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Abstract

Zero-shot object detection aims to localize and recog-
nize objects of unseen classes. Most of existing works face
two problems: the low recall of RPN in unseen classes and
the confusion of unseen classes with background. In this
paper, we present the first method that combines DETR
and meta-learning to perform zero-shot object detection,
named Meta-ZSDETR, where model training is formalized
as an individual episode based meta-learning task. Differ-
ent from Faster R-CNN based methods that firstly gener-
ate class-agnostic proposals, and then classify them with
visual-semantic alignment module, Meta-ZSDETR directly
predict class-specific boxes with class-specific queries and
further filter them with the predicted accuracy from classifi-
cation head. The model is optimized with meta-contrastive
learning, which contains a regression head to generate the
coordinates of class-specific boxes, a classification head to
predict the accuracy of generated boxes, and a contrastive
head that utilizes the proposed contrastive-reconstruction
loss to further separate different classes in visual space. We
conduct extensive experiments on two benchmark datasets
MS COCO and PASCAL VOC. Experimental results show
that our method outperforms the existing ZSD methods by a
large margin.

1. Introduction
Object detection [34] is one of the most fundamental

tasks in computer vision. Most existing object detection
methods require huge amounts of annotated training data,
which is expensive and time-consuming to acquire. Mean-
while, in reality novel categories constantly emerge, and
there is seriously lack or even nonexistent of visual data of
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Figure 1. Zero-shot object detection: Faster R-CNN based meth-
ods vs. Meta-ZSDETR. (a): Faster R-CNN based methods firstly
generate class-agnostic proposals, and then classify them with dif-
ferent visual-semantic alignment modules. (b): Meta-ZSDETR di-
rectly predict class-specific boxes with class-specific queries and
further filter them with classification head.

those novel categories for model training, such as endan-
gered species in the wild. The above issues motivates the
investigation of zero-shot object detection, which aims to
localize and recognize objects of unseen classes.

A mainstream framework of the existing works that are
based on Faster R-CNN, is illustrated in Fig. 1(a), where the
RPN remains unchanged and the RoI classification head is
replaced with different visual-semantic alignment modules,
such as mapping to the same embedding space to calculate
similarity between proposals and semantic vectors [2, 40,
41, 32, 44, 12, 25, 18, 7], synthesizing visual features from
semantic vectors [17, 14, 42, 47, 27] etc.

However, we observe that the existing methods are sub-
optimal, due to their obvious inherent shortcomings: i) The
proposals from RPN are often not reliable enough to cover
all unseen classes objects in an image because of lacking
training data, which has also been identified by a recent
study [19]. ii) The confusion between background and un-
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seen classes is an intractable problem. Although many pre-
vious works have tried to tackle it [46, 14, 2], the results are
still unsatisfactory.

Recently, object detection frameworks based on the
Transformer have gained widespread popularity, such as
DETR [5], Deformable DETR [48], etc. Such architectures
are RPN-free and background-free, i.e., they do not involve
RPN and background class, which are naturally conducive
to building zero-shot object detection methods. However,
how to build a ZSD method based on DETR detectors poses
new challenges. An intuitive idea is to replace DETR’s
classification head with a zero-shot classifier based on co-
sine similarity [43]. However, such a method simply treats
DETR as a large RPN for proposals generation, the overall
framework is essentially the same as previous works.

In this paper, we present the first method that fully ex-
plores DETR detectors and meta-learning to perform zero-
shot object detection, named Meta-ZSDETR, which can
solve the two problems mentioned above that have plagued
the field of ZSD for many years, and achieves the state-
of-the-art performance. The comparison of Meta-ZSDETR
with previous methods is shown in Fig. 1. Different from
the previous works that firstly generate class-agnostic pro-
posals and then classify them with visual-semantic align-
ment module, our method utilizes semantic vectors to guide
both proposal generation and classification, which greatly
improves the recall of unseen classes. Meanwhile, there
is no background class in DETR detectors, which means
the confusion between background and unseen classes is no
more existent.

In order to detect unseen classes, we formalize the train-
ing process as an individual episode based meta-learning
task. In each episode, we randomly sample an image I and a
set of classes Cπ , which contains the positive classes that ap-
pear in I and negative classes that do not appear. The meta-
learning task is to make the model learn to detect all positive
classes of Cπ on image I . Through the meta-learning task,
the training and testing can be unified, i.e., in the model
testing, we need only to employ the unseen classes as the
set Cπ . To enable the model to detect an arbitrary class set,
we firstly fuse each object query with a projected semantic
vector from the class set Cπ , which transfers the query from
class-agnostic to class-specific. Then, the decoder takes the
class-specific query as input and predicts the locations of
class-specific boxes, together with the probabilities that the
boxes belong to the fused class. To achieve the above goal,
we propose meta-contrastive learning, where all predictions
are split into three different types and different combina-
tions of them are chosen to optimize three different heads,
i.e., the regression head to generate the locations of class-
specific boxes, the classification head to predict the accu-
racy of generated boxes, and the contrastive head to separate
different classes in visual space for performance improving

with a contrastive-reconstruction loss. The bipartite match-
ing and loss calculation are performed in a class-by-class
manner, and the final loss is averaged over all classes in the
sampled class set Cπ .

In summary, our major contributions are as follows:

• We present the first method that explores DETR and
meta-learning to perform zero-shot object detection,
which formalizes the training as an individual episode
based meta-learning task and ingeniously tackles the
two problems that plague ZSD for years.

• We propose to train the decoder to directly predict
class-specific boxes with class-specific queries as in-
put, under the supervision of our meta-contrastive
learning that contains three different heads.

• We conduct extensive experiments on two benchmark
datasets MSCOCO and PASCAL VOC to evaluate the
proposed method Meta-ZSDETR. Experimental re-
sults show that our method outperforms the existing
ZSD methods.

2. Related work
2.1. Zero-shot learning

Zero-shot learning (ZSL) aims to classify images of un-
seen classes that do not appear during training. There are
two main streams in ZSL: embedding based methods and
generative based methods. The key idea of embedding
based methods is to learn an embedding function that maps
the semantic vectors and visual features into the same em-
bedding space, where the visual features and semantic vec-
tors can be compared directly [1, 4, 10, 21, 37]. Genera-
tive based methods aim to synthesize unseen visual features
with variational autoencoder [20] and generative adversar-
ial networks [39], which convert the ZSL into a fully super-
vised way [6, 13, 36, 38].

2.2. Zero-shot object detection

Zero-shot object detection (ZSD) has received a great
deal of research interest in recent years. Most of ZSD meth-
ods are built on Faster R-CNN [11], YOLO [33] and Reti-
naNet [23]. The process of these methods can be summa-
rized as: generating class-agnostic proposals and classify-
ing proposals into seen/unseen and background classes. The
main difference of these methods is that different visual-
semantic alignment methods are used to complete the clas-
sification of proposals. These methods can be divided into
two categories: mapping the semantic vectors and visual
features to the same embedding space to calculate similar-
ity [2, 40, 41, 32, 44, 12, 25, 18, 7] and synthesizing vi-
sual features from semantic vectors [17, 14, 42, 47, 27].
Although previous works have paid great efforts, there are
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some problems that still have no satisfactory solution, such
as the low recall of class-agnostic RPN for unseen classes
and the confusion between background and unseen classes.
These problems may be caused by the incompatibility of
ZSD task and proposals-based architecture such as Faster
R-CNN.

Different from previous works, Meta-ZSDETR is the
first work built on Deformable DETR with meta-learning,
where the semantic vectors are guided for class-specific
boxes generation, instead of class-agnostic proposals in pre-
vious works, resulting in a higher unseen recall and pre-
cision. Meanwhile, since there is no background class in
DETR detectors, the confusion between background and
unseen classes is non-existent.

3. Method
3.1. Problem definition

Zero-shot object detection (ZSD) aims to detect objects
of unseen classes with model trained on the seen classes.
Formally, the class space C in ZSD is divided into seen
classes Cs and unseen classes Cu, where C = Cs ∪ Cu and
Cs ∩ Cu = ∅. The training set contains objects of seen
classes, where each image I is provided with ground-truth
class labels and bounding boxes coordinates. While the test
set may contain only unseen objects (ZSD setting) or both
seen and unseen classes (GZSD setting). During the train-
ing and testing, the semantic vectors W = {Ws,Wu} is
provided for both seen and unseen classes.

3.2. Revisit standard DETR in object detection

To begin with, we review the pipeline of a standard
DETR in generic object detection, which contains the fol-
lowing steps: set prediction, optimal bipartite matching and
loss calculation.

3.2.1 Set prediction

For an image I , the global representation xI is extracted by
the backbone fϕ and Transformer encoder gψ successively,
which can be expressed as:

xI = gψ(fϕ(I)) (1)

Then, the decoder gθ infers N object predictions Ŷ ,
where N is determined by the number of object queries Q
that serve as learnable positional embedding:

Ŷ = gθ(xI ,Q) (2)

where Ŷ = {(ĉi, b̂i)}Ni=1 and Q = {qi}Ni=1. For each object
query qi, the decoder gθ will output a prediction box, which
contains two parts: the predicted class ĉi and predicted box
location b̂i.

3.2.2 Optimal bipartite matching

The optimal bipartite matching is to find the minimal-cost
matching between the predictions Ŷ = {(ĉi, b̂i)}Ni=1 and
ground-truth boxes Y = {(ci, bi)}Ni=1 (padded with no ob-
ject ∅). Therefore, we search for a permutation of N ele-
ments σ ∈ SN with lowest cost:

σ̂ = argmin
σ∈SN

N∑
i=1

[
Lcls(ci, ĉσi

) + Lloc(bi, b̂σi
)
]

(3)

where Lcls(ci, ĉσi
) and Lloc(bi, b̂σi

) are matching cost for
class prediction and box location with index σi, respec-
tively. Bipartite matching produces one-to-one assign-
ments, where each prediction (ĉi, b̂i) is assigned to either
a ground-truth box (ci, bi) or ∅ (no object). The permuta-
tion for lowest cost is calculated with Hungarian algorithm.

3.2.3 Hungarian loss

Hungarian loss is a widely used loss function in DETR,
which takes the following form:

LHug =
N∑
i=1

[
Lcls(ci, ĉσ̂i

) + 1{ci ̸=∅}Lloc(bi, b̂σ̂i
)
]

(4)

where σ̂ is the optimal assignment computed in Eq.(3). Lcls
is the loss for classification, which usually takes the form of
focal loss [23] or cross-entropy loss. Lloc is the location
loss and usually contains l1 loss and GIoU loss [35].

Challenge: Since the standard DETR can only locate
the boxes and predict the classes of objects in training set, it
is unable to detect unseen classes. In this paper, we utilize
the meta-learning to make the model learn to detect objects
according to the inputed semantic vectors, so that the model
has the ability to detect objects of any category, as long as
the semantic vector of the corresponding category is input.

3.3. Framework

We present the framework of Meta-ZSDETR in Fig. 2,
which is based on Deformable DETR. Meta-ZSDETR fol-
lows the paradigm of meta-learning. The training is per-
formed by episode based meta-learning task. In each
episode, we randomly sample an image I and a class set Cπ .
The meta-learning task of each episode is to make the model
learn to detect all appeared classes in Cπ on image I . Specif-
ically, the image feature is firstly extracted by backbone and
Transformer encoder as in Eq.(1). In order for the decoder
to detect categories in Cπ , we add the projected seman-
tic vectors of classes Cπ to the object queries, making the
queries class-specific. Then, the decoder takes the queries
as input and predicts the class-specific boxes directly. To
achieve this, the model is optimized with meta-contrastive
learning, which contains a regression head to generate the
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Figure 2. The framework of Meta-ZSDETR. In each episode, a class set Cπ and an image I are sampled. The meta-learning task is to
make the model learn to detect all appeared classes in Cπ . Firstly, the image feature xI is extracted with backbone and encoder. Then, the
projected semantic vectors are added to object queries, making them class-specific. Finally, the decoder gθ will takes the queries as input
and directly predict class-specific boxes. To achieve the this, we train our model with proposed meta-contrastive learning.

coordinates of class-specific boxes, a classification to pre-
dict the accuracy of generated boxes and a contrastive head
that utilize the proposed contrastive-reconstruction loss to
further separate different classes in visual space.

3.4. Meta-ZSDETR with class-specific queries

To enable the model to detect any unseen class, we
fuse the object queries with class semantic information, and
make the model learn to predict the bounding boxes for the
fused classes. Such a process is carried out in each meta-
learning task.

Specifically, in each episode, we randomly sample a
class set Cπ and an image I , where the Cπ satisfies Cπ ⊆ Cs
and each element is unique. Meanwhile, Cπ = C+

π ∪ C−
π ,

where C+
π is the positive classes that appeared in image I

and C−
π is the randomly sampled negative classes that do

not appear in I for contrast. Meanwhile, we denote the size
of Cπ as L(Cπ), where L(·) is the operation that calculate
size. The positive rate L(C+

π )
L(Cπ)

is set to λπ , which is a hyper-
parameter.

Then, the corresponding semantic vectors Wπ of class
set Cπ are projected from semantic space to the visual space
with a linear layer hW :

W̃π = hW(Wπ) (5)

where W̃π is the projected semantic vectors of class set Cπ .
Since L(W̃π) ≪ N , i.e. the number of semantic vectors
is smaller than the number of object queries Q, we expand
W̃π by duplicating each element in W̃π for T times, which
satisfies L(W̃π) · T ⩾ N and L(W̃π) · (T − 1) < N . For
redundant elements more than N , we drop them.

Then, the projected semantic vectors W̃π is added to ob-
ject queries Q as follows:

Qπ = Q⊕ W̃π (6)

where Qπ = {qπi }Ni=1 is the class-specific queries that will
be inputed into the Transformer decoder gθ with image fea-
ture xI to generate predictions:

Ŷ = gθ(xI ,Qπ) (7)

Ŷ = {(δ̂i, b̂i)}Ni=1 is the set of predictions, where b̂i is
predicted box location generated with query qπi and δ̂i is
the probability of box b̂i belonging to the fused class, i.e.
the class of semantic vector that fused to query qπi . Mean-
while, different from the standard DETR that the classifica-
tion head determines the class of predicted boxes, the class
of predicted box b̂i in Meta-ZSDETR is class-specific and is
determined by the class of corresponding query and δ̂i only
has one dimension to represent the probability of b̂i belongs
to the fused class.

3.5. Meta-contrastive learning

In order for the regression head of decoder gθ to gener-
ate more accurate class-specific box coordinate b̂i and clas-
sification head to have a stronger discriminative ability of
further judging the location accuracy of generated b̂i, we
propose the meta-contrastive learning to train the heads of
decoder gθ, i.e. a regression head to generate class-specific
boxes, a classification head to filter inaccurate boxes, and
moreover a contrastive head to further separate different
classes in visual space, which will improve the performance
of both seen classes and unseen classes.

Meta-contrastive learning performs the matching and op-
timization in a class-by-class manner. As shown in Fig. 3,
for each class cπj ∈ Cπ , the decoder takes queries of class
cπj as input, and the predictions are split into three types:
1) The positive predictions that are assigned to GT box of
class cπj by class-specific bipartite matching. 2) The nega-
tive predictions that are assigned to any other classes than
cπj . 3) The negative predictions that belong to background.

Then, we takes different combinations of three types
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Figure 3. All predictions of class cπj are split into three different
types and different combinations of them are utilized to train three
different heads.

of predictions to train three heads: a) For the classifica-
tion head, we take all predictions for the training and give
them corresponding positive/negative class-specific targets
for class cπj . b) For the regression head, since the regres-
sion head aims to generate class-specific boxes of class cπj ,
we only utilize the positive predictions for optimization. c)
For the contrastive head, since our intention is to separate
different classes in visual space, we only use positive pre-
dictions of class cπj and negative predictions of other classes
for contrastive-reconstruction loss.

3.5.1 Class-specific bipartite matching

Our meta-contrastive learning performs the matching in a
class-by-class manner. For class cπj ∈ Cπ , the predictions
generated by queries of class cπj are selected for bipar-
tite matching, which is denoted as Ŷcπj = {(δ̂τi , b̂τi)}

Tτ
i=1,

where {τi}Tτ
i=1 are the indexes for queries of class cπj in N

queries. Since each query is duplicated for T or T−1 times,
we denote the length uniformly as Tτ .

Then, the ground-truth matching targets are revised for
each class cπj ∈ Cπ . The class-specific matching labels are

denoted as ∆cπj
= {δc

π
j

i }Tτ
i=1 (padded with no objects ∅),

which satisfy:

δ
cπj
i =

{
1, ci = cπj
0, ci ̸= cπj

(8)

where ci is the origin class label for ground-truth box
bi. The revised matching labels are generated according
to whether ci is equal to cπj . Then, the matching targets

Ycπj = {(δc
π
j

i , bi)}Tτ
i=1 is utilized for bipartite matching of

class cπj , where a permutation of Tτ elements σ ∈ STτ

with lowest cost is search as:

σ̂ = argmin
σ∈STτ

Tτ∑
i=1

[
Lcls(δ

cπj
i , δ̂τσi

) + Lloc(bi, b̂τσi
)
]

(9)

where σ̂ is the optimal assignment between matching tar-
gets Ycπj and predictions Ŷcπj . Lcls and Lloc are the same as
that in Eq.(3).

3.5.2 Loss function

Based on σ̂, predictions in Ŷcπj are split into three types
mentioned above, i.e. positive and two types of negative
ones, and loss function of class cπj for three heads are cal-
culated as follows:

Lcπj
=

Tτ∑
i=1

[
Lcls(δ

cπj
i , δ̂τσ̂i

) + 1(ci=cπj )Lloc(bi, b̂τσ̂i
)
]
+ Lcont

(10)
where the loss Lcπj for class cπj is composed of clas-

sification loss Lcls, regression loss Lloc and contrastive-
reconstruction loss Lcont.

Classification loss. Lcls takes all predictions as input
and makes the model learn to distinguish whether a pre-
dicted box belongs to cπj . The predicted box has the label

δ
cπj
i = 1 if and only if it is assigned to a ground-truth box

with class label cπj . We implement Lcls with focal loss [23].
Regression loss. Since our intention is to generate class-

specific boxes, i.e. input decoder with query of class cπj and
output box of class cπj , we only select the ground-truth box

with class label cπj for optimization, i.e. δ
cπj
i = 1, making

the predicted boxes to be closer to GT boxes with class label
cπj . The Lloc is implement with l1 loss and GIoU loss [35].

Contrastive-reconstruction loss. In ZSD tasks, the
original visual space is not well-structured due to the lack
of discriminative information, many previous works solved
it by introducing a reconstruction loss to guide the distribu-
tion of visual features. Here, we combine the reconstruction
loss and contrastive loss to bring a higher intra-class com-
pactness and inter-class separability of the visual structure.

In particular, we project the last hidden features of de-
coder to the semantic space, where the projected hidden
features of positive predictions are constraint to be as close
as possible to ωπj , which is the semantic vector of class cπj ,
and the negative ones are constraint to be as far as possible
to ωπj . Formally, we denote the last hidden feature of opti-
mal box (δ̂τσ̂i

, b̂τσ̂i
) that matched to GT box (ci, bi) as zτσ̂k

and the Lcont is formulated as:

Lcont =
1

Npos

Tτ∑
i=1

1(ci=cπj )
Lcont(zτσ̂i

) (11)

Lcont(zτσ̂i
) = − log

exp[hρ(zτσ̂i
) · ωπj /κ]∑Tτ

k=1 1(ck ̸=∅) exp[hρ(zτσ̂k
) · ωπj /κ]

(12)
where hρ is a linear layer that project the hidden feature
to the semantic space. Npos is the number of positive pre-
dictions of class cπj . κ is a temperature hyper-parameter
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as in InfoNCE [28]. The optimization of the above loss
function increases the instance-level similarity between pro-
jected hidden features of positive predictions with semantic
vector ωπj and space the negative ones. As a result, visual
features of the same class will form a tighter cluster.

Total loss function. We compute the loss function with
Eq.(10) for each class cπj ∈ Cπ , separately. For negative
classes C−

π , only classification loss is calculated. Finally,
the loss of current episode is averaged over all classes in
sampled class set Cπ:

L =
1

L(Cπ)

L(Cπ)∑
j=1

Lcπj (13)

where L(Cπ) is the number of classes in Cπ . We utilize L
for model optimization.

4. Experiments
4.1. Datasets and splits

Following previous works [40, 17], we takes two
benchmark datasets for evaluation: PASCAL VOC
2007+2012 [9] and MS COCO 2014 [24].

Datasets: PASCAL VOC contains 20 classes of objects
for object detection. More specifically, the PASCAL VOC
2,007 is composed of 2,501 training images, 2,510 valida-
tion images, and 5,011 test images. The PASCAL VOC
2012 dataset comprises 5,717 training images and 5,823
validation images, without test images released. MS COCO
2014 is a benchmark dataset designed for object detection
and semantic segmentation tasks, which contains 82,783
training and 40,504 validation images from 80 categories.
For PASCAL VOC and MS COCO, we adopt the Fast-
Text [26] to extract the semantic vectors following [14, 17].

Seen/unseen splits: All splits follow the previous set-
ting [40, 17]. For PASCAL VOC, we use a 16/4 split pro-
posed in [7]. For MS COCO, we follow the same proce-
dures described in [2, 29, 17] to take 2 different splits, i.e.
48/17 and 65/15. For all datasets, the images that contains
unseen classes in the training set are removed to guarantee
that unseen objects will not be available during training.

4.2. Evaluation protocols

We adopt the widely-used evaluation protocols proposed
in [2, 7]. For PASCAL VOC, mAP with IoU threshold 0.5 is
used to evaluate the performance. For MS COCO, mAP and
recall@100 with three different IoU threshold (i.e. 0.4,0.5
and 0.6) are utilized for evaluation. For GZSD setting that
contains both seen and unseen classes, the performance is
evaluated by Harmonic Mean (HM).

4.3. Implementation details

We build Meta-ZSDETR on Deformable DETR [48]
with ResNet-50 [16] as backbone. The number of queries

Method ZSD GZSD

S U HM

SAN [31] 59.1 48.0 37.0 41.8
HRE [8] 54.2 62.4 25.5 36.2
PL [30] 62.1 - - -
BLC [45] 55.2 58.2 22.9 32.9
SU [15] 64.9 - - -
Robust-Syn [17] 65.5 47.1 49.1 48.1
ContrastZSD [40] 65.7 63.2 46.5 53.6
Meta-ZSDETR 70.3 67.6 56.3 61.4

Table 1. The results of mAP in PASCAL VOC with IoU=0.5 under
ZSD and GZSD settings. Here, “S” denotes seen classes, “U”
denotes unseen classes and “HM” denotes harmonic mean.

Method car dog sofa train mAP

SAN [31] 56.2 85.3 62.6 26.4 57.6
HRE [8] 55.0 82.0 55.0 26.0 54.5
PL [30] 63.7 87.2 53.2 44.1 62.1
BLC [45] 43.7 86 60.8 30.1 55.2
SU [15] 59.6 92.7 62.3 45.2 64.9
Robust-Syn [17] 60.1 93.0 59.7 49.1 65.5
ContrastZSD [40] 65.5 86.4 63.1 47.9 65.7
Meta-ZSDETR 69.0 92.4 65.7 54.1 70.3

Table 2. Class-wise AP and mAP on unseen classes in PASCAL
VOC under ZSD setting.

N is set to 900. For the sampled class set Cπ , the positive
classes consist of the classes that appear in the image and
the negative classes is sampled from Cs. The positive rate
λπ is set to 0.5. The number of Transformer encoder lay-
ers and decoder layers is set to 6. The temperature hyper-
parameter κ in Eq.(12) is set to 0.2. We train our model
for total 500,000 iterations with batch size 16, i.e. each
iteration contains 16 episodes in parallel. Following De-
formable DETR, different coefficients are utilized to weight
different loss functions, where 1.0 is used for classification
loss, 5.0 is used for l1 loss of regression head, 2.0 is used for
GIoU loss of regression head and 1.0 is used for contrastive-
reconstruction loss. More details can refer to our code.

4.4. Comparison with existing methods

4.4.1 PASCAL VOC

We present the results of PASCAL VOC in Tab. 1, where we
can see that our method performs best among all existing
methods under both ZSD and GZSD settings, and lift the
mAP in PASCAL VOC to a higher level.

Specifically, in ZSD setting, Meta-ZSDETR achieves
70.3 mAP and outperform the second-best model Con-
trastZSD [40] by a large margin of 4.6 mAP, which is the
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Method Split
Recall@100 mAP

IoU=0.4 IoU=0.5 IoU=0.6 IoU=0.5

DSES [3] 48/17 40.2 27.2 13.6 0.5
TD [22] 48/17 45.5 34.3 18.1 -
PL [30] 48/17 - 43.5 - 10.1
BLC [45] 48/17 51.3 48.8 45.0 10.6
ZSDTR [43] 48/17 51.8 48.5 44.5 10.4
Robust-Syn [17] 48/17 58.1 53.5 47.9 13.4
ContrastZSD [40] 48/17 56.1 52.4 47.2 12.5
Meta-ZSDETR 48/17 62.3 59.8 54.2 15.1

PL [30] 65/15 - 37.7 - 12.4
BLC [45] 65/15 57.2 54.7 51.2 14.7
SU [15] 65/15 54.4 54.0 47.0 19.0
ZSDTR [43] 65/15 63.8 60.3 56.5 13.2
Robust-Syn [17] 65/15 65.3 62.3 55.9 19.8
ContrastZSD [40] 65/15 62.3 59.5 55.1 18.6
Meta-ZSDETR 65/15 69.1 66.7 59.0 22.5

Table 3. ZSD performance of Recall@100 and mAP with different
IoU thresholds on MS COCO dataset.

first time to boost the performance of ZSD setting on PAS-
CAL VOC to over 70 mAP.

For GZSD setting, our method also achieves SOTAs in
all three metrics, i.e. mAP on seen classes, unseen classes
and harmonic mean, which brings about 4.4, 9.8 and 7.8
points improvement, respectively. It is worth noting that the
improvement of our method on unseen classes in GZSD set-
ting is extremely large, which proves that our method has a
strong generalization on unseen classes, and can alleviate
the problem that the unseen classes tend to be misclassi-
fied into seen classes to a certain extent. We also report
class-wise mAP in ZSD setting in Tab. 2, where our method
achieves the best performance on 3 classes.

4.4.2 MS COCO

We perform experiments on MS COCO, where the results
of ZSD setting is shown in Tab. 3 and the results of GZSD
setting is shown in Tab. 4. We can see that Meta-ZSDETR
achieves the best results in all metrics under all settings.

For ZSD setting, we can see that mAP of our method
in 48/17 and 65/15 splits outperforms the second-best by
a margin of 1.7 and 2.7 mAP, respectively, which demon-
strates that our method generalizes well to unseen classes.
Meanwhile, we can see that Recall@100 decrease as the
IoU increases in all methods. Compared with other meth-
ods, Meta-ZSDETR has a smaller drop, which is benefit
from that our decoder can generate more accurate boxes
with class semantic information as input.

For GZSD setting, our method achieves SOTAs in both
seen and unseen classes. The harmonic means of mAP un-

Method Split
Recall@100 mAP

S U HM S U HM

PL [30] 48/17 38.2 26.3 31.2 35.9 4.1 7.4
BLC [45] 48/17 57.6 46.4 51.4 42.1 4.5 8.2
ZSDTR [43] 48/17 74.3 48.4 60.5 48.5 5.6 9.5
Robust-Syn [17] 48/17 59.7 58.8 59.2 42.3 13.4 20.4
ContrastZSD [40] 48/17 65.7 52.4 58.3 45.1 6.3 11.1
Meta-ZSDETR 48/17 74.3 59.0 65.8 48.7 14.6 22.5

PL [30] 65/15 36.4 37.2 36.8 34.1 12.4 18.2
BLC [45] 65/15 56.4 51.7 53.9 36.0 13.1 19.2
SU [15] 65/15 57.7 53.9 55.8 36.9 19.0 25.1
ZSDTR [43] 65/15 69.1 59.5 61.1 40.6 13.2 20.2
Robust-Syn [17] 65/15 58.6 61.8 60.2 37.4 19.8 26.0
ContrastZSD [40] 65/15 62.9 58.6 60.7 40.2 16.5 23.4
Meta-ZSDETR 65/15 71.1 65.4 68.1 45.9 21.7 29.5

Table 4. GZSD performance of Recall@100 and mAP with
IoU=0.5 on MS COCO dataset.

Lloc Lcls Lcont Seen Unseen

✓ 39.9 14.5
✓ ✓ 44.8 20.6
✓ ✓ 40.6 15.3
✓ ✓ ✓ 45.9 21.7

Table 5. Ablation study of different combinations of loss functions.

der 48/17 and 65/15 splits are improved from 20.4 to 22.5,
and from 26.0 to 29.5, demonstrating the effectiveness and
superiority of our method. Meanwhile, the Recall@100
also improves due to the powerful class-specific boxes gen-
eration capabilities. We also report the class-wise AP in
65/15 split of MS COCO, which can be found in our sup-
plementary material.

4.5. Ablation study

We analyze the effects of various components in Meta-
ZSDETR. Unless otherwise specified, the experiments are
carried out on MS COCO with 65/15 split under GZSD set-
ting and use mAP with IoU=0.5 as metric.

Effects of different loss functions. Here, we analyze
the effects of three loss functions in meta-contrastive learn-
ing. We utilize different combinations of regression loss
Lloc, classification loss Lcls and contrastive-reconstruction
loss Lcont to optimize the model, and show the results in
Tab. 5. Since the regression loss is necessary, we keep
it for all combinations. For model without classification
loss Lcls, we do not perform the boxes filter and directly
use the class-specific boxes predicted from regression head,
where the scores are generated randomly. As we can see,
if the model is only trained with regression head to gen-
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Heads Ŷpos Ŷother Ŷbg Seen Unseen

Classification Head
✓ ✓ 43.7 17.9
✓ ✓ 44.8 19.0
✓ ✓ ✓ 45.9 21.7

Regression Head ✓ 45.9 21.7
✓ ✓ 42.1 16.5

Contrastive Head
✓ 45.1 21.0
✓ ✓ 45.9 21.7
✓ ✓ ✓ 45.4 21.3

Table 6. Ablation study on using different combinations of predic-
tions to train three heads.

erate class-specific boxes, it can achieve a mAP of 14.5
in unseen classes, which is relatively low, but also sur-
passes many previous methods. Adding the classification
loss will greatly boost the performance of unseen classes
to 20.6 mAP, which thanks to the powerful discriminative
ability of the classification head that can filter inaccurate
boxes. Meanwhile, the contrastive-reconstruction loss can
improve the performance with and without the classification
head about 1 point. Finally, the combination of three losses
achieves the best performance.

Study for training of different heads. As describe,
based on the class-specific bipartite matching for class cπj ,
all predictions are split into three different types: the posi-
tive predictions Ŷpos assigned to GT boxes of cπj , the neg-
ative predictions Ŷother assigned to other classes and the
negative predictions Ŷbg that belong to background. Here,
we study different combinations of them to train three heads
and the results are shown in Tab. 6. We can see that: 1) For
classification head, since it aims to filter all kinds of nega-
tive predictions, using all predictions to train it can achieve
the best performance. 2) For regression head, if we train it
with GT boxes of all classes, i.e. using Ŷpos and Ŷother, the
regression head will degenerate into a class-agnostic RPN,
which will greatly reduce the recall of unseen classes, thus
lead to a lower mAP. 3) For contrastive head, on one hand,
if we only use Ŷpos for training, it will degenerate into a
reconstruction loss, which has been widely used in previous
works and it will bring a 0.4 mAP improvement in unseen
classes compared with the version without it. On the other
hand, compared with using all predictions, removing back-
ground predictions will make the contrastive head focus on
distinguishing Ŷother and inputed semantic vectors of class
cπj , thus brings more improvement.

Visualization for contrastive-reconstruction loss.
Here, we study the influence of contrastive-reconstruction
loss on visual space by visualizing the distribution of hid-
den features with t-SNE. We visualize the last hidden fea-
tures of decoder in unseen classes of PASCAL VOC. The
result is shown in Fig. 4. As we can see, our contrastive-

Without Contrastive Head With Contrastive Head

Figure 4. The t-SNE visualization of the last hidden layer of de-
coder. We can see that the contrastive head can separate different
classes in visual space.

Figure 5. The effect of number of queries and positive rate of Cπ

reconstruction loss can further separate different classes in
visual space and bring a higher intra-class compactness and
inter-class separability of the visual structure.

Effect of number of queries and positive rate. We
study the effect of number of queries N and positive rate
λπ of sampled class set Cπ . We found that λπ have dif-
ferent influence under different number of queries N . We
change the positive rate λπ in different settings of N and
report the mAP of converged model in unseen classes. In
each episode, we control λπ by sampling different num-
ber of negative classes. All models are trained for 500,000
episodes. The results are shown in Fig. 5. As we can see, a
larger N tends to have a better performance due to a higher
recall, and of course a higher amount of calculation. Mean-
while, when N is small (e.g. 100), a small positive rate will
greatly reduce the amount of positive queries for training,
thereby reducing the model performance. When N is large
(e.g. 900), the number of positive queries is guaranteed and
more negative queries are need for the classification head to
learn to distinguish among them. Therefore, we can see the
best performance is achieved when λπ is 0.5 and N is 900.

5. Conclusion
In this paper, we present the first work that combine

DETR and meta-learning to perform zero-shot object de-
tection, which formalize the training as individual episode
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based meta-learning task. In each episode, we randomly
sample an image and a class set. The meta-learning task is
to make the model learn to detect all appeared classes of the
sampled class set on the image. To achieve this, we train the
decoder to directly predict class-specific boxes with class-
specific queries as input, under the supervision of our meta-
contrastive learning that contains three different heads. We
conduct extensive experiments on the benchmark datasets
MSCOCO and PASCAL VOC. Experimental results show
that our method outperforms the existing ZSD methods. In
the future, we will focus on further performance improve-
ment.
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tional Natural Science Foundation of China (NSFC) under
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