation Loss We define a generation loss from Equa-
tion 8 as pixel-pixel L-1 distances between generated mul-
tiple annotations and real annotations after alignment.

LGen (ϕ) =

N∑
i=1

U∑
u=1

Vi∑
v=1

(πi,v,u∥Ei,v − Êi,u∥1) (12)

, where ϕ = {ϕI , ϕT , ϕE , c, π} denotes all parameters for
the multiple annotation generation.
Explanation Loss The explanation loss is calculated us-
ing the pixel-by-pixel L-1 distance between the generated
multiple annotations and the explanation annotation derived
from the model’s explanation method. To address the is-
sue of multi-quality annotations from various annotators,
we introduce a learnable weight w = {wu}Uu=1 where∑U

u=1 wu = 1. This allows the model to assign higher
weights to annotators without noise and lower weights to
“noisy” annotators.

LExp (θf , w) =

N∑
n=1

U∑
u=1

(wu∥Êi,u −m(f(Ii))∥1) (13)
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Figure 3: Illustration of proposed MAGI Framework. MAGI consists of a multiple-annotations generation model (a) to
generate multiple annotations and an Explanation Supervision module (b) to train the image classifier supervised by both
class labels and generated multiple annotations.

Finally, we combine all these three losses as the objective
function to optimize our model as follows:

L = LPred + λExpLExp + λGenLGen

θ∗f , ϕ
∗, w∗ = arg min

θf ,ϕ,w
L (14)

, where λExp and λGen are the weighting parameters for
explanation loss and generation loss, respectively.

5. Experiments
To validate the effectiveness of our proposed framework,

we conduct extensive experiments on two different medical
imaging datasets with existing multiple annotation aggrega-
tion methods and explanation supervision methods.

5.1. Dataset and Preprocessing

LIDC-IDRI LIDC-IDRI [2] consists of lung cancer
screening thoracic computed tomography (CT) scans with
marked-up annotated lesions. We preprocess the 3D nod-
ule images into 2D images by taking the middle slice along
the z-axis and keeping the dimension as 224×224. An-
notations are from at most four experienced radiologists
in XML format. After locating the nodules, we slice sur-
rounding areas as our negative samples. To simulate the
diversity and noisiness of annotations, we randomly add the
same amount of noise by converting pixel values from 1
to 0 inwardly or from 0 to 1 outwardly along the annota-
tion boundary. We obtain the “ground truth” explanation
by aggregating the consensus volume amongst the provided
four noise-added annotations corresponding to each image
at a 50% consensus level [14]. The dataset after preprocess-
ing includes 2625 nodules and 65505 non-nodule images.
We use this dataset for the nodule classification task, where
the objective is to determine whether an image includes a
nodule or not. To better simulate a more practical situation

where we only have limited access to the human explana-
tion annotations, we randomly sample 100/2400/2400 im-
ages for training, validation, and testing and keep the class
ratio balanced.
Pancreas We obtained the normal pancreas images from
Cancer Imaging Archive [30] and abnormal images from
the Medical Segmentation Decathlon dataset (MSD 1). The
data includes 281 CT scans with tumor v.s. 80 CT scans
without tumors. The data preprocessing process is the same
as LIDC-IDRI. The MSD dataset includes two types of an-
notations: tumor lesions and pancreas segmentation. We
treat the tumor lesions as our explanation labels. We ran-
domly sample 40 images for training, 40 images for valida-
tion, and the rest for testing. The number of samples from
each class is balanced in training and testing splits.

5.2. Experimental setup

Implementation Details. In this work, all studied meth-
ods utilize a classification model based on the ResNet18
architecture [17]. For the computation of the explanation
loss within the deep neural network (DNN) model expla-
nation method, we employed GradCAM. For the multiple
annotation aggregation methods (as shown in Figure 3 (a)),
we use 50% consensus (details can be found in Comparison
Methods section). The batch size, explanation loss weight,
and generation loss weight are set to 16, 0.1, and 0.1, re-
spectively. The models are trained for 30 epochs using the
ADAM optimizer [20] with a learning rate of 0.0001.
Evaluation Metrics For model evaluation, we consider
both its classification performances and multiple annotation
generation performances. We evaluate classification perfor-
mance using conventional metrics, including prediction ac-
curacy, AUC (Area Under the Curve), precision, recall, and
the F1 score. To assess the quality of the multiple annota-

1Available online at: http://medicaldecathlon.com/
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Comparison Model Pancreas LIDC-IDRI

Accuracy ↑ AUC ↑ Precision ↑ Recall ↑ F1 ↑ Accuracy ↑ AUC ↑ Precision ↑ Recall ↑ F1 ↑
Baseline 85.089 96.063 98.816 83.693 90.223 66.404 71.790 59.288 69.020 63.466

a) Consensus 88.790 95.589 98.038 88.755 93.063 67.435 72.291 65.645 73.184 68.991
Annotation MeanLoss 88.861 96.402 98.884 88.008 93.099 67.090 72.355 65.762 71.765 68.471
Aggregation Random 86.441 96.920 98.994 85.104 91.239 66.835 72.240 64.947 73.137 68.705

Proposed 90.049 96.907 98.905 89.336 93.867 68.996 74.229 66.125 78.675 71.587
GRADIA 83.132 95.630 99.042 81.120 89.103 67.435 72.291 65.645 73.184 68.991

b) HAICS 86.441 96.920 98.994 85.104 91.239 66.855 71.197 64.709 74.604 69.136
Explanation RES-L 89.786 95.469 98.065 89.876 93.784 68.353 73.509 65.966 76.275 70.551
Supervision RES-G 89.893 96.743 98.943 89.170 93.791 68.557 74.728 67.930 71.459 69.267

Proposed 90.049 96.907 98.905 89.336 93.867 68.996 74.229 66.125 78.675 71.587

Table 1: The prediction evaluation on both datasets on a) different multiple annotation aggregation methods and b) different
explanation supervision methods. The best results for each task are highlighted in boldface font.

tion generation, we compare the aggregated generated mul-
tiple annotations with the ground truth annotation in the test
set utilizing the Mean Squared Error (MSE), Binary Cross-
Entropy (BCE), and Structural Similarity Index (SSIM).
Comparison Methods We compare our method in two di-
mensions: 1) Explanation supervision methods:

• Baseline: A conventional image classifier is trained only
on the prediction loss with the ResNet-18 architecture.

• HAICS [34]: A framework that minimizes both the pre-
diction loss and the distance between the model explana-
tion and the scribble annotation labels.

• GRADIA: A framework with L1 loss that minimizes the
distance between the continuous model explanation and
the binary positive explanation labels.

• RES [13]: A framework for Guiding Visual Explanation
a) with a fixed imputation function via Gaussian convolu-
tion filter and b) with a learnable imputation function via
multiple layers of learnable kernels.

and 2) Multiple annotations aggregation methods:

• Consensus: Each pixel/voxel of the image is considered
separately, and a new boolean-valued annotation is gener-
ated based on the fraction of the segmentations that agree
on the presence of that pixel/voxel.

• Random: Randomly sample one annotation among mul-
tiple annotations for each sample during training.

• MeanLoss: Compute the mean loss over each annotation
from multiple annotations against model explanation an-
notation for each sample to compute the explanation loss
during the training process.

5.3. Comparison with annotation aggregation
methods

The effectiveness of the proposed model is confirmed
in Table 1 through comparison with both the baseline and
other multi-annotation aggregation methods. All aggrega-
tion methods show enhanced performance over the base-
line, underscoring the efficacy of jointly optimizing predic-

Dataset Method MSE ↓ BCE ↓ SSIM ↑

Pancreas Noisy 22.291 0.004 0.984
Proposed 15.043 0.002 0.991

LIDC-IDRI Noisy 28.282 0.009 0.970
Proposed 21.318 0.007 0.976

Table 2: Result of consensus of generated multiple annota-
tions on LIDC-IDRI dataset. MSE, BEC, and SSIM met-
rics are reported compared to noisy consensus annotation.
“Noisy” denotes using the simple consensus method to ag-
gregate noisy-added multiple annotations.

tion loss and explanation loss. Our model consistently out-
shines other methods in the LIDC-IDRI datasets, achieving
the best results in terms of accuracy, AUC, recall, and F1
in the pancreas dataset. This emphasizes the significance
of generating annotations that align closely with annota-
tors. The improved performance over the consensus mask
approach implies that consensus maps are more suscepti-
ble to errors when noise is present. Recall, which measures
the proportion of true positives correctly identified by the
model, is especially crucial in medical contexts where false
negatives are unwelcome. Although we did not attain the
highest precision score in the pancreas dataset, our F1 score
remains the highest, signifying that our overall performance
excels in comparison to all other aggregation methods.

5.4. Multiple Annotation Generation Analysis

Quantitative Analysis of Generated Annotation. We
further compare the model-generated annotations with the
ground truth and report performance on MSE, BEC, and
SSIM in Table 2. We see 32.5% decrease in MSE, 50%
decrease in BCE, and 0.71% improvement in SSIM for the
pancreas dataset, and 24.6% decrease in MSE, 22.2% de-
crease in BCE, and 0.61% improvement in SSIM for the
LIDC-IDRI dataset. MAGI-generated explanation consis-
tently achieves the best performance, which means that the
model is able to capture the actual shape of annotation even
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Figure 4: Multiple annotation generation results and comparison with noisy annotation.

Figure 5: The comparison between 1) ground truth consen-
sus annotation, 2) noisy consensus annotation, and 3) con-
sensus annotation from our generated multiple annotations.

when noise is present. By aligning annotations with annota-
tors, we are able to generate consensus label from de-noised
annotations and address the missing annotation issue. The
improvement in accuracy shows our annotation is superior
to the simple aggregation methods.
Robustness against noisy annotations. Our results imply
that our model is robust against noisy annotations and less
prone to errors existent in the annotations. As shown in Fig-
ure 5, the consensus annotations generated by our model ex-
hibit a similar appearance as the ground truth annotations,
implying that our model is able to detect and avoid noisy
annotations when constructing consensus labels. Moreover,
the ground-truth annotation label is subject to the image size
provided by the annotators. When scaling the images to a
higher resolution, we see abnormal shapes in the corners
of the first two rows, where MAGI-generated annotation
has higher similarity with what nodule looks like in reality.
The model is able to learn from incomplete and mislead-
ing shapes and offer better solutions. On the other hand,
the quality of consensus obtained from noisy annotations
is heavily subjected to the noisy label, as shown in row 4
of Figure 4. The noisy consensus is highly identical to the
first noisy annotation (second column) when the variety of

annotations is limited. Our algorithm is able to learn from
the annotators and generate multiple annotations even when
not all annotators have the time to annotate the image. The
generation process offers higher quality and more variations
of the annotations and therefore results in consensus labels
that capture more details. Row 3 clearly shows the appeal-
ing performance of our algorithm in detecting the correct
shape of the nodules.
Learning annotator-specific patterns. Our proposed mul-
tiple annotation generation model can learn the character-
istics of annotators and generate annotations for an image
according to that specific annotator. We show samples of
the multiple annotations generated by our model in Fig-
ure 4. Patterns can be observed between annotations gen-
erated corresponding to different annotators. For example,
the conservative personality of annotator 2 is learned by our
model, so annotator 2 always provides conservative annota-
tions, as shown in the consistently reduced size of annota-
tions (column 7). Conversely, the aggressive personality of
annotator 4 is learned, so annotator 4 always provides ag-
gressive annotations (column 9). The comparison between
the noisy consensus and our consensus label reveals the ap-
pealing performance of our model in learning the variety of
annotators’ characteristics.

5.5. Comparison with explanation supervision
methods

Table 1 shows the quantitative evaluation of two clas-
sification tasks and demonstrates the importance of anno-
tation quality for explanation supervision. Overall, our
method outperforms all other supervised methods on both
LIDC-IDRI and pancreas datasets. In particular, our model
achieves the best accuracy and F1 on the pulmonary nod-
ule classification task and the best accuracy, Recall, and F1
on the pancreatic tumor classification task. Our explanation
supervision architecture is based on GRADIA, where the
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difference is the use of consensus labels. We obtain an ac-
curacy of 90.049% and 68.996% on the two datasets, which
is an 8.32% and 2.31% improvement respectively. The re-
sults suggest that our annotation label is robust to noises
when used as the supervision signal. While the precision
or recall scores reported in the pancreas dataset are slightly
lower, we achieve the best F1 scores on both datasets, indi-
cating that our overall performance is superior to all other
explanation supervision methods. Since our approach does
not directly interfere with the supervision process, it can be
easily applied to any explanation supervision algorithms for
better predictability and interpretability.

6. Conclusion
This paper proposes a novel MAGI:multi-annotated

explanation-guided learning framework that generates
noise-robust annotations via variational inference-based
techniques. We introduce a multiple annotation genera-
tive model to tackle the missing, inconsistency, and nois-
iness of multi-annotation among different annotators. We
also incorporate an annotation alignment module to learn
the unknown correspondence between annotations and an-
notators. Results show appealing annotation quality and
improved performance on downstream classification tasks.
We show that each generated annotation can learn the cor-
responding characteristics of annotators with the existence
of synthetic noise. Extensive experiments on the two medi-
cal datasets demonstrate the superiority of our method over
existing algorithms.
Broader Impacts. Explaining the decision-making process
behind AI systems with high-quality explanations is cru-
cial to the development of trustworthy AI. We envision this
work to offer new opportunities to a wide range of high-
stakes domains, such as healthcare and finance, and to open
a new door to optimize noisy human knowledge when inte-
grating it into deep learning algorithms.
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[7] Sébastien Bougleux and Luc Brun. Linear sum assignment
with edition, 2016. 5

[8] Pete Bridge, Andrew Fielding, Pamela Rowntree, and An-
drew Pullar. Intraobserver variability: should we worry?,
2016. 3

[9] Shi Chen, Ming Jiang, Jinhui Yang, and Qi Zhao. Air: At-
tention with reasoning capability. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part I 16, pages 91–107. Springer,
2020. 1

[10] Antonia Creswell and Anil Anthony Bharath. Inverting
the generator of A generative adversarial network. CoRR,
abs/1611.05644, 2016. 5

[11] Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus,
and Timothy L Kline. Machine learning for medical imag-
ing. Radiographics, 37(2):505–515, 2017. 1

[12] Yuyang Gao, Siyi Gu, Junji Jiang, Sungsoo Ray Hong,
Dazhou Yu, and Liang Zhao. Going beyond xai: A system-
atic survey for explanation-guided learning. arXiv preprint
arXiv:2212.03954, 2022. 1, 2

[13] Yuyang Gao, Tong Steven Sun, Guangji Bai, Siyi Gu, Sung-
soo Ray Hong, and Zhao Liang. Res: A robust framework
for guiding visual explanation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 432–442, 2022. 1, 2, 7

[14] Siyi Gu, Yifei Zhang, Yuyang Gao, Xiaofeng Yang, and
Liang Zhao. Essa: Explanation iterative supervision via

91985



saliency-guided data augmentation. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 567–576, 2023. 6

[15] Xiaojie Guo, Yuanqi Du, and Liang Zhao. Deep generative
models for spatial networks. Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Min-
ing, 2021. 5

[16] Fatemeh Haghighi, Mohammad Reza Hosseinzadeh Taher,
Zongwei Zhou, Michael B Gotway, and Jianming Liang.
Learning semantics-enriched representation via self-
discovery, self-classification, and self-restoration. In
Medical Image Computing and Computer Assisted
Intervention–MICCAI 2020: 23rd International Con-
ference, Lima, Peru, October 4–8, 2020, Proceedings, Part I
23, pages 137–147. Springer, 2020. 1, 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[18] Davood Karimi, Haoran Dou, Simon K Warfield, and Ali
Gholipour. Deep learning with noisy labels: Exploring tech-
niques and remedies in medical image analysis. Medical im-
age analysis, 65:101759, 2020. 2, 3

[19] Ashish Khetan, Zachary C Lipton, and Anima Anandku-
mar. Learning from noisy singly-labeled data. arXiv preprint
arXiv:1712.04577, 2017. 3

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[21] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 5

[22] Tongliang Liu and Dacheng Tao. Classification with noisy
labels by importance reweighting. IEEE Transactions on
pattern analysis and machine intelligence, 38(3):447–461,
2015. 3
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