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Abstract

Explaining the predictions of deep neural nets has been

a topic of great interest in the computer vision literature.

While several gradient-based interpretation schemes have

been proposed to reveal the influential variables in a neu-

ral net’s prediction, standard gradient-based interpretation

frameworks have been commonly observed to lack robust-

ness to input perturbations and flexibility for incorporating

prior knowledge of sparsity and group-sparsity structures.

In this work, we propose MoreauGrad as an interpretation

scheme based on the classifier neural net’s Moreau enve-

lope. We demonstrate that MoreauGrad results in a smooth

and robust interpretation of a multi-layer neural network

and can be efficiently computed through first-order opti-

mization methods. Furthermore, we show that Moreau-

Grad can be naturally combined with L1-norm regulariza-

tion techniques to output a sparse or group-sparse explana-

tion which are prior conditions applicable to a wide range

of deep learning applications. We empirically evaluate the

proposed MoreauGrad scheme on standard computer vision

datasets, showing the qualitative and quantitative success

of the MoreauGrad approach in comparison to standard

gradient-based interpretation methods 1.

1. Introduction

Deep neural networks (DNNs) have achieved state-of-

the-art performance in many computer vision problems in-

cluding image classification [11], object detection [29], and

medical image analysis [19]. While they manage to attain

super-human scores on standard image and speech recogni-

tion tasks, a reliable application of deep learning models to

real-world problems requires an interpretation of their pre-

dictions to help domain experts understand and investigate

the basis of their predictions. Over the past few years, de-

veloping and analyzing interpretation schemes that reveal

1The paper’s code is available at https://github.com/

buyeah1109/MoreauGrad.
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Figure 1. Interpretation of Sparse MoreauGrad (ours) vs. standard

gradient-based baselines on an ImageNet sample before and after

adding a norm-bounded interpretation adversarial attack.

the influential features in a neural network’s prediction have

attracted great interest in the computer vision community.

A standard approach for interpreting neural nets’ pre-

dictions is to analyze the gradient of their prediction score

function at or around an input data point. Such gradient-

based interpretation mechanisms result in a feature saliency

map revealing the influential variables that locally affect

the neural net’s assigned prediction score. Three well-

known examples of gradient-based interpretation schemes

are the simple gradient [21], integrated gradients [24], and

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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DeepLIFT [20] methods. While the mentioned methods

have found many applications in explaining neural nets’

predictions, they have been observed to lack robustness to

input perturbations and to output a dense noisy saliency map

in their application to computer vision datasets [6, 8]. Con-

sequently, these gradient-based explanations can be consid-

erably altered by minor random or adversarial input noise.

A widely-used approach to improve the robustness and

sharpness of gradient-based interpretations is SmoothGrad

[22] which applies Gaussian smoothing to the mentioned

gradient-based interpretation methods. As shown by [22],

SmoothGrad can significantly boost the visual quality of

a neural net’s gradient-based saliency map. On the other

hand, SmoothGrad typically leads to a dense interpretation

vector and remains inflexible to incorporate prior knowl-

edge of sparsity and group-sparsity structures. Since a

sparse saliency map is an applicable assumption to sev-

eral image classification problems where a relatively small

group of input variables can completely determine the im-

age label, a counterpart of SmoothGrad which can simulta-

neously achieve sparse and robust interpretation will be of

significant use in computer vision problems.

In this paper, we propose a novel approach, which we

call MoreauGrad, to achieve a provably smooth gradient-

based interpretation with potential sparsity or group-

sparsity properties. The proposed MoreauGrad outputs the

gradient of a classifier’s Moreau envelope which is a use-

ful optimization tool for enforcing smoothness in a tar-

get function. We leverage convex analysis to show that

MoreauGrad behaves smoothly around an input sample

and therefore provides an alternative optimization-based ap-

proach to SmoothGrad for achieving a smoothly-changing

saliency map. As a result, we demonstrate that similar to

SmoothGrad, MoreauGrad offers robustness to input pertur-

bations, since a norm-bounded perturbation will only lead

to a bounded change to the MoreauGrad interpretation.

Next, we show that MoreauGrad can be flexibly com-

bined with L1-norm-based regularization penalties to out-

put sparse and group-sparse interpretations. Our pro-

posed combinations, Sparse MoreauGrad and Group-Sparse

MoreauGrad, take advantage of elastic-net [31] and group-

norm [16] penalty terms to enforce sparse and group-sparse

saliency maps, respectively. We show that these exten-

sions of MoreauGrad preserve the smoothness and robust-

ness properties of the original MoreauGrad scheme. There-

fore, our discussion demonstrates the adaptable nature of

MoreauGrad for incorporating prior knowledge of sparsity

structures in the output interpretation.

Finally, we present the empirical results of our numer-

ical experiments applying MoreauGrad to standard image

recognition datasets and neural net architectures. We com-

pare the numerical performance of MoreauGrad with stan-

dard gradient-based interpretation baselines. Our numeri-

cal results indicate the satisfactory performance of vanilla

and L1-norm-based MoreauGrad in terms of visual quality

and robustness. Figure 1 shows the robustness and spar-

sity of the Sparse MoreauGrad interpretation applied to an

ImageNet sample in comparison to standard gradient-based

saliency maps. As this and our other empirical findings

suggest, MoreauGrad can outperform standard baselines in

terms of the sparsity and robustness properties of the out-

put interpretation. In the following, we summarize the main

contributions of this paper:

• Proposing MoreauGrad as an interpretation scheme based

on a classifier function’s Moreau envelope

• Analyzing the smoothness and robustness properties of

MoreauGrad by leveraging convex analysis

• Introducing L1-regularized Sparse MoreauGrad to obtain

an interpretation satisfying prior sparsity conditions

• Providing numerical results supporting MoreauGrad over

standard image recognition datasets

2. Related Work

Gradient-based Interpretation. A large body of related

works develop gradient-based interpretation methods. Si-

monyan et al. [21] propose to calculate the gradient of a

classifier’s output with respect to an input image. The sim-

ple gradient approach in [21] has been improved by sev-

eral related works. Notably, the method of Integrated Gra-

dients [24] is capable of keeping highly relevant pixels in

the saliency map by aggregating gradients of image sam-

ples. SmoothGrad [22] removes noise in saliency maps

by adding Gaussian-random noise to the input image. The

CAM method [30] analyzes the information from global av-

erage pooling layer for localization, and Grad-CAM++ [1]

improves over Grad-CAM [18] and generates coarse heat-

maps with improved multi-object localization. The Norm-

Grad [17] focuses on the weight-based gradient to analyze

the contribution of each image region. DeepLIFT [20] uses

difference from reference to propagate an attribution sig-

nal. However, the mentioned gradient-based methods do

not obtain a sparse interpretation, and their proper combi-

nation with L1-regularization to promote sparsity remains

highly non-trivial and challenging. On the other hand, our

proposed MoreauGrad can be smoothly equipped with L1-

regularization to output sparse interpretations and can fur-

ther capture group-sparsity structures.

Mask-based Interpretation. Mask-based interpretation

methods rely on adversarial perturbations to interpret neural

nets. Applying a mask which perturbs the neural net input,

the importance of input pixels is measured by a masked-

based method. This approach to explaining neural nets has

been successfully applied in References [26, 5, 14, 2] and
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has been shown to benefit from dynamic perturbations [9].

More specifically, Dabkowski and Gal [2] introduce a real-

time mask-based detection method; Fong and Vedaldi [5]

develop a model-agnostic approach with interpretable per-

turbations; Wagner et al. [26] propose a method that could

generate fine-grained visual interpretations. Moreover, Lim

et al. [14] leverage local smoothness to enhance their ro-

bustness towards samples attacked by PGD [15]. How-

ever, [5] and [2] show that perturbation-based interpretation

methods are still vulnerable to adversarial perturbations.

We note that the discussed methods depend on optimiz-

ing perturbation masks for interpretations, and due to the

non-convex nature of neural net loss functions, their inter-

pretation remains sensitive to input perturbations. In con-

trast, our proposed MoreauGrad can provably smooth the

neural net score function, and can adapt to non-convex func-

tions using norm regularization. Hence, MoreauGrad can

improve both the sparsity and robustness of the interpreta-

tion.

Robust Interpretation. The robustness of interpretation

methods has been a subject of great interest in the literature.

Ghorbani et al. [6] introduce a gradient-based adversarial

attack method to alter the neural nets’ interpretation. Dom-

browski et al. [4] demonstrate that interpretations could be

manipulated, and they suggest improving the robustness via

smoothing the neural net classifier. Heo et al. [8] propose a

manipulation method that is capable of generalizing across

datasets. Subramanya et al. [23] create adversarial patches

fooling both the classifier and the interpretation.

To improve the robustness, Sparsified-SmoothGrad [13]

combines a sparsification technique with Gaussian smooth-

ing to achieve certifiable robustness. The related works

[26, 28, 5, 14, 2] discuss the application of adversarial de-

fense methods against classification-based attacks to inter-

pret the prediction of neural net classifiers. We note that

these papers’ main focus is not on defense schemes against

interpretation-based attacks. Specifically, [26] filter gra-

dients internally during backpropogation, and [14] lever-

age local smoothness to integrate more samples. Unlike

the mentioned papers, our work proposes a model-agnostic

optimization-based method which is capable of generating

simultaneously sparse and robust interpretations.

3. Preliminaries

In this section, we review three standard interpretation

methods as well as the notation and definitions in the paper.

3.1. Notation and Definitions

In the paper, we use notation X ∈ R
d to denote the fea-

ture vector and Y ∈ {1, . . . , k} to denote the label of a sam-

ple. In addition, fw : Rd → R
k denotes a neural net classi-

fier with its weights contained in vector w ∈ W whereW
is the feasible set of the neural net’s weights. Here fw maps

the d-dimensional input x to a k-dimensional prediction

vector containing the likelihood of each of the k classes in

the classification problem. For every class c ∈ {1, . . . , k},
we use the notation fw,c : R

d → R to denote the c-th entry

of fw’s output which corresponds to class c.

We use ∥x∥p to denote the ℓp-norm of input vector x.

Furthermore, we use notation ∥x∥p,q to denote the ℓp,q-

group-norm of x defined in the following equation for given

variable subsets S1, . . . , St ⊆ {1, . . . , d}:

∥x∥p,q =
∥∥ [∥xS1

∥p, . . . , ∥xSt
∥p
] ∥∥

q
(1)

In other words, ∥x∥p,q is the ℓq-norm of a vector containing

the ℓp-norms of the subvectors of x characterized by index

subsets S1, . . . , St.

3.2. Gradient­based Saliency Maps

In our theoretical and numerical analysis, we con-

sider the following widely-used gradient-based interpreta-

tion baselines which apply to a classifier neural net fw and

predicted class c for input x:

1. Simple Gradient: The simple gradient interpretation re-

turns the saliency map of a neural net score function’s

gradient with respect to input x:

SG
(
fw,c,x

)
:= ∇xfw,c(x). (2)

In the applications of the simple gradient approach, c is

commonly chosen as the neural net’s predicted label with

the maximum prediction score.

2. Integrated Gradients: The integrated gradients ap-

proach approximates the integral of the neural net’s gra-

dient function between a reference point x0 and the input

x. Using m intermediate points on the line segment con-

necting x0 and x, the integrated gradient output will be

IG
(
fw,c,x

)
:=

∆x

m

m∑

i=1

∇xfw,c

(
x0 +

i

m
∆x

)
. (3)

In the above ∆x := x − x0 denotes the difference be-

tween the target and reference points x,x0.

3. SmoothGrad: SmoothGrad considers the averaged sim-

ple gradient score over an additive random perturbation

Z drawn according to an isotropic Gaussian distribution

Z ∼ N (0, σ2Id). In practice, the SmoothGrad inter-

pretation is estimated over a number t of independently

drawn noise vectors z1, . . . , zt
i.i.d.∼ N (0, σ2Id) accord-

ing to the zero-mean Gaussian distribution:

SmoothGrad
(
fw,c,x

)
:= E

[
∇xfw,c(x+ Z)

]
(4)

≈ 1

t

t∑

i=1

∇xfw,c(x+ zi).
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4. MoreauGrad: An Optimization-based In-

terpretation Framework

As discussed earlier, smooth classifier functions with

a Lipschitz gradient help to obtain a robust explanation

of neural nets. Here, we propose an optimization-based

smoothing approach based on Moreau-Yosida regulariza-

tion. To introduce this optimization-based approach, we

first define a function’s Moreau envelope.

Definition 1. Given regularization parameter ρ > 0, we

define the Moreau envelope of a function g : Rd → R as:

gρ(x) := min
x̃∈Rd

g
(
x̃
)
+

1

2ρ

∥∥x̃− x
∥∥2
2
. (5)

In the above definition, ρ > 0 represents the Moreau-

Yosida regularization coefficient. Applying the Moreau en-

velope, we propose the MoreauGrad interpretation as the

gradient of the classifier’s Moreau envelope at an input x.

Definition 2. Given regularization parameter ρ > 0, we

define the MoreauGrad interpretation MGρ : Rd → R
d of

a neural net fw predicting class c for input x as

MGρ(fw,c,x) := ∇fρ
w,c(x).

To compute and analyze the MoreauGrad explanation,

we first discuss the optimization-based smoothing enforced

by the Moreau envelope. Note that the Moreau envelope is

known as an optimization tool to turn non-smooth convex

functions (e.g. ℓ1-norm) into smooth functions. Here, we

discuss an extension of this result to weakly-convex func-

tions which also apply to non-convex functions.

Definition 3. A function g : Rd → R is called λ-weakly

convex if Φ(x) := g(x) + λ
2 ∥x∥22 is a convex function, i.e.

for every x1,x2 ∈ R
d and 0 ≤ α ≤ 1 we have:

g
(
αx1 + (1− α)x2

)
≤ αg(x1) + (1− α)g(x2)

+
λα(1− α)

2

∥∥x1 − x2

∥∥2
2
.

Theorem 1. Suppose that g : Rd → R is a λ-weakly convex

function. Assuming that 0 < ρ < 1
λ

, the followings hold for

the optimization problem of the Moreau envelope gρ and the

optimal solution x̃∗
ρ(x) solving the optimization problem:

1. For every x, the gradient of gρ and Clarke subdifferen-

tial of g (denoted by ∂0g) are related as:

∇gρ(x) ∈ ∂0g
(
x̃∗
ρ(x)

)
,

which implies that if g is differentiable at x̃∗
ρ(x) we have

∇gρ(x) = ∇g(x̃∗
ρ(x)).

2. The difference x̃∗
ρ(x)− x is aligned with gρ’s gradient:

∇gρ(x) = −1
ρ

(
x̃∗
ρ(x)− x

)
.

3. gρ will be max{ 1
ρ
, λ
1−ρλ

}-smooth, i.e. for every x1,x2:

∥∥∇gρ(x1)−∇gρ(x2)
∥∥
2
≤ 1

min
{
ρ, 1

λ
− ρ

}
∥∥x1−x2

∥∥
2
.

Proof. This result is well-known for convex functions. In

the Appendix, we provide a new proof for the result.

Corollary 1. Assume that the prediction score function

fw,c : R
d → R is λ-weakly convex. Then, the MoreauGrad

interpretation MGρ will remain robust under an ϵ-ℓ2-norm

bounded perturbation ∥δ∥2 ≤ ϵ as

∥∥MGρ(x+ δ)−MGρ(x)
∥∥
2
≤ ϵ

min
{
ρ, 1

λ
− ρ

} .

The above results imply that by choosing a small enough

coefficient ρ the Moreau envelope will be a differentiable

smooth function. Moreover, the computation of the Moreau

envelope will reduce to a convex optimization task that

can be solved by standard or accelerated gradient descent

with global convergence guarantees. Therefore, one can ef-

ficiently compute the MoreauGrad interpretation by solv-

ing the optimization problem via the gradient descent al-

gorithm. Algorithm 1 applies gradient descent to compute

the solution to the Moreau envelope optimization which ac-

cording to Theorem 1 yields the MoreauGrad explanation.

As discussed above, MoreauGrad will be provably ro-

bust as long as the regularization coefficient will dominate

the weakly-convexity degree of the prediction score. In the

following proposition, we show this condition can be en-

forced by applying either Gaussian smoothing.

Proposition 1. Suppose that fw,c is L-Lipschitz, that

is for every x1,x2 |fw,c(x1) − fw,c(x2)| ≤ L∥x2 −
x1∥2, but could be potentially non-differentiable and non-

smooth. Then, hw,c(x) := E[fw,c(x + Z)] where Z ∼
N (0, σ2Id×d) will be L

σ
-weakly convex.

Proof. We postpone the proof to the Appendix.

The above proposition suggests the regularized Moreau-

Grad which regularizes the neural net function to satisfy the

weakly-convex condition through Gaussian smoothing.

5. Sparse and Group-Sparse MoreauGrad

To further extend the MoreauGrad approach to out-

put sparsely-structured feature saliency maps, we further

include an L1-norm-based penalty term in the Moreau-

Yosida regularization and define the following L1-norm-

based sparse and group-sparse Moreau envelope.

Definition 4. For a function g : Rd → R and regularization

coefficients ρ, η > 0, we define L1-Moreau envelope g
ρ,η
L1

:

g
ρ,η
L1

(x) := min
x̃∈Rd

g(x̃) +
1

2ρ

∥∥x̃− x
∥∥2
2
+ η

∥∥x̃− x
∥∥
1
.
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We also define L2,1-Moreau envelope g
ρ,η
L2,1

as

g
ρ,η
L2,1

(x) := min
x̃∈Rd

g(x̃) +
1

2ρ

∥∥x̃− x
∥∥2
2
+ η

∥∥x̃− x
∥∥
2,1

.

In the above, the group norm ∥ · ∥2,1 is defined as ∥x∥2,1 :=∑t

i=1 ∥xSi
∥2 for given subsets S1, . . . , St ⊆ {1, . . . , d}.

Definition 5. Given regularization coefficients ρ, η > 0,

we define the Sparse MoreauGrad (S-MGρ,η) and Group-

Sparse MoreauGrad (GS-MGρ,η) interpretations as

S-MGρ,η(fw,c,x) :=
1

ρ

(
x̃∗
L1
(x)− x

)
,

GS-MGρ,η(fw,c,x) :=
1

ρ

(
x̃∗
L2,1

(x)− x
)
,

where x̃∗
L1
(x), x̃∗

L2,1
(x) denote the optimal solutions to the

optimization tasks of f
ρ,η
w,c,L1

(x), fρ,η
w,c,L2,1

(x), respectively.

In the following theorem, we extend the shown results

for the smoothness and robustness of vanilla Moreau en-

velope to our proposed L1-norm-based extensions of the

Moreau envelope. In this theorem, we use the follow-

ing definitions for the soft-thresholding operators STα and

GSTα for the sparse and group-sparse cases which are de-

fined entrywise and group-entrywise as follows

STα(x)i :=

{
0 if |xi| ≤ α

xi − sign(xi)α if |xi| > α,

GSTα(x)Si
:=

{
0 if ∥xSi

∥2 ≤ α(
1− α

∥xSi
∥2

)
xSi

if ∥xSi
∥2 > α.

Theorem 2. Suppose that g : Rd → R is a λ-weakly con-

vex function. Then, assuming that 0 < ρ < 1
λ

, Theorem

1’s parts 1 and 3 will further hold for the sparse Moreau

envelope g
ρ,η
L1

and group-sparse Moreau envelope g
ρ,η
L2,1

and

their optimization problems’ optimal solutions x̃∗
ρ,η,L1

(x)
and x̃∗

ρ,η,L2,1
(x). To parallel Theorem 1’s part 2 for L1-

Moreau envelope, the followings hold

STρη

(
−ρ∇gρ,ηL1

(x)
)
= x̃∗

ρ,η,L1
(x)− x,

GSTρη

(
−ρ∇gρ,ηL2,1

(x)
)
= x̃∗

ρ,η,L2,1
(x)− x.

Proof. We defer the proof to the Appendix.

Corollary 2. Suppose that the prediction score function

fw,c is λ-weakly convex. Assuming that 0 < ρ < 1
λ

,

the Sparse MoreauGrad S-MGρ,η and Group-Sparse More-

auGrad GS-MGρ,η interpretations will be robust to every

norm-bounded perturbation ∥δ∥2 ≤ ϵ as:

∥∥S-MGρ.η(x+ δ)− S-MGρ,η(x)
∥∥
2
≤ ϵ

min
{
ρ, 1

λ
− ρ

} ,
∥∥GS-MGρ,η(x+ δ)− GS-MGρ,η(x)

∥∥
2
≤ ϵ

min
{
ρ, 1

λ
− ρ

} .

Algorithm 1 MoreauGrad Interpretation

Input: data x, label c, classifier fw, regulatization coeff. ρ,

stepsize γ, noise std. parameter σ, number of updates T

Initialize x(0) = x,

for t = 0, . . . , T do

if Regularized Mode then

Draw noise vectors z1, . . . , zm ∼ N (0, σ2Id×d)

Compute gt =
1
m

∑m

i=1∇fw,c(x
(t) + zi)

else

Compute gt = ∇fw,c(x
(t))

end

Update x(t+1) ← (1− γ
ρ
)x(t) − γ(gt − 1

ρ
x)

if Sparse Mode then

Update x(t+1) ← SoftThresholdγη
(
x(t+1)−x

)
+x

end

Output MG(x) = 1
ρ

(
x(T ) − x

)

Based on the above results, we propose applying the

proximal gradient descent algorithm as described in Algo-

rithm 1 to compute the Sparse and Group-Sparse Moreau-

Grad. We defer discussing Algorithm 1’s details to the Ap-

pendix.

6. Numerical Results

We conduct several numerical experiments to evaluate

the performance of the proposed MoreauGrad. Our de-

signed experiments focus on the smoothness, sparsity, and

robustness properties of MoreauGrad interpretation maps as

well as the feature maps of several standard baselines. In the

following, we first describe the numerical setup in our ex-

periments and then present the obtained numerical results

on the qualitative and quantitative performance of interpre-

tation methods.

6.1. Experiment Setup

In our numerical evaluation, we use the following bench-

mark image datasets: CIFAR-10 [10] consisting of 60,000

labeled samples with 10 different labels, tiny-ImageNet

[12] containing 100,000 labels samples with 200 labels,

and ImageNet-1K [3] including 1.4 million labeled sam-

ples with 1,000 labels. For CIFAR-10 and tiny-ImageNet

experiments, we trained a standard ResNet-18 [7] neural

network with the softplus activation on the training set. For

ImageNet experiments, we used an EfficientNet-b0 network

[25] pre-trained on the ImageNet training data. In our ex-

periments, we compared the MoreauGrad schemes with the

following baselines: 1) the simple gradient [21], 2) Inte-

grated Gradients [18], 3) DeepLIFT [20], 4) SmoothGrad
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Figure 2. Top: Visualization of MoreauGrad maps with different coefficient ρ’s. ρ = 0 reduces to the simple gradient method. Bottom:

Visualization of Sparse MoreauGrad maps with different coefficient η’s. η = 0 reduces to the Vanilla MoreauGrad.
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Figure 3. MoreauGrad vs. SmoothGrad gradient discrepancy, measured via the l2-norm distance from the simple gradient map.

[22], 5) Sparsified SmoothGrad [13], 6) RelEx [14]. We

note that for baseline experiments we adopted the official

implementations and conducted the experiments with hy-

perparameters suggested in their work. We present the full

implementation details in the Appendix, and our code is

available in the supplementary material.

6.2. Effects of Smoothness and Sparsity Parameters

We ran the numerical experiments for unregularized

Vanilla MoreauGrad with multiple smoothness coefficient

ρ values to show the effect of the Moreau envelope’s reg-

ularization. Figure 2 visualizes the effect of different ρ on

the Vanilla MoreauGrad saliency map. As can be seen in

this figure, the saliency map qualitatively improves by in-

creasing the value of ρ from 0 to 1. Please note that for

ρ = 0, the MoreauGrad simplifies to the simple gradi-

ent interpretation. However, as shown in Theorem 1 the

proper performance of Vanilla MoreauGrad requires choos-

ing a properly bounded ρ value, which is consistent with

our observation that when ρ becomes too large, the Moreau

envelope will be computationally difficult to optimize and

the quality of interpretation maps could deteriorate to some

extent. As numerically verified in both CIFAR-10, tiny-

ImageNet, and ImageNet experiments, we used the rule of

thumb ρ = 1√
E[∥X∥2]

measured over the empirical training

data to set the value of ρ, which is equal to 1 for the normal-

ized samples in our experiments.

Regarding the sparsity hyperparameter η in Sparse and

Group-Sparse MoreauGrad experiments, we ran several ex-

perimental tests to properly tune the hyperparameter. Note

that a greater coefficient η enforces more strict sparsity or

group-sparsity in the MoreauGrad interpretation, and the

degree of sparsity could be simply adjusted by changing

this coefficient η. As shown in Figure 2, in our experi-

ments with different η coefficients the interpretation map

becomes sparser as we increase the L1-norm penalty coeffi-

cient η. Similarly, to achieve a group-sparse interpretation,

we used L2,1-regularization on groups of adjacent pixels as

discussed in Definition 4. The effect of the group-sparsity

coefficient was similar to the sparse case in our experiments,

as fewer pixel groups took non-zero values and the output

interpretations showed more structured interpretation maps

when choosing a larger coefficient η. We defer the results on
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Figure 4. Qualitative comparison between Vanilla, Sparse, Group-Sparse MoreauGrad and the baseline methods.

the group-sparsity hyperparameter effect to the Appendix.

Moreover, to investigate the MoreauGrad’s regulariza-

tion effect, we measured the averaged ℓ2-norm discrepancy

between the MoreauGard and simple gradient maps for dif-

ferent smoothness parameter ρ’s. As shown in Figure 3, the

ℓ2-norm discrepancy score grows smoothly with coefficient

ρ. We also measured the averaged gradient discrepancy for

SmoothGrad methods with different smoothness parameter

σ’s. We adjusted η in Sparse MoreauGrad to standardize the

sparsity level for fair comparisons with Sparsified Smooth-

Grad. As Figure 3 shows, SmoothGrad led to similar dis-

crepancy values as in MoreauGrad. Also, Integrated Gra-

dients [24] had a similar averaged gradient discrepancy of

0.34 for CIFAR-10 and 0.40 for ImageNet. As the results

suggest, the baselines similarly deviate from the simple gra-

dient maps, which could be linked to improved visual qual-

ity and robustness, as also observed by [22, 13].

6.3. Qualitative Comparison of MoreauGrad vs.
Standard Gradient­based Baselines

In Figure 4, we illustrate the Vanilla, Sparse, and Group-

Sparse MoreauGrad interpretation outputs as well as the

saliency maps generated by the gradient-based baselines.

The results demonstrate that MoreauGrad generates qual-

itatively sharp and, in the case of Sparse and Group-Sparse

MoreauGrad, sparse interpretation maps. As shown in Fig-

ure 4, promoting sparsity in the MoreauGrad interpretation

maps has improved the visual quality, and managed to erase

the less relevant pixels like the background ones. Also, the

Group-Sparse MoreauGrad maps successfully exhibit both

sparsity and connectivity of selected pixels.

6.4. Robustness of Interpretation Maps

We qualitatively and quantitatively evaluated the robust-

ness of MoreauGrad interpretation. To assess the empir-

ical robustness of interpretation methods, we adopt a L2-

bounded interpretation attack method defined by [13]. Also,

for quantifying the empirical robustness, we adopt three ro-

bustness metrics. The first metric is the Euclidean distance

of the normalized interpretations before and after the attack:

D(I(x), I(x′)) =
∥∥∥

I(x)

∥I(x)∥2
− I(x′)

∥I(x′)∥2

∥∥∥
2

(6)

Note that a larger distance between the normalized maps

indicates a smaller similarity and a higher vulnerability of

the interpretation method to adversarial attacks.

The second metric is the top-k intersection ratio. This

metric is another standard robustness measure used in [6,

13]. This metric measures the ratio of pixels that remain

salient after the interpretation attack. A robust interpretation

is expected to preserve most of the salient pixels under an

attack. The third metric is the structural similarity index

measure (SSIM) [27]. A larger SSIM value indicates that

the two input maps are more perceptively similar.

Using the above metrics, we compared the MoreauGrad

schemes with the baseline methods. As qualitatively shown
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Figure 6. Quantitative robustness comparison between MoreauGrad and the baselines.
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Figure 7. Applications of vanilla and sparse MoreauGrad to ex-

plain two misclassifications on the ImageNet test set.

in Figure 5, using the same attack magnitude, the Moreau-

Grad interpretations are mostly similar before and after the

norm-bounded attack. The qualitative robustness of More-

auGrad seems satisfactory compared to the baseline meth-

ods. Finally, Figure 6 presents a quantitative comparison

of the robustness measures for the baselines and proposed

MoreauGrad on CIFAR-10, tiny ImageNet, and ImageNet

datasets. As shown by these measures, MoreauGrad out-

performs the baselines in terms of the discussed robustness

metrics.

6.5. Applications of MoreauGrad Interpretation

As shown in Figure 2, MoreauGrad interpretation maps

may be further refined to promote sparsity and retain only

the salient pixels. The sparsity level could be flexibly ad-

justed via parameter η in accordance with the target dataset.

Moreover, both vanilla and sparse MoreauGrad can be em-

ployed for explaining DNN’s misclassifications in image

recognition tasks. Figure 7 presents two examples of such

misclassifications, where ”gas pump” and ”church” are er-

roneously classified as ”tricycle” and ”restaurant”, respec-

tively. Sparse MoreauGrad identifies the source of these

errors and relates them to the presence of ”a person in the

middle of two wheels” and ”people sitting on benches”, re-

spectively. In the Appendix, we present other examples of

using MoreauGrad for explaining DNNs’ misclassification.

7. Conclusion

In this work, we introduced MoreauGrad as an

optimization-based interpretation method for deep neural

networks. We demonstrated that MoreauGrad can be flex-

ibly combined with L1-regularization methods to output

sparse and group-sparse interpretations. We further showed

that the MoreauGrad output will enjoy robustness against

input perturbations. While our analysis focuses on the spar-

sity and robustness of the MoreauGrad explanation, study-

ing the consistency and transferability of MoreauGrad inter-

pretations is an interesting future direction. Moreover, the

application of MoreauGrad to convex and norm-regularized

neural nets could be another topic for future study. Finally,

our analysis of ℓ1-norm-based Moreau envelope could find

independent applications in other deep learning contexts.
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