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Figure 1: The visualization of predicted perceptual artifacts localization on ten image synthesis tasks. The first row contains
unconditionally generated images from StyleGAN2 [19], Latent Diffusion Model (LDM) [42], and Anyres GAN [8]. The
second row shows the results on types of conditional generated images, including super-resolution with Real-ESRGAN [55],
edge-to-image with PITI [53], mask-to-image with PITI [53], image latent composition [9], virtual try-on [15], and portrait
shadow removal [63]. The conditional inputs are placed at the top left of the images. In the last row, we show predictions on
the text-to-image outputs from DALL-E 2 [40] and Stable Diffusion [42].

Abstract

Recent advancements in deep generative models have fa-
cilitated the creation of photo-realistic images across var-
ious tasks. However, these generated images often exhibit
perceptual artifacts in specific regions, necessitating man-

⋆ indicates equal contribution. ♠ work done when Lingzhi is a grad-
uate student at University of Pennsylvania.

ual correction. In this study, we present a comprehen-
sive empirical examination of Perceptual Artifacts Local-
ization (PAL) spanning diverse image synthesis endeavors.
We introduce a novel dataset comprising 10,168 generated
images, each annotated with per-pixel perceptual artifact
labels across ten synthesis tasks. A segmentation model,
trained on our proposed dataset, effectively localizes arti-
facts across a range of tasks. Additionally, we illustrate
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its proficiency in adapting to previously unseen models us-
ing minimal training samples. We further propose an in-
novative zoom-in inpainting pipeline that seamlessly recti-
fies perceptual artifacts in the generated images. Through
our experimental analyses, we elucidate several invaluable
downstream applications, such as automated artifact recti-
fication, non-referential image quality evaluation, and ab-
normal region detection in images. The dataset and code
are released here: https://owenzlz.github.io/PAL4VST

1. Introduction
Generative models have made significant progress in a

myriad of image synthesis tasks, including unconditional
generation [5, 21, 19, 17, 12], image inpainting [66, 49, 32,
24, 67, 61], image-to-image translation [37, 41, 48, 44, 53],
and text-to-image synthesis [13, 60, 35, 40, 42, 45, 2],
among others. However, even cutting-edge models occa-
sionally generate implausible content or display unpleasant
artifacts in specific regions of the image, which we refer to
as perceptual artifacts. These artifacts are easily detectable
by the human eye. Therefore, in typical image editing pro-
cesses, users often retouch generated images, masking and
re-editing these regions to achieve perfection.

The manual retouching of perceptual artifacts is time-
consuming and iterative. Such artifacts also pose challenges
for generative models in achieving full automation in im-
age synthesis, editing, or batch processing without human
oversight. These challenges drive our exploration into the
feasibility of training AI oracle models to identify and seg-
ment these perceptual artifacts. A successful implementa-
tion would present users with an automatically delineated
mask of potential artifact areas, eliminating manual mask-
ing. Moreover, we could offer users the option to deploy
established editing techniques, like inpainting, to these de-
tected regions, thereby enhancing the automation of the re-
touching process.

Technically, the ideal goal is to generate a flawless im-
age in a single pass. However, today’s leading large-scale
diffusion models often struggle to capture intricate details
like subtle facial features, hands, and other object-specific
nuances. While integrating more training data or using
weighted loss might appear as potential solutions to these
issues, they could compromise image quality in broader
contexts. Until we achieve perfect single-pass outputs, au-
tomating the localization and refinement of perceptual arti-
facts stands as a promising direction to improve image syn-
thesis quality.

To meet this objective, we’ve amassed a dataset of gener-
ated images, complemented with per-pixel artifact segmen-
tation labels across a range of synthesis tasks. Using this
dataset, we trained a segmentation model adept at localizing
perceptual artifacts across various tasks. Our pretrained ar-

tifact detector showcases its versatility across multiple new
models, adapting with enhanced accuracy even with limited
training samples.

In conjunction with our artifact detection, we also unveil
several practical applications. The foremost of these is the
automatic refinement of artifacts in generated images using
inpainting. However, it’s observed that leading diffusion
inpainting models, like DALL-E [40] and Stable Diffusion
[42], sometimes falter in generating high-fidelity object de-
tails, such as facial features. We hypothesize this may stem
from an unsuitable inpainting context. Consequently, we
introduce a zoom-in inpainting pipeline, presenting a more
apt input context before inpainting. This simple approach
effectively mitigates challenges tied to object detail genera-
tion, without necessitating model training or alterations.

Our primary contributions include:

• A novel high-quality dataset comprising 10,168 im-
ages with per-pixel artifact annotations from humans,
spanning ten diverse image synthesis tasks.

• A segmentation model adept at localizing perceptual
artifacts across multiple synthesis tasks. Our pre-
trained model exhibits a rapid adaptation capability to
new techniques with minimal training examples.

• An novel zoom-in inpainting pipeline for the auto-
mated refinement of intricate details in generated im-
ages.

• Demonstrated applications of our artifact detector,
which include: 1). automatic artifact refinement;
2). reference-free image quality evaluation; and 3).
anomaly detection in natural images.

We will release the dataset and the code.

2. Related Work
Detecting Generated Images. As generated images be-

come increasingly photo-realistic, numerous studies [65,
27, 1, 4, 10, 33, 43, 7, 34, 3] have sought to automatically
detect machine-generated images for forensic purposes.
Given that new state-of-the-art generative models emerge
frequently, an essential question arises: Can we train a
model that generalizes to entirely unseen generative mod-
els? This query is explored in several works [11, 52, 64, 58].
Notably, several of these studies [16, 52, 26] have discerned
that high-frequency details in both generated and real im-
ages can serve as valuable indicators, enabling the devel-
opment of classifiers that can distinguish between fake and
real images up to a certain extent. For example, Wang et
al. [52] demonstrated that classifiers, when trained on im-
ages generated by a specific GAN, can detect the majority
of fake images stemming from other unencountered gener-
ative models. Chai et al. [7] devised a patch-based classi-
fier with limited receptive fields, shedding light on the re-
gions of fake images that are more transparently discerned.
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Figure 2: The left figure shows the raw labels, where the image order (left to right, and top to bottom) follows the order in the
histogram. The histogram demonstrates the Perceptual Artifacts Ratio computed from human labels for different tasks and
domains.

Figure 3: Visualization of the distribution of perceptual ar-
tifacts: On the left, for the StyleGAN2-generated [19] im-
ages, we observe that perceptual artifacts predominantly
concentrate below the chin and around the neck region in
facial images, and around the keypoint regions in full-body
human images. On the right, we display the five COCO-
stuff [6] semantic classes that exhibit the highest and lowest
amounts of artifacts for in-the-wild generated images.

More recently, Ojha and Li et al. [36] identified that an
earlier classifier [51] had an inclination to overfit to high-
frequency noise present in GANs, leading it to erroneously
categorize all diffusion-generated images as real. To rec-
tify this, they incorporated frozen pretrained CLIP-ViT fea-
tures [39], deploying techniques like nearest neighbors or
linear probing to strengthen the model’s generalization ca-
pabilities. Bringing it closer to the context of our work,
techniques like Grad-CAM [46] can be employed to visual-
ize the ’active’ regions in a real-vs-fake classifier, explicitly
highlighting the areas indicative of ’fakeness’ from the per-
spective of artificial neural networks.

Localizing Editing Regions. Beyond simply classify-
ing images as real or generated, numerous research efforts
have sought to localize the edited regions within the gener-
ated or edited images. For example, Wang et al. [51] ex-
ploited Photoshop’s scripting capabilities to automatically
generate edited images. They then effectively trained a
model to predict manipulated facial areas in photos. In the
field of image inpainting, several studies [56, 23, 54] have
demonstrated that high-frequency noise can be sufficiently
informative to precisely segment inpainted areas, especially

when training a model alongside the ground truth inpainting
mask. While these studies bear some resemblance to our
work, their main objective is to pinpoint systematic incon-
sistencies in generated images to distinguish fakes. In con-
trast, our research is centered on detecting and segmenting
artifact areas that are noticeable to human perception. We
argue that localizing perceptual artifacts at a fine-grained
level, rather than the entire edited region, can pave the way
for enhanced generated quality. Notably, Zhang et al. [62]
focused on perceptual artifacts in inpainting tasks. Our
methodology expands upon this, aiming at various synthesis
tasks and their potential downstream applications.

Improving Synthesis Quality During Inference. Sev-
eral previous works have introduced techniques to enhance
image synthesis quality during inference time [28, 5, 12],
and our research aligns with this domain. For instance, the
truncation trick, initially introduced in BigGAN [5], lim-
its latent code sampling to a constrained space using a spe-
cific threshold. This method has been observed to result
in improved visual quality of individual samples. Classi-
fier guidance, as detailed in [12] for diffusion-based mod-
els, suggests utilizing the gradient of a pretrained classifier
to steer the diffusion process in image generation. This en-
sures that the generated images are accurately recognized
by the classifier. Contrasting with these methods, our ap-
proach specifically targets the detection and refinement of
perceptual artifact regions in images while striving to retain
as much of the original content as possible. This differs
from the ’hard’ sample rejection seen in the truncation trick
or the overarching image synthesis guidance provided by
classifier guidance. Furthermore, our method neither relies
on hyperparameters, such as the truncation threshold, nor
requires gradient computation.

3. Methods
3.1. Data Collection and Statistics

We collect our dataset by running inference using the
pretrained models from ten different synthesis tasks. Within
each task, we might run more than one model or checkpoint
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if the model, i,e. StyleGAN2 [19], are trained on multi-
ple domains. Overall, we collect 10,168 images with the
per-pixel artifacts segmentation labels by human experts.
Each image takes roughly one minute to label by a human
expert, and thus, the entire dataset cost ∼170 hours of la-
bor. We split the dataset into a train/test/val set divided as
80%/10%/10%, respectively.

Statistics on Tasks. The area of perceptual artifacts re-
gion highly depends on the complexity of image content,
the nature of the task, and the performance of the synthesis
model. As shown in the left of Figure 2, we can see that
some generated images receive larger marked artifacts re-
gions than the others. We compute the Perceptual Artifacts
Ratio (PAR), which is simply the labeled artifacts region di-
vided by the image area, to quantify the levels of artifacts
for each task. As shown in the histogram of Figure 2, we can
see that the tasks like Edge-to-Image [53], Mask-to-Image
[53], LDM-LSUN [42], and Image Composition [9] have
obviously larger PAR than the others, since the models are
generating relatively complex in-the-wild visual content.

Statistics on Content. Perceptual artifacts are more
prevalent in certain object categories or semantic parts of
images for two primary reasons. Firstly, visual content with
significant variations is inherently challenging to generate.
Secondly, human perceptual judgments tend to be more sen-
sitive to specific regions. With these considerations, we em-
barked on a quantitative exploration of the distribution of
perceptual artifacts in generated images. As depicted on the
left of Figure 3, we calculated the average PAR heatmap for
both face and human images. The heatmap for faces reveals
that artifact-prone areas primarily fall around and beneath
the chin. This is a region where StyleGAN2 [19] often en-
deavors to generate content with high variance—like mi-
crophones, necklaces, and clothing—but struggles to main-
tain high fidelity. The heatmap for human images points
out that artifacts predominantly arise around specific human
keypoints, such as the head, neck, hands, and feet—areas to
which human perception is especially attuned. Regarding
in-the-wild generated images, as seen on the right side of
Figure 3, we discern that ”object” regions typically exhibit
a higher PAR compared to ”stuff” regions.

3.2. Segmenting Perceptual Artifacts

Training Segmentation Models. We formulate the lo-
calization of perceptual artifacts as a binary semantic seg-
mentation problem. To train a single unified model for de-
tecting generic perceptual artifacts, we use data collected
from all tasks. During training, we adopt random cropping
and horizontal flipping to augment the dataset. Our model is
implemented with a Swin-T [29] backbone, where UperNet
[50] serves as the main head and FCN [30] as the auxiliary
head. We train the model using a cross entropy loss and
optimize it with the AdamW [31] optimizer, with a learn-

ing rate of 6 × 10−5, betas of (0.9, 0.999), and weight de-
cay of 0.01. The models are initialized using the pretrained
weights from ADE20K [69]. We observe that it generally
takes less than 20,000 iterations or less than five hours to
converge on 8 NVIDIA A100 GPUs. Note that we do not
focus on the the architecture design in this work.

Efficient Adaption to Unseen Models. Generalizing to
unseen domains is challenging for deep networks, yet it is
necessary for practical usage. Therefore, we also explore
how our pretrained artifacts detector could generalize to to-
tally unseen generative models. In the experiment, we find
that our pretrained model can detect a reasonable amount of
perceptual artifacts in the unseen models. Furthermore, we
find that fine-tuning our pretrained model with as few as ten
images can quickly and effectively improve segmentation
performance. The results are discussed in section 4.2. Fine-
tuning converges within 2,000 iterations, which would take
less than 30 minutes. Labeling 10 images from an unseen
method would take approximately 10 minutes, making this
approach practical. Therefore, our pretrained model allows
for fast adaptation to unseen models with roughly one hour
of effort, making our work applicable and easily scalable in
the future.

3.3. Framing the Inpainting Context by Zoom-In

An important application of our artifacts detector is to
automatically fix the perceptual artifacts region in the gen-
erated images. To construct this pipeline, a simple approach
involves sequentially stacking the pretrained artifacts detec-
tor (F ) and an inpainting model (G). During inference, we
first feed the generated image (Ig) into the artifacts detec-
tor (F ) to segment the artifacts region. Next, we consider
the segmented artifacts mask with slight dilation as the in-
painting mask for Ig and process it through the inpainting
model (G). The resulting artifacts-corrected image is de-
noted as If , and the overall pipeline can be expressed as
If = G(Ig, ϕ(F (Ig))), where ϕ represents dilation.

Although naive inpainting can effectively fix many per-
ceptual artifacts, we have observed systematic errors in re-
cent diffusion-based inpainting models [42, 40] when gen-
erating specific object details such as faces and hands. How-
ever, are these models genuinely incapable of generating
such details? We conjecture that one potential cause of this
error might be incorrect inpainting context. For instance,
we have noticed that image generation generally has higher
fidelity when human faces or hands are relatively prominent
in the image. This could be due to two underlying reasons:
1) photographs or portraits of humans are typically large
and centered in images, resulting in dataset bias; and 2) the
loss on large object regions tends to be relatively greater
than that of small objects, providing stronger feedback to
the model during training.

Motivated by this realization, we introduce a zoom-in in-
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Figure 4: A zoom-in inpainting pipeline refines perceptual
artifacts. Starting with the generated image that has pre-
dicted perceptual artifacts, we first crop around the artifact
regions, using connected components as a guide. We then
inpaint these artifact regions within each cropped area and
ultimately composite them back into the full image.

painting pipeline that properly frames the input inpainting
context before generating the output. As illustrated in Fig-
ure 4, we first conduct connected component analysis on
the predicted artifacts segmentation mask, then crop around
each component of artifacts, perform inpainting on these
zoomed-in patches, and finally merge the inpainted patches
back into the full image. We empirically set the patch size
to be 50% larger than the length of the longest axis of the
artifacts mask within each connected component. Remark-
ably, this simple design significantly enhances artifacts re-
finement on object details without modifying the inpainting
models, as demonstrated in section 4.5.

4. Experiments
4.1. Performance on Diverse Image Synthesis Tasks

Our main goal is to develop artifact detectors that can
effectively perform on a wide range of generic image syn-

thesis tasks and detect various types of artifacts. In order to
achieve this, our first step is to gain a deeper understanding
of how existing relevant methods would perform on this par-
ticular task. To begin with, we investigate the CNNgener-
ates [53] classifier, which is specifically designed to distin-
guish between generated and real images in the context of
generic deep generative models. To visualize the gradient
activation of the model, we employ Grad-CAM [46], which
could reveal regions in the image that are deemed as ”fake”
by the network. Nonetheless, our findings demonstrate a
significant disparity between the model’s interpretation and
human perception of what constitutes ”fake” or artifacts, as
presented in the 1st row of Table 1. In addition, we leverage
the Patch Forensics model [7] to calculate the ”fake” regions
based on the patch-based classifier. The results demonstrate
that the model’s prediction also significantly deviates from
human perception, as shown in 2nd row of Table 1. Related
to our work, PAL4Inpaint [62] focuses on developing a per-
ceptual artifacts localization method for the inpainting task.
However, we observe that a model trained exclusively on
inpainting images struggles to generalize to other tasks, as
shown in 3rd of Table 1.

The aforementioned observations from previous studies
underscore the compelling need for a diverse dataset en-
compassing multiple tasks and domains to train a general-
ized artifacts detector. In light of this, we collect a fine-
grained labeled dataset spanning ten image synthesis tasks.
Subsequently, we train specialized models for each task, as
well as a single unified model for all tasks, as shown in
the last two rows of Table 1. The unified model confers a
memory-efficient advantage from the deployment perspec-
tive and performs comparably to the specialist models, with
the exception of portrait shadow removal (PSR) task. We
believe that this discrepancy may be attributed to the dis-
similarity between the artifacts in PSR task and those in
other tasks. Nevertheless, our specialist models and unified
model both demonstrate significant superior performance in
contrast to existing methods.

Methods StyleGAN2 LDMs AnyRes SR Inpaint E2I M2I T2I Comp. VTON PSR

CNNgenerates [52] + Grad-CAM [46] 4.38 2.43 1.39 0.86 3.54 0.95 0.48 0.51 7.13 2.56 0.0
Patch Forensics [7] 3.81 9.08 8.76 1.34 5.35 14.19 10.54 2.71 9.63 2.14 0.66
PAL4Inpaint [62] 6.12 0.98 1.03 0.81 42.07 0.86 0.31 0.51 14.42 15.94 0.0

Specialist Model (Ours) 37.85 35.39 9.15 14.41 42.07 45.56 35.01 21.79 25.31 37.44 21.33
Unified Model (Ours) 38.53 30.86 34.74 11.92 41.81 46.01 39.37 19.65 29.53 38.07 5.10

Table 1: Quantitative mIoU (↑) evaluation of perceptual artifacts segmentation on 10 image synthesis tasks. We use the
following brevity to indicate the tasks: LDMs → Latent Diffusion Models [42], SR → Super Resolution [55], E2I → Edge-
to-Image [53], M2I → Mask-to-Image [53], T2I → Text-to-Image [42, 40], Comp. → Image Composition [9], VTON →
Virtual Try-On [15], PSR → Portrait Shadow Removal [63], and finally U.M. → Unified Model.
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4.2. Performance on Unseen Methods

Given the rapidly evolving landscape of generative im-
age models, with novel models emerging on a monthly ba-
sis, an ideal artifacts detector should be able to effectively
function or swiftly adapt to these untested methods. To eval-
uate the performance on the unseen methods, we collected
additional 500 generated images with labels from two previ-
ously unseen GAN-based models and three diffusion-based
models. Note that our dataset includes images from Style-
GAN2 and Stable Diffusion v1.4, but excludes any images
from StyleGAN3 and Stable Diffusion v2.0 (SD2). The
other three models are BlobGAN [14], Verstile Diffusion
[57] and Diffusion Transformer (DiT) [38], which do not
have any counterparts in our training dataset.

We first visualize what the previous and our methods de-
tect as visual artifacts in the generated images from unseen
methods. To this ends, we compute the raw heatmap out-

Methods StyleGAN3 [17] BlobGAN [14] SD2 [42] VD [57] DiT [38]

CNNgen [52] + [46] 2.30 3.67 0.12 0.57 1.42
Patch Forensics [7] 11.43 5.96 3.08 2.97 3.18
PAL4Inpaint [62] 5.18 13.0 0.85 0.63 1.15

Ours 46.45 25.39 6.75 5.92 16.46
Ours w/ Fine-tuning 40.81 33.33 11.04 22.18 31.76

Table 2: Quantitative mIoU (↑) evaluation of the binary ar-
tifacts segmentation on five unseen models. We use the
following brevity to indicate the tasks: CNNgen → CN-
Ngenerates [52], SD2 → Stable Diffusion v2.0 [42], VD →
Verstile Diffusion [57], DiT → Diffusion Transformer [38].

puts and compare them in Figure 5. For quantitative com-
parison in Table 2, the previous methods exhibit poor per-
formance in segmenting the perceptual artifacts in these un-
seen images. In contrast, our unified model trained on the
newly proposed dataset demonstrates reasonable general-
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Figure 5: Qualitative comparison of artifacts localization on several unseen methods. We use Grad-CAM [46] to visualize the
gradient maps of CNNgenerates [52], and use the pretrained checkpoints from Patch Forensics [7] and PAL4Inpaint [62] to
directly compute the heatmap. The results demonstrate that our approaches exhibit a much stronger correlation with human
judgement in detecting perceptual artifacts. Please zoom in the first column to check the perceptual artifacts.
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Figure 6: Qualitative results of automatic artifacts fixing on ten image synthesis tasks. In each grid, the left is the overlaid
artifacts segmentation, the middle is the original generated image, and the right is the refined image.
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Figure 7: User study to evaluate whether the curated images are better, similar, or worse than the original generated images
for diverse synthesis tasks. For each task, we sample 30 images and ask at least five users to vote for each image.

ization ability to these unseen models. Furthermore, fine-
tuning our model with a minimum of 10 examples results in
effective performance improvement.

4.3. Automatically Fixing Artifacts

An essential downstream application of perceptual arti-
facts localization is the automatic correction or refinement
of artifacts in generated images, as discussed in Section 3.3.

In this section, we provide both qualitative (Figure 6) and
quantitative demonstrations of how perceptual artifacts seg-
mentation is capable of effectively correcting a significant
portion of the perceptual artifacts in diverse synthesis tasks.

To quantitatively measure the artifacts fixing perfor-
mance, we conduct a user study to assess whether the ar-
tifacts corrected images are better, similar, or worse than
the original generated images. For each task, we randomly
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each image.
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Figure 9: Using Perceptual Artifacts Ratio (PAR) to rank the multimodal
outputs of text-to-image synthesis by Stable Diffusion.

Tasks StyleGAN2 [19] Stable Diffusion [42]

Random Chance 50.0% 50.0%

HyperIQA [47] 58.51% (+8.51%) 43.30% (-6.70%)
MUSIQ [20] 61.63% (+11.63%) 48.45% (-1.55%)
PAR (Ours) 74.47% (+24.47%) 63.92% (+13.92%)

Table 3: A quantitative study of user agree-
ment with metrics to rank the visual quality be-
tween pairs of images in unconditional Style-
GAN2 [19] sampling and multimodal text-to-
image synthesis with Stable Diffusion [42].
We show comparison with two state-of-the-arts
non-referenced IQA methods [42, 20].

select approximately 30 images and solicit feedback from at
least five Amazon Turk workers to vote on each pair of im-
ages. As depicted in Figure 7, the user preferences demon-
strate that our artifacts correction pipeline significantly en-
hances the visual quality for most of the tasks, and rarely
degrades the quality of the generated images. Although we
believe that the user study provides a more accurate reflec-
tion of perceptual improvement, we also calculate the FID-
CLIP [22] of 5,000 Stable Diffusion (SD) [42] text2image
images, which improves from 15.98 to 13.28 (+16.9%) after
our refinement with SD inpainting [42].

4.4. Perceptual Artifacts as A Quality Metric

Evaluating the quality of generated images remains an
ongoing area of research. Among various types of image
quality assessment (IQA), no-reference IQA is the most
challenging, as there are no reference ground truth images
for comparison. In this study, we demonstrate that our ar-
tifacts detector can be leveraged to compute a no-reference
IQA metric referred to as Perceptual Artifacts Ratio (PAR),
which is calculated as the ratio of the perceptual artifacts
region to the entire image area. Essentially, a larger PAR
value indicates more perceptual artifacts in the image and,
consequently, lower visual quality.

We demonstrate the application of the PAR metric to

rank unconditional and multimodal image samples. In Fig-
ure 8, we showcase how PAR can rank thousands Style-
GAN2 face images, where smaller PAR values indicate
fewer artifacts and, thus, better visual quality. We extract
four images at percentiles of 0th, 25th, 50th, 75th, and
100th, where 0th and 100th percentiles correspond to the
least and largest PAR, respectively. Our results indicate that
the visual quality gradually deteriorates with increasing per-
centiles, which is consistent with human perception. Addi-
tionally, we demonstrate that the PAR score can help rank
the visual quality of multimodal text-to-image outputs gen-
erated by Stable Diffusion [42], as illustrated in Figure 9.

Furthermore, we conduct a user study to evaluate user
preference agreement with the no-reference IQA metrics for
ranking around 100 pairs of images for both StyleGAN2
[19] and Stable Diffusion [40]. The results presented in Ta-
ble 3 indicate that our PAR metric outperforms two state-
of-the-art methods in terms of ranking image quality. In
practical use cases, the PAR score can facilitate automatic
ranking or filtering of a large batch of candidate images.

4.5. Effect of Zoomed-in Inpainting Context

In section 3.3, we discussed how diffusion-based inpaint-
ing models tend to produce better outputs for object details
when zoomed-in context is provided. In this section, we aim
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to quantitatively evaluate the impact of zoom-in inpainting
on artifacts refinement performance. It is widely known that
diffusion models, such as Stable Diffusion [42] or DALL-E
2 [40], often struggle with generating realistic human faces
and hands. Therefore, we investigate how zoom-in inpaint-
ing can aid in refining these challenging cases.
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Figure 10: The relationship between perceptual artifacts ra-
tio (PAR) and context zoom-in. In each image of left exam-
ples, top right is the input context for inpainting.

As shown in Figure 10, the two examples on the left il-
lustrate that gradually zooming-in the input context leads to
the generation of more realistic face and hand pixels. To
further support our findings, we employed the PAR score
to quantify the relationship between zoomed-in scale and
image quality. Our results demonstrate that providing grad-
ually zoomed-in context consistently enhances the quality
of generated face and hand pixels over a set of 100 images,
as shown on the right of Figure 10. Hence, we can observe
that our simple zoom-in inpainting pipeline effectively ad-
dresses the artifacts present in these object details.

4.6. Abnormal Detection on Real Images

Since our artifacts detector demonstrates reasonable per-
ceptual artifacts prediction ability on photo-realistic gen-
erated images, we are curious if the model would detect
anything unusual in real images. As expected, the major-
ity of the real images, which do not contain any artificially
generated content, receive no prediction from the artifacts
detector. Interestingly, for a small portion of images that
receive some prediction, we observe that the predicted per-
ceptual artifacts tend to be on abnormal objects, distractors,
or blurry/fuzzy regions, as shown in several examples in
Figure 11. For instance, in an FFHQ [18] face image, the
artifacts detector finds an ”abnormal” object that appears to
be a tattooed arm. For other in-the-wild images sampled
from commonly used datasets [68, 25, 59], the artfacts de-
tector model also detects artifacts such as watermark text,
fuzzy or distractor bedroom corners, and tennis rackets with
motion blur, as shown in the right three images of Figure 11.

FFHQ Places2 LSUN MS-COCO

Figure 11: Inference on real natural images, where the pre-
dicted abnormal regions are indicated by the pink contour.

5. Conclusion
In this paper, we present a comprehensive empirical

study on perceptual artifacts localization for image synthe-
sis tasks. Firstly, we collected a high-quality dataset com-
prising 10,168 images with per-pixel artifact labels. Subse-
quently, we trained a segmentation model to accurately lo-
cate the artifacts for ten diverse synthesis tasks, and demon-
strated that our pre-trained model can efficiently adapt to
unseen methods. Utilizing our learned artifact detector, we
explore three downstream applications: 1) automatically re-
fining artifacts in the generated images; 2) evaluating image
quality without reference; and 3) detecting abnormal ob-
jects in natural images. To address the issue of diffusion-
based inpainting generating incorrect content in object de-
tails such as faces and hands, we propose a simple zoom-in
inpainting pipeline that effectively mitigates this problem.

Future Directions. We view our dataset and bench-
mark models as foundational for future research in this do-
main. We identify three primary avenues for advancement:
1) crafting specialized architecture or loss functions for en-
hanced perceptual artifact segmentation; 2) creating task-
specific modules to achieve more granular refinement for
each task, moving beyond mere inpainting; and 3) broaden-
ing the dataset to encompass varied individual preferences
concerning perceptual artifacts in generated images.

Practical Impact. To the best of our knowledge, our re-
search on the localization of perceptual artifacts in generic
image synthesis is pioneering. Manually retouching these
perceptual artifacts can be both tedious and vexing, espe-
cially for professionals. Our automated approach stands to
greatly enhance productivity and alleviate this significant
burden. Furthermore, our no-reference perceptual artifacts
metric can assist users in sifting through and selecting qual-
ity content from multimodal generation candidates, such
as text-to-image applications [42, 40], potentially boosting
user satisfaction. In summary, we hope that our contribu-
tions might offer valuable insights and tools for the evolu-
tion of practical image editing software in the coming years.
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