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Abstract

Pose-free neural radiance fields (NeRF) aim to train
NeRF with unposed multi-view images and it has achieved
very impressive success in recent years. Most existing works
share the pipeline of training a coarse pose estimator with
rendered images at first, followed by a joint optimization
of estimated poses and neural radiance field. However,
as the pose estimator is trained with only rendered im-
ages, the pose estimation is usually biased or inaccurate
for real images due to the domain gap between real im-
ages and rendered images, leading to poor robustness for
the pose estimation of real images and further local min-
ima in joint optimization. We design IR-NeRF, an innova-
tive pose-free NeRF that introduces implicit pose regular-
ization to refine pose estimator with unposed real images
and improve the robustness of the pose estimation for real
images. With a collection of 2D images of a specific scene,
IR-NeRF constructs a scene codebook that stores scene fea-
tures and captures the scene-specific pose distribution im-
plicitly as priors. Thus, the robustness of pose estimation
can be promoted with the scene priors according to the ra-
tionale that a 2D real image can be well reconstructed from
the scene codebook only when its estimated pose lies within
the pose distribution. Extensive experiments show that IR-
NeRF achieves superior novel view synthesis and outper-
forms the state-of-the-art consistently across multiple syn-
thetic and real datasets.

1. Introduction
Novel view synthesis has recently achieved remarkable

progress, largely driven by the development of neural ra-
diance fields (NeRF) [21] that learns 3D scene representa-
tions from multi-view 2D images and can generate novel
views with superb multi-view consistency. However, most
existing works rely heavily on accurate camera poses of the
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multi-view 2D images which are complicated to collect and
not available in many existing image datasets. The cam-
era pose constraint can be mitigated by leveraging structure-
from-motion (SfM) [14, 26] that allows estimating camera
poses from multi-view 2D images. On the other hand, SfM
requires keypoint detection and is prone to errors while han-
dling objects and scenes with low texture or repeated visual
patterns. How to train effective NeRF with unposed multi-
view images has become one bottleneck for the wide adop-
tion of NeRF in various 3D synthesis tasks.

Several studies attempt pose-free NeRF by training
NeRF with unposed multi-view images. One approach is
to train NeRF with certain inaccurate camera poses or prior
knowledge about camera pose distributions. For example,
[33] jointly optimizes NeRF and camera poses to alleviate
the requirement for accurate camera poses. BARF [18] ex-
ploits bundle adjusting to train NeRF with imperfect camera
poses. [3] introduces Gaussian activated radiance field that
employs Gaussian activation to avoid falling into local min-
ima. Nevertheless, this approach still requires reasonable
camera pose initialization that is often not easy to obtain.
Another approach does not require any pose information in
training. For example, GNeRF [20] first trains coarse NeRF
with randomly initialized camera poses and predicts coarse
camera poses, and then jointly refines them with the NeRF
training process. However, the pose estimator in GNeRF is
trained only with images rendered by the coarse NeRF. The
pose prediction for real images is biased or inaccurate due
to the domain gap between rendered images and real im-
ages, leading to poor robustness of pose estimation for real
images and local minima [20] while jointly refining NeRF
and camera poses.

We propose IR-NeRF, an innovative pose-free NeRF that
introduces Implicit Regularization to promote the robust-
ness of pose estimator for real images. Specifically, given
a set of multi-view images of a scene, a scene codebook
is first constructed which stores the scene features and en-
codes scene-specific pose distribution implicitly as priors.
With that, a pose-guided view reconstruction scheme is then

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3534



G
T

IR
-N

eR
F

(O
ur

s)
G

N
eR

F

Scan 45Drums Scan 84Chair Mic Scan 23

Figure 1: Examples of novel view synthesis by GNeRF and our IR-NeRF. The samples are from Synthetic-NeRF [21] and
DTU [16]. It can be observed that the IR-NeRF synthesized novel views have less artifacts and finer details than GNeRF.

designed to refine the pose estimator with unposed real im-
ages, based on the rationale that a real image can be recon-
structed well from the codebook only when its estimated
camera pose lies within the scene-specific pose distribution.
With the accurate camera poses predicted by the refined
pose estimator, IR-NeRF can jointly optimize NeRF and es-
timated camera poses without getting stuck in local minima,
yielding accurate NeRF representations with superior novel
view synthesis as illustrated in Fig. 1.

The contributions of this work are threefold. First, we
propose IR-NeRF, a novel pose-free NeRF that introduces
implicit pose regularization that enables effective NeRF
training with unposed multi-view images. Second, with a
set of multi-view 2D images of a scene, we construct a
scene codebook that encodes scene features and implicitly
captures scene-specific camera pose distribution as priors.
Third, we design a pose-guided view reconstruction scheme
that utilizes the scene priors to refine pose estimator with
unposed real images, which allows to promote the robust-
ness of the pose estimator.

2. Related Work

Neural Radiance Fields. NeRF [21] encodes 3D loca-
tions and 2D viewing directions into RGB colour and vol-
ume density, and it has demonstrated very impressive per-
formance in novel view synthesis. With implicit scene rep-
resentation and differentiable volume rendering, NeRF has
been developing quickly recently with a number of vari-
ants and extensions, including generative radiance fields

[27, 23, 11], generalizable radiance fields [2, 35], dynamic
scene representations [24, 6, 9, 13, 30], fast scene represen-
tations [22, 10, 25], neural surface representations [32, 37]
and unbounded scene representations [39, 1]. However,
most existing work requires accurate camera poses of 2D
training images for proper NeRF training, whereas cam-
era pose collection is often complicated and prone to errors
which impairs the scalability of NeRF greatly. As a compar-
ison, our proposed IR-NeRF can train effective NeRF with
a set of unposed multi-view images.

Pose-Free NeRF Pose-free NeRF has attracted increas-
ing attention recently for training effective NeRF with un-
posed images. Most existing methods manage to estimate
the camera pose of training images, and they can be broadly
grouped into two categories depending on whether they
involve learning in camera pose estimation. Most non-
learning methods [39, 19] exploit conventional techniques
such as Structured-from-Motion (SfM) [14, 8, 34, 26]) for
camera pose estimation. However, conventional methods
often have limited robustness and accuracy. For exam-
ple, SfM estimates camera poses from key-point correspon-
dences across images which does not work well for scenes
with very sparse textures or repeating visual patterns.

Methods in the second category estimate camera poses
via learning. One typical approach trains pose-free NeRF
with certain roughly initialized camera poses. For example,
[33] jointly optimizes initialized camera poses and NeRF
model. [18] exploits bundle adjusting for coarse-to-fine
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camera pose registration and joint optimization of camera
poses and NeRF. [3] employs Gaussian activation for pose
estimation and NeRF optimization. [17] refines the initial-
ized camera poses via self-calibration. However, this ap-
proach often produces degraded NeRF models when the
initialized camera pose does not have reasonable accuracy.
Another approach [20, 38] learns NeRF with randomly ini-
tialized camera poses. For example, GNeRF [20] introduces
a pose estimator to directly estimate camera poses from im-
ages. However, the pose estimator is trained only with ren-
dered images, leading to inaccurate or biased predictions
on real images used in NeRF training due to the domain
gap between rendered images and real images. The poor
robustness of pose estimator for real images tends to result
in local minima in NeRF training. Our IR-NeRF introduces
implicit pose regularization to refine pose estimator train-
ing with unposed real images, which enhances the robust-
ness of pose estimation for real images, leading to superior
pose-free NeRF.

Visual Codebook Standard visual codebook [31] aims to
learn a discrete and compressed image representation via
vector quantization, and it has been widely explored in the
computer vision community. For example, [7] constructs a
rich visual codebook to achieve high-resolution image syn-
thesis with transformer. [12] combines the visual codebook
with diffusion model [29, 15, 4] for text-to-image genera-
tion. [36] proposes multiple improvements over vanilla VQ-
GAN [7] for improving vector quantized image modeling
tasks. In IR-NeRF, we design a novel scene codebook con-
struction technique that adopts linear combination instead
of vector quantization for implicit pose regularization. To
the best of our knowledge, IR-NeRF is the first work that
adapts visual codebook for pose-free NeRF optimization.

3. Preliminary
Camera Pose Estimation Camera pose distribution is de-
termined by camera poses of multi-view images of a spe-
cific 3D scene [20]. Specifically, camera positions are dis-
tributed on the surface of partial sphere which is determined
by the radius of sphere and camera elevation range and cam-
era azimuth range. Camera rotation depends on camera
position, camera lookat points and camera lookup vector.
As greater viewpoint uncertainty tends to lead to local min-
ima while jointly optimizing camera poses and NeRF model
[20], it is critical to ensure that estimated camera poses are
located within scene-specific camera pose distribution.

Neural Radiance Field NeRF [21] is proposed to repre-
sent a 3D scene as a 5D function that is parameterized with
MLP. It takes a 3D location x ∈ R3 and a 2D viewing di-
rection d ∈ S2 as input and generates a RGB color [r, g, b]

and volume density σ for this location. This process can be
formulated by FΘ : (x, d) → ([r, g, b], σ), where F and Θ
denote MLP network and its parameters, respectively. Vol-
ume rendering is then adopted to render 2D images from
NeRF scene representation by the accumulation of colors
and densities at camera rays. To ensure the differentiability
of the volume rendering, numerical quadrature is adopted
to approximate the continuous integral by stratified sam-
pling from depth bounds. Additionally, NeRF models are
optimized by a photometric loss between the real and corre-
sponding rendered pixel colors, which is formulated by sum
of squared differences.

4. Proposed Method

4.1. Overall Framework

With initial camera poses Φ = {ϕi, i ∈ [1, T ]} randomly
sampled from a predefined pose distribution following the
settings in GNeRF [20], the proposed IR-NeRF first learns a
coarse NeRF with an adversarial loss, and then utilizes the
trained NeRF to render images with Φ. A pose estimator
P is trained in two steps to predict camera poses. First, it
is trained by regressing initialized camera poses with ren-
dered images as in [20]. Second, IR-NeRF introduces an
implicit pose regularization to refine the pose estimator with
unposed real images. The implicit pose regularization for
real images leads to robust pose estimation, as pose esti-
mator trained with only rendered images is inaccurate for
real images due to the domain gap between real images and
rendered images.

As shown in Fig.2, the key components in the im-
plicit pose regularization are scene codebook construction
and pose-guided view reconstruction with view consistency
loss. Specifically, a scene codebook C with scene features
and scene-specific pose distribution is first learned by the re-
construction of the unposed real images in training dataset
I used in NeRF training. Then, given real image I , pose-
guided view reconstruction exploits pose estimator P to
predict camera pose ϕ′ of image I , and further utilizes ϕ′

to guide linear combination of feature embeddings in the
learned scene codebook to reconstruct the corresponding
image I ′. As the trained C and G ensure that an image
can be reconstructed well only when its estimated camera
pose lies within accurate pose distribution, implicit pose
regularization can be achieved with a view consistency loss
Lc between I ′ and Î . We also jointly refine the learned
coarse NeRF and predicted camera poses. With the im-
plicit pose regularization, the joint refinement can effec-
tively avoid falling into local minima. Details of the de-
signed scene codebook construction and pose-guided view
reconstruction will be discussed in the ensuing section 4.2
and section 4.3, respectively.
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Figure 2: Overview of the proposed implicit pose regularization. Part ‘A’ in yellow and part ‘B’ in green represent
scene codebook construction and pose-guided view reconstruction, respectively. Leveraging image-weight learner EI , scene
codebook C and decoder G, the real image I can be reconstructed from a feature embedding f which is constructed by linear
combination of feature embeddings in the codebook. EI , C and G are trained simultaneously via the image reconstruction
process. Pose estimator P predicts the camera pose ϕ′ of the real image I in training dataset. With the learned C and G,
image I ′ corresponding to ϕ′ is reconstructed by linear combination of learned feature embeddings in C, where combination
weights X ′ are derived from ϕ′ through a pose-weight learner EP . The view consistency loss between I ′ and Î regularizes
the pose estimation. The purple dashed line highlights the regularization process for pose estimation.

4.2. Scene Codebook Construction

The scene codebook construction allows to learn scene-
specific pose distribution implicitly as priors which lays a
base for the subsequent pose-guided view reconstruction.
Instead of naively encoding input images to latent represen-
tations which fails to capture overall pose distribution, we
design a novel scene codebook construction scheme with a
linear combination which can serve as implicit distribution
prior to achieve robust pose estimation.

As shown in Fig. 2, the scene codebook construction
consists of an image-weight learner EI , a scene codebook
C = {cn}Nn=1 ∈ RN×D and a decoder G. The scene code-
book is learned via the reconstruction of unposed real im-
ages. The image-weight learner EI is utilized to yield a
collection of combination weights X = {xn}Nn=1 ∈ RN

based on the real image I:

X = Softmax(EI(I)), xn =
eln∑N
j=1 e

lj
, (1)

where Softmax(·) denotes the softmax function and ln
represents the Logits output of EI (before Softmax). The
feature embedding f of the real image I is then constructed

by linear combination of feature embeddings in codebook,
which can be formulated as follows:

f =

N∑
n=1

cnxn (2)

With the feature embedding f , the real image I can be
reconstructed via the decoder G by:

I ≈ Î = G(f), (3)

where Î denotes the reconstructed image. With an image
reconstruction loss Lrec, the scene codebook can be learned
with the image-weight learner EI and the decoder G:

Lrec(EI , C,G) = ∥I − Î∥2, (4)

To reduce the difficulty of joint training of EI , C and
G and improve the training stability, we employ the pre-
trained VGG19 [28] to initialize the scene codebook C by
encoding a set of real images [I0, I1, ..., IT ], where T rep-
resents the number of real images. This process can be for-
mulated as follows:

Cini = V GG([I0, I1, ..., IT ]), (5)
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where V GG(·) represents the VGG19 network, Cini de-
notes the initialized scene codebook, which will be further
optimized by image reconstruction loss Lrec.

4.3. Pose-Guided View Reconstruction

With the learned scene codebook C and decoder
G, it can be guaranteed that only images with camera
poses within scene-specific pose distribution can be well-
reconstructed. Under this rationale, we design pose-guided
view reconstruction with view consistency loss to refine
pose estimation with unposed real images. Based on the
estimated camera pose ϕ′ of real image I , the image I ′ cor-
responding to ϕ′ is constructed by linear combination of
the learned feature embeddings in scene codebook. Specif-
ically, a pose-weight learner EP is first utilized to produce
a set of combination weights X ′ = {x′

n}Nn=1 ∈ RN based
on the estimated camera pose ϕ′, which can be formulated
as follows:

X ′ = Softmax(EP (ϕ
′)), x′

n =
el

′
n∑N

j=1 e
l′j
, (6)

where l′n represents the Logits output of EP (before Soft-
max). The construction of feature embedding f ′ corre-
sponding to ϕ′ can then be represented as f ′ =

∑N
n=1 cnx

′
n,

where cn and x′
n denote the n-th feature embedding in scene

codebook and n-th combination weight, respectively. Fi-
nally, the corresponding image I ′ can be reconstructed via
the frozen decoder G which focuses on decoding the fea-
ture embedding generated by linear combination of feature
embeddings in scene codebook.

Leveraging the image Î reconstructed from the shared
decoder G as pseudo ground truth, a view consistency loss
Lc between the reconstructed image I ′ and the pseudo
ground truth can be formulated as below:

Lc(P,EP ) =
1

i

S∑
i=1

∥∥∥I ′i − Îi

∥∥∥2
2
. (7)

If the camera pose ϕ′ estimated by P deviates from scene-
specific pose distribution, the corresponding view I ′ recon-
structed by the learned C and G will not be aligned with
the pseudo ground truth Î . Thus, the robustness of pose
estimation can be promoted as the out-of-distribution pose
estimation are suppressed.

4.4. Training Process

The training process of the proposed IR-NeRF includes
coarse NeRF learning, camera pose estimation, and joint
refinement of NeRF and predicted camera poses. For the
coarse NeRF training, we introduce an adversarial loss to
train a coarse NeRF F with randomly initialized poses Φ
due to lack of known camera poses. The adversarial loss

Ladv can be defined as follows:

Ladv(F,D) = EI∼Pdata
[log(D(I))]

+ EF (Φ)∼Pg
[log(1−D(F (Φ)))],

(8)

where D denotes the discriminator, Pdata and Pg represent
the distribution of images generated by NeRF and real im-
ages in training dataset, respectively.

For the camera pose estimation, we first employ MSE
loss to optimize a coarse pose estimator P with images ren-
dered by the trained coarse NeRF as in GNeRF [20]. The
pose estimator is then refined for real images via implicit
pose regularization. Specifically, the scene codebook con-
struction is performed with unposed real images under the
supervision of the image reconstruction loss Lrec. With
the learned scene codebook and decoder, the pose estimator
can be optimized to predict the camera poses of real images
driven by the view consistency loss Lc. With coarse NeRF
and predicted camera poses, we also employ a photometric
loss for joint optimization of the NeRF and camera poses.
Specifically, we leverage the hybrid and iterative optimiza-
tion scheme [20] for end-to-end training of the proposed
IR-NeRF, where the pose estimation and joint optimization
are interleaved in the training. Note that NeRF is frozen
during camera pose estimation but is trainable during joint
refinement.

5. Experiment
5.1. Datasets and Implementation Details

Datasets Following GNeRF [20], we conduct experi-
ments on synthetic and real-world scenes with the same split
of training and evaluation sets. For synthetic scenes, we
use NeRF-Synthetic dataset [21] which consists of object-
centric scenes with complex geometry. For each scene, we
train with 100 multi-view training images which are resized
to 400 by 400 pixels. The evaluation is conducted on eight
images that are randomly selected from the test set. For
real-world scenes, we employ six representative scenes in
the DTU dataset [16]. We randomly split the 49 images of
each scene into training and test sets, where the training set
includes 43 images of resolution 500× 400 and the test set
consists of the remaining 6 images.

Implementation Details For predefined camera pose dis-
tribution, we follow the settings in GNeRF [20]. Specif-
ically, the range of azimuth, elevation, sphere radius and
camera lookat point are set at [0◦, 360◦], [0◦, 90◦], 4.0 and
(0, 0, 0), and [0◦, 150◦], [0◦, 80◦], 4.0 and N (0, 0.012) for
both synthetic and real-world datasets, respectively. For
camera poses, camera position and camera rotation are rep-
resented by a 3D embedding in Euclidean space and a con-
tinuous 6D embedding [41], respectively. The camera pose
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Figure 3: Qualitative comparisons of IR-NeRF with GNeRF in novel view synthesis: The comparisons are conducted
over different views of scenes ‘scan82’ and ‘scan109’ in DTU, where ‘GT’ denotes the ground-truth image. It is clear that
IR-NeRF synthesizes high-fidelity images with less artifacts and finer details compared with GNeRF. Zoom in for best view.

embedding can be recovered to a transformation matrix by
a Gram-Schmidt-like process [41]. For the architecture of
IR-NeRF, the image-weight learner EI , pose-weight learner
EP and decoder G are CNN-based, MLP-based and CNN-
based networks, respectively. For the pose estimator P , we
leverage the vision transformer [5] where the output of last
layer is modified to an estimated camera pose. The num-
ber of feature embeddings in the scene codebook is set to
1024 and the dimension of each feature embedding is set
to 512. The dimensions of obtained weights X and X ′ are
the same as the number of feature embeddings in the scene
codebook. In term of NeRF in IR-NeRF, we adopt the hi-
erarchical volume sampling strategy [21] to simultaneously
optimize ‘coarse’ and ‘fine’ networks to represent scenes.
The MLPs in ‘coarse’ and ‘fine’ networks are shared and
the dimension of MLPs is set to 360 [20]. We sample 64
locations along each camera ray in both stratified sampling
and inverse transform sampling [21]. The Adam optimizer
is adopted to train our IR-NeRF and the mini-batch size
is set to 12 for both synthetic and real scenes. We use
the Pytorch framework in implementation and employ one
NVIDIA RTX 3090ti GPU for both training and inference.

5.2. Comparisons with the State-of-the-Art

Novel View Synthesis. We compare IR-NeRF with the
most related work GNeRF [20] over different synthetic and
real scenes. We did not compare with NeRF−− [33], BARF
[18], SCNeRF [17] and GARF [3] as the four methods re-
quire reasonable camera pose initialization and are not ap-
plicable to random camera pose initialization. As there is

Scenes
PSNR↑ SSIM↑ LPIPS↓

GNeRF Ours GNeRF Ours GNeRF Ours
Chair 31.30 32.87 0.94 0.96 0.08 0.07

Drums 24.30 25.98 0.90 0.91 0.13 0.11
Hotdog 32.00 33.52 0.96 0.97 0.07 0.06
Lego 28.52 30.07 0.91 0.93 0.09 0.07
Mic 31.07 32.33 0.96 0.97 0.06 0.04
Ship 26.51 27.96 0.85 0.87 0.21 0.18

Scan23 17.89 19.96 0.55 0.59 0.54 0.45
Scan45 18.06 20.19 0.68 0.73 0.48 0.41
Scan58 21.83 24.02 0.62 0.67 0.67 0.55
Scan82 19.91 21.55 0.77 0.85 0.33 0.27
Scan103 22.67 24.72 0.74 0.82 0.44 0.37
Scan109 22.88 25.36 0.71 0.75 0.54 0.44

Table 1: Quantitative comparisons of novel view synthe-
sis on the dataset Synthetic-NeRF and DTU. The proposed
IR-NeRF outperforms the state-of-the-art GNeRF consis-
tently in PSNR, SSIM and LPIPS under different synthetic
and real scenes. All methods are trained with the same train-
ing data and batch size.

no available pretrained models, we train GNeRF based on
its official codes and all methods (including IR-NeRF) are
trained with the same training dataset and training setting
in experiments. Table 1 shows experimental results over
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Scenes
GNeRF [20] IR-NeRF

Rot(◦)↓ Trans↓ Rot(◦)↓ Trans↓
Chair 0.363 0.018 0.251 0.013
Drums 0.204 0.010 0.185 0.008
Hotdog 2.349 0.122 1.932 0.098
Lego 0.430 0.023 0.371 0.015
Mic 1.865 0.031 1.598 0.019
Ship 3.721 0.176 3.253 0.125

Table 2: Quantitative comparisons of the accuracy of
camera pose estimation (on Synthetic-NeRF): Rot and
Trans represent mean camera rotation differences and mean
camera translation differences, respectively. IR-NeRF out-
performs the state-of-the-art GNeRF consistently in Rot and
Trans in all studied scenes.

the same test images as described in section 5.1. We can
observe that IR-NeRF outperforms the state-of-the-art GN-
eRF consistently in PSNR, SSIM and LPIPS across all syn-
thetic and real scenes. The superior performance is largely
attributed to our proposed implicit pose regularization that
allows to refine pose estimator with unposed real images
which further improves the robustness of pose estimation
for real images. The quantitative experimental results are
well aligned with the qualitative results in Figs. 3 where
IR-NeRF produces superior multi-view images with less ar-
tifacts and finer details.

Camera Pose Estimation. We also compare the accuracy
of the estimated camera poses of real images as used in
NeRF training. The evaluation is performed over the dataset
Synthetic-NeRF. For the evaluation metric, we adopt mean
camera rotation difference (Rot) and mean translation dif-
ference (Trans) that are computed with the toolbox [40] on
the training set. As Table 2 shows, IR-NeRF outperforms
GNeRF clearly and consistently across all evaluated scenes.
The superior estimation accuracy is largely attributed to our
designed implicit pose regularization. The robustness of
camera pose estimation for real images can be improved
with this pose regularization, further leading to superior
joint refinement of camera poses and NeRF without falling
into local minima.

5.3. Ablation Studies

Effect of Implicit Pose Regularization . We examine the
contribution of our proposed implicit pose regularization.
As Table 3 shows, we train the model IR-NeRF (w/o REG)
by removing the implicit pose regularization from the IR-
NeRF. The IR-NeRF (w/o REG) does not involve the two
key components so it can be regarded as a baseline that

Evaluation Metrics
Models

PSNR ↑ SSIM ↑ LPIPS ↓
IR-NeRF (w/o REG) 17.05 0.53 0.65
IR-NeRF (w/o SCC) 18.23 0.55 0.54
IR-NeRF (w/o VCL) 17.38 0.54 0.64
IR-NeRF 19.88 0.59 0.47

Table 3: Ablation studies of the proposed IR-NeRF on the
scene ‘scan23’ of DTU. IR-NeRF (w/o REG) removes the
implicit pose regularization (REG) from IR-NeRF, which
is equivalent to baseline. IR-NeRF (w/o SCC) removes the
scene codebook construction (SCC), where input image is
naively encoded to latent features. IR-NeRF (w/o VCL) re-
moves the view consistency loss (VCL) in the pose-guided
view reconstruction, where a reconstruction loss is intro-
duced between pose-guided reconstructed image and real
image. All models are trained with same training settings.

trains the pose estimator in the similar way as GNeRF. It
can be seen that IR-NeRF (w/o REG) degrades PSNR, SSIM
and LPIPS significantly as compared with IR-NeRF, indi-
cating that the proposed implicit pose regularization can
effectively improve the robustness of pose estimation and
further achieve superior novel view synthesis for IR-NeRF.
The effectiveness of the proposed implicit pose regulariza-
tion can be observed in Fig. 4 as well where the model IR-
NeRF can produce clearer visual results than the model IR-
NeRF (w/o REG).

Effect of Scene Codebook Construction. To examine
the effectiveness of the designed scene codebook construc-
tion, we study how it affects view synthesis in PSNR, SSIM
and LPIPS. As shown in Table 3, we train IR-NeRF (w/o
SCC) that removes the designed scene codebook construc-
tion from the complete model IR-NeRF. Quantitative exper-
iments show that IR-NeRF performs clearly better than the
IR-NeRF (w/o SCC) in novel view synthesis, demonstrat-
ing the effectiveness of pre-learning a scene codebook for
subsequent pose-guided view reconstruction. The experi-
mental results are also well aligned with qualitative exper-
imental results in Fig. 4 where IR-NeRF with the designed
scene codebook construction synthesizes novel views with
less artifacts and finer details compared with the synthesis
by IR-NeRF (w/o SCC).

Effect of View Consistency Loss. We further examine the
view consistency loss in the pose-guided view reconstruction by
comparing the model IR-NeRF (w/o VCL) and IR-NeRF. As Table
3 shows, adopting view consistency loss improves PSNR, SSIM
and LPIPS consistently, indicating the effectiveness of our de-
signed view consistency loss in pose-guided view reconstruction.
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IR-NeRF (w/o VCL) IR-NeRF (w/o SCC) IR-NeRF GTIR-NeRF (w/o REG)

Figure 4: Qualitative ablation studies of the proposed IR-NeRF: IR-NeRF and its variants (including IR-NeRF (w/o REG),
IR-NeRF (w/o VCL), and IR-NeRF (w/o SCC) that remove the proposed implicit pose regularization, view consistency loss,
and scene codebook construction, respectively) are trained on the scan15 of DTU dataset. Zoom in for best view.

Figure 5: Visualization of estimated out-of-distribution
camera poses: Camera poses are estimated from real im-
ages of the DTU dataset. We focus on the elevation and
azimuth angles of the estimated camera poses, which are
two key parameters in camera pose distribution. The range
([150◦, 155◦]) of the elevation angle and the range ([80◦,
85◦]) of the azimuth angle are out of the camera pose dis-
tribution for the DTU scenes. The y-axis represents the
number of occurrences. It can be observed that after apply-
ing the proposed implicit pose regularization, the estimated
out-of-distribution camera poses (in azimuth angle and ele-
vation angle) are significantly reduced.

The quantitative results are well aligned with the qualitative exper-
iments in Fig. 4 as well.

5.4. Visualization

We visualize out-of-distribution camera poses estimated before
and after the proposed implicit pose regularization by using his-
tograms. As Fig. 5 shows, much less out-of-distribution camera

poses are predicted after applying the proposed implicit pose reg-
ularization. This shows that the proposed implicit pose regulariza-
tion can effectively refine the pose estimation and improve the ro-
bustness of pose estimation for real images, which greatly helps to
mitigate local minima in the subsequent joint refinement of camera
poses and NeRF.

6. Limitation

Although the proposed IR-NeRF achieves superior NeRF train-
ing by implicit pose regularization as compared with state-of-the-
art GNeRF, it still has one major limitation. Specifically, the train-
ing process of IR-NeRF includes coarse NeRF learning, coarse
camera pose estimation, and joint refinement of camera poses and
NeRF, which requires a long training time. Moving forward, we
will focus on pose-free NeRF training at much higher speed. The
training speed could potentially be improved by introducing more
efficient representation, such as triplane and tensor decomposition.

7. Conclusion

This paper presents IR-NeRF, a pose-free NeRF with implicit
pose regularization that promotes the robustness of pose estima-
tion for real images, thus preventing the joint refinement of NeRF
and predicted camera poses from falling into local minima. Given
a set of multi-view images of a scene, we construct a scene code-
book to encode scene features and capture scene-specific pose dis-
tribution as priors. In addition, we design pose-guided view recon-
struction with view consistency loss which refines pose estimation
for real images with the scene priors based on the rationale that a
real image can be reconstructed well from the learned scene code-
book only when its estimated camera pose lies within the scene-
specific pose distribution. Extensive experiments over synthetic
and real scenes demonstrate the superiority of IR-NeRF.
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