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Abstract

Multi-view 3D detection based on BEV (bird-eye-view)
has recently achieved significant improvements. However,
the huge memory consumption of state-of-the-art models
makes it hard to deploy them on vehicles, and the non-
trivial latency will affect the real-time perception of stream-
ing applications. Despite the wide application of quanti-
zation to lighten models, we show in our paper that di-
rectly applying quantization in BEV tasks will 1) make the
training unstable, and 2) lead to intolerable performance
degradation. To solve these issues, our method QD-BEV
enables a novel view-guided distillation (VGD) objective,
which can stabilize the quantization-aware training (QAT)
while enhancing the model performance by leveraging both
image features and BEV features. Our experiments show
that QD-BEV achieves similar or even better accuracy than
previous methods with significant efficiency gains. On the
nuScenes datasets, the 4-bit weight and 6-bit activation
quantized QD-BEV-Tiny model achieves 37.2% NDS with
only 15.8 MB model size, outperforming BevFormer-Tiny
by 1.8% with an 8× model compression. On the Small and
Base variants, QD-BEV models also perform superbly and
achieve 47.9% NDS (28.2 MB) and 50.9% NDS (32.9 MB),
respectively.

1. Introduction

Given its potential in enabling autopilot, multi-view
3D detection based on BEV (bird-eye-view) has become
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(a) mAP curve. (b) NDS curve.

Figure 1: Training curves of QD-BEV (with VGD) versus
progressive QAT on W4A6 quantization of BEVFormer-
Tiny. Note that standard QAT works even worse compared
to progressive QAT and it falls out of the targeted accuracy
range in the figures.

an important research direction for autonomous driving.
Based on input sensors, previous work can be divided into
LiDAR-based methods [18, 47] and camera-only methods
[23, 38, 14, 13, 24, 25]. Compared to the LiDAR-based
methods, camera-only methods have the merits of lower
deployment cost, closer to human eyes, and easier access
to visual information in the driving environment. However,
even if using the camera-only methods, the computational
and memory costs of running state-of-the-art BEV models
are still formidable, making it difficult to deploy them onto
vehicles. For example, BEVFormer-Base has a 540 ms in-
ference latency (corresponds to 1.85 fps) on one NVIDIA
V100 GPU, which is infeasible for real-time applications
that generally require 30 fps. Since a non-trivial latency
will harm the streaming perception, it is particularly crucial
to explore and devise lightweight models for camera-only
3D object detection based on BEV.

Quantization [16, 11, 42, 10] can reduce the bitwidth
used to represent weights and activations in deep neural net-
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Figure 2: Illustration of QD-BEV. (a) In our pipeline, multi-camera images are input into the floating-point teacher network
and the quantized student network in order to compute the KL divergence in an element-wise manner. The KL divergence
is used as distillation loss in the image feature and the BEV feature, respectively. Then we conduct view-guided distillation
using the BEV mask obtained from the external parameters of the camera. Please refer to Sec.3.1 for more details. (b) The
lower flow chart shows the computation process of the view-guided distillation loss. Specific details are in Sec. 3.3.

works, which can greatly save the model size and compu-
tational costs while improving the speed of model reason-
ing. However, directly applying quantization would lead
to significant performance degradation. Compared to im-
age classification and 2D object detection tasks where the
standard quantization methods shine, multi-camera 3D de-
tection tasks are much more complicated and difficult due
to the existence of multiple views and information from
multiple dimensions (for example, the temporal information
and spatial information used in BEVFormer [23]). Con-
sequently, the structure of BEV networks tends to become
more complex, with a deeper convolutional neural network
backbone to extract image information from multiple views,
and with transformers to encode and decode the features of
the BEV domain. The presence of different neural archi-
tectures, multiple objectives, and knowledge from differ-
ent modalities greatly challenges the standard quantization
methods, decreasing their stability and accuracy, and even
making the whole training process diverge. In Figure 1, we

show the training curves when applying W4A6 quantization
on a BEVFormer-Tiny model. As can be seen, the perfor-
mance of quantization-aware training (QAT) fluctuates sig-
nificantly in different epochs, while the performance of our
proposed method QD-BEV shows a stable rising trend. We
perform more experiments to validate the effectiveness of
QD-BEV in Sec 5.

To solve the problems of standard QAT, in this work, we
first conduct systematic experiments and analyses on quan-
tizing BEV networks. Then we devise a quantization-aware
view-guided distillation method (referred to as QD-BEV)
that can decently solve the stability issue while improv-
ing the final performance of compact BEV models. Our
proposed view-guided distillation (VGD) can better lever-
age information from both the image and the BEV do-
mains for multi-view 3D object detection. This can signif-
icantly outperform previous distillation methods that can-
not jointly handle the different types of losses in BEV net-
works. Specifically, as shown in Figure 2, we first take
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the FP (floating-point) model as the teacher model and the
quantized model as the student model, then we calculate the
KL divergence on the image feature and the BEV feature,
respectively. Finally, we leverage the mapping relationship
and realize VGD by organically combining the image fea-
ture and the BEV feature through the camera’s external pa-
rameters. Note that in QD-BEV, neither additional training
data nor larger powerful teacher networks are used to tune
the accuracy, but QD-BEV models are still able to outper-
form previous baselines while having significantly smaller
model sizes and computational requirements. Our contribu-
tions are as follows:

• We conduct systematic experiments on quantizing
BEV models, unveiling major issues hampering stan-
dard quantization-aware training methods on BEV.

• We specially design view-guided distillation (VGD)
for BEV models, which jointly leverages both image
domain and BEV domain information. VGD boosts
the final performance while solving the stability issue
of standard QAT.

• Our W4A6 quantized QD-BEV-Tiny has 37.2% NDS
with only 15.8 MB model size, which outperforms the
8× larger BevFormer-Tiny model by 1.8%.

2. Related Works

2.1. Camera-only 3D object detection

In camera-only 3D object detection tasks, many excel-
lent methods have emerged based on BEV (bird-eye-view).
Previous works, LSS [31] and BEVDet [14], project image
features to the BEV space in a bottom-up manner. Based
on DETR [5] and Deformable DETR [48], DETR3D [38]
extends the 2D object detection to the 3D space through
the architecture of Backbone + FPN + Decoder. In addi-
tion, PETR [24] introduces 3D position coding based on
DETR3D [38]. In BEVFormer [23], the authors use dense
BEV queries to exchange information in the BEV space
with the multi-view image space. More stable BEV features
are obtained by extracting temporal and spatial informa-
tion through the transformer structure with temporal self-
attention and spacial cross-attention. Based on the temporal
interaction in BEVFormer, further improvements have been
made in recent works, PETRv2 [25] and BEVDet4D [13].
Besides the aforementioned works, BEVDepth [21] and
BEVstereo [20] are two state-of-the-art approaches for
monocular depth estimation and stereo vision in the bird-
eye-view (BEV) domain, respectively, which leverage the
unique characteristics of BEV representations to achieve
high accuracy and efficiency.

2.2. Quantization

To reduce the model size, quantization [45, 36, 15, 26]
uses low bitwidth to represent weights and activations in
neural networks. With the use of low-precision matrix
multiplication or convolution, quantization can also make
the inference process faster and more efficient. Given a
pretrained model, directly performing quantization with-
out any fine-tuning is referred to as post-training quantiza-
tion (PTQ) [4, 29, 37, 17]. Despite the merits, PTQ with
low bitwidth still results in significant accuracy degrada-
tion. As such, Quantization-aware training (QAT) is pro-
posed to train the model to better adapt to quantization.
QAT methods [9, 7, 40] are more costly compared to PTQ,
but can potentially obtain higher accuracy. Furthermore, in
the cases with ultra-low quantization bitwidth (for exam-
ple, 4-bit), even QAT cannot close the accuracy gap. A
promising direction to solve this is to use mixed-precision
quantization [46, 36, 39], where some sensitive layers are
kept at higher precision to recover the accuracy. Though
effective, the support for mixed-precision quantization on
general-purpose machines (CPUs and GPUs) is currently
immature and may lead to extra latency overhead.

Although standard quantization methods have shown
great results on convolutional neural networks, recent
works [27, 44] mention that it may suffer in other neural ar-
chitectures such as transformers. The presence of both con-
volutional blocks and transformers in BEV networks makes
them challenging to the traditional quantization methods.

2.3. Distillation

Model distillation [12, 28, 22, 32, 1] generally uses a
large model as the teacher to train a compact student model.
Instead of using class labels during the training of the stu-
dent model, the key idea is to leverage the soft probabili-
ties produced by the teacher to guide the student’s training.
Previous methods of distillation explore different knowl-
edge sources (for example, [12, 22, 30] use logits, aka
the soft probabilities). The choices of teacher models are
also studied, where [41, 34] use multiple teacher models,
while [8, 43] apply self-distillation without an extra teacher
model. Other previous efforts apply distillation with differ-
ent settings on different applications. Regarding BEV net-
works, previous work [6] tries to teach LiDAR information
to camera-based networks through distillation, but the addi-
tional requirement for LiDAR data makes it infeasible in our
pure camera-based setting. Besides, the existence of differ-
ent types of losses in BEV networks makes standard distil-
lation methods invalid. An arbitrary or sub-optimal combi-
nation of knowledge sources would also make the training
unstable, perform badly, or even diverge.
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3. Method
3.1. Overview of QD-BEV pipeline

This work aims to improve the efficiency of state-of-
the-art BEV models. Starting with the widely used BEV-
Former [23], we apply a progressive quantization-aware
training procedure in a stage-by-stage manner (details are
introduced in Sec. 3.2). We further boost its stability and
performance through a novel view-guided distillation pro-
cess, which is highlighted in Figure 2, where we use a
floating-point teacher model to facilitate the learning of our
quantized QD-BEV student model. Specifically, the input
multi-camera image is entered into the teacher and the stu-
dent, respectively, and then the Image Backbone and Im-
age Neck parts of the network are used to extract the multi-
camera image feature. After the transformer part of the net-
work, the BEV features are extracted, and the two parts of
the teacher model and the student model are used to calcu-
late image distill loss and BEV distill loss, respectively. The
two distillation losses are then fused through the external
parameters of the camera to achieve our unique view-guided
distillation mechanism. We provide a detailed formulation
of the view-guided distillation process in Sec. 3.3.

3.2. Quantization-aware training
In symmetric linear quantization, the quantizer maps

weights and activations into integers with a scale factor S.
Uniformly quantizing to k bit can be expressed as:

S =
2|rmax|
2k − 1

, q = round
( r

S

)
(1)

where r is the floating-point number being quantized,
|rmax| is the largest absolute value in r, and q is the quan-
tized integer. In this work, we conduct systematic experi-
ments to analyze the performance of quantization on BEV
networks. For PTQ, we apply the above quantization di-
rectly to the pre-trained models during the inference stage.
For QAT, we utilize the straight-through estimator (STE) [2]
to define the forward and backward processes for the above
quantization operations, and then we train the model to
better adapt to quantization. As previously mentioned in
Sec. 1 and Sec. 2, considering that standard QAT may lead
to divergence due to the characteristics of BEV models,
we apply a stage-wise progressive QAT where we gradu-
ally reduce the weight precision in four stages (backbone,
neck, encoder, and decoder) based on the design of BEV-
Former [23]. The performance of this progressive QAT is
illustrated in Figure 3. And we compare the effectiveness
of the progressive QAT with standard QAT in Sec. 4.2.2.

3.3. View-guided distillation

Compared to traditional single-domain distillation meth-
ods, our approach exploits the complementary nature of

both BEV and image domains, which provides different
perspectives and capture different aspects of the scene. The
BEV domain offers a top-down view, enabling accurate per-
ception and recognition of the surrounding environment,
such as the structure of the road, the location of vehicles,
and lane markings. On the other hand, the image domain
provides more realistic visual information, capturing rich
scene details and color information. In the following sec-
tions, we present details of VGD: the computation of the
image feature distillation in Sec. 3.3.1, the BEV feature dis-
tillation in Sec. 3.3.2, and the view-guided distillation com-
bining the previous two distillation losses in Sec. 3.3.3.

3.3.1 Image feature distillation

Given a pair of aligned teacher and student models, We first
compute element-wise distillation loss on image features.
We extract the image neck output as the image features to be
distilled. To improve the smoothness of the distillation loss,
we follow previous attempts [33] to use a KL divergence-
based distillation loss. Specifically, we consider the flat-
tened image features of the student and the teacher model as
logits, which we convert into probability distribution via a
softmax function with temperature ϕτ , as defined in Eq. (2).

ϕτ (xi) =
exi/τ∑
j e

xj/τ
(2)

Then we calculate the KL divergence of each camera’s out-
put separately to obtain the image feature distillation loss,
as in Eq. (3).

Limg =
τ2

B ·W ·H · C ×DKL

(
ϕτ (F

T
img), ϕτ (F

S
img)

)
(3)

where B stands for the batch size, W, H, C mean the width,
height, and number of channels of the image features, re-
spectively. FT

img and FS
img denote the image features of the

teacher model and the student model.

3.3.2 BEV feature distillation

We first convert the BEV features of the student and teacher
into probability distributions, following the same procedure
as for image features. Then we compute the KL divergence
for each point on the BEV features, as shown in Eq. (4).

Lbev =
τ2

B · C ×DKL

(
ϕτ (F

T
bev), ϕτ (F

S
bev)

)
(4)

where B stands for the batch size, C means the number of
channels of BEV features. FT

bev and FS
bev denote the BEV

features of the teacher model and student model, respec-
tively. We will get a loss with the shape of [Hbev×Wbev, 1].

3.3.3 View-guided distillation objective

In the first two sections, we obtained the loss of each cam-
era on the image feature and the corresponding loss of each
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Algorithm 1 Progressive Quantization-Aware VGD

Input: Training data;
Pre-trained FP weights for teacher model Tfp;
Student model S;
Numbers of epochs for each phase N1, ... , N4; P2;
Quantization bit for weight and activation Bw;Ba

Output: Trained low-bit student model Sq

Phase 1: Progressive Quantization-Aware Training
Init S0 with Tfp; Divide model into 4 Parts:
{Backbone,Neck,Encoder,Decoder};
for i,module in Parts do

module = quantize (module; Bw, Ba)
Init Si with Si−1

for Epoch = Ni−1 ,..., Ni do
Update Sqi by minimizing QAT loss

Phase 2: View-Guided Distillation
Init S with S4

for Epoch = 1, ... , P2 do
Update S by minimizing QAT loss and Lvgd

in Eq. (6)

point on the BEV feature. On the nuScenes dataset, the
camera external parameters are known, so we can obtain
the distribution range of each camera corresponding to the
BEV feature. Then we generate the BEV mask of views
Mbev that can be applied to the image feature, which is the
same as defined in BEVFormer [23]. Mbev is a tensor with
four dimensions: number of cameras, batch size, BEV size
(Hbev ×Wbev), and 3D Height, with binary values in each
element. By calculating the average along the last dimen-
sion (3D Height), we can flatten the BEV mask Mbev on the
2d plane with the BEV size (Hbev ×Wbev). Then the Limg

calculated for each camera can be extended to the corre-
sponding loss for each point on the BEV feature, which we
refer to as L̂img:

L̂img = Limg ⊙Mbev (5)

where ⊙ denotes the hadamard product.
Finally, we use L̂img to get the view-guided distillation

objective in Eq. (6):

Lvgd =
N·H·W∑

i=1

L̂img ⊙ Lbev (6)

The overall process of view-guided distillation is shown in
Algorithm 1.

4. Experiments
In this section, we first elaborate on the experimental

settings, then we evaluate both PTQ and QAT methods on
the BEV networks. Based on the analysis of these results,
we propose QD-BEV to overcome shortcomings in standard

PTQ and QAT, and we dedicatedly compare our results with
previous works under different settings and constraints.

4.1. Experimental settings

4.1.1 Dataset

We evaluated our proposed method on a challenging 3D de-
tection task using the nuScenes dataset [3], which is a large-
scale public dataset for autopilot developed by the team at
Motional (formerly nuTonomy). This dataset contains 1000
manually selected 20-second driving scenarios collected in
Boston and Singapore, with 750 scenarios for training, 100
for validation, and 150 for testing. The images in the dataset
were captured from 6 cameras with known internal and ex-
ternal parameters.

4.1.2 Evaluation metrics

The main measurement indicators on the nuScenes 3D test
dataset are the mean Average Precision (mAP), and the
unique evaluation index nuScenes detection score (NDS).
NDS is a comprehensive evaluation index containing many
aspects of information. The other indicators are mean Av-
erage Translation Error (mATE), mean Average Scale Error
(mASE), mean Average Orientation Error (mAOE), mean
Average Velocity Error (mAVE) and mean Average At-
tribute Error (mAAE). To evaluate the efficiency of the BEV
networks, we use model size and BOPS as the metrics.
Model size is the memory required to store a specific net-
work, which is determined by the total amount of parame-
ters in the model as well as the quantization bitwidth to store
those parameters. BOPS measures the total Bit Operations
of one network inference [35]. It is a common metric for
evaluating the computation of quantized neural networks.
For a model with L layers, defining bwi

and bai
to be the

bitwidth used for weights and activations of the i-th layer,
then we have:

BOPS =
∑L

i=1
bwibaiMACi (7)

where MACi is the total Multiply-Accumulate operations
for computing the i-th layer. To better demonstrate the
advantages of our QD-BEV model over the floating-point
model, we introduce sAP [19] (streaming average preci-
sion) as one of the evaluation metrics for our model per-
formance. sAP is a dynamic metric that will be updated as
new data arrive, making it ideal for evaluating models in
real-time scenarios.

4.1.3 Baselines & Implementation Details

We mainly compare with floating-point baseline models
proposed by BEVFormer [23] with different input image
resolutions (specifically, BEVFormer-Tiny, BEVFormer-
Small, and BEVFormer-Base). For quantization baselines,
we apply the previous PTQ method DFQ [29] as well as
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Table 1: Results with PTQ separately applied on each part in BEVFormer.

Quantized Module BEVFormer-Tiny BEVFormer-Small BEVFormer-Base

Backbone Neck Encoder Decoder mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

# # # # 0.252 0.354 0.370 0.479 0.416 0.517

" # # # 0.212 0.310 0.288 0.417 0.309 0.440
# " # # 0.252 0.353 0.370 0.478 0.416 0.516
# # " # 0.181 0.295 0.298 0.421 0.160 0.303
# # # " 0.251 0.353 0.369 0.477 0.416 0.517

" " " " 0.145 0.246 0.228 0.369 0.075 0.224

QAT method PACT [7] and HAWQv3 [40] to quantize
BEVFormer models and compare with QD-BEV.

For floating-point models, we use the open-sourced
repository of BEVFormer with two different backbones:
ResNet50 and ResNet101-DCN. We use symmetrical lin-
ear quantization in a channel-wise manner for weights, and
layer-wise quantization for activations, which are the stan-
dard settings for previous quantization methods. Since there
is little related work in our settings for reference, we make
our training adopt the same scheme as the original training
strategy of BEVFormer, which is to train 24 epochs in each
step, and to use optimizer of AdamW, a starting lr as 2e-4,
a linear warmup of 500 iters, and cosine annealing.

Table 2: PTQ results with different quantization bitwidth.

W-bit/A-bit Model NDS↑ NDS Drop mAP↑

32/32
Tiny 0.354 - 0.252
Small 0.479 - 0.370
Base 0.517 - 0.416

8/8
Tiny 0.351 0.8% 0.248
Small 0.477 0.4% 0.366
Base 0.487 5.8% 0.384

6/6
Tiny 0.312 11.9% 0.203
Small 0.430 10.2% 0.306
Base 0.402 22.2% 0.262

4/6
Tiny 0.246 30.5% 0.146
Small 0.369 23.0% 0.228
Base 0.226 56.3% 0.076

4/4
Tiny 0.034 90.4% 0.001
Small 0.034 92.9% 0.001
Base 0.023 95.6% 0.000

Table 3: Comparsion between progressive and standard
QAT with W4A6. Please refer to Table 2 for baseline FP
accuracy (W32A32).

Method Model NDS↑ NDS Drop mAP↑

Standard QAT
Tiny 0.326 7.9% 0.216
Small 0.421 12.1% 0.303
base 0.224 56.7% 0.071

Progressive QAT
Tiny 0.348 1.7% 0.234
Small 0.467 2.5% 0.356
base 0.485 6.2% 0.376

4.2. Analysis on BEV Quantization

4.2.1 PTQ results

We first analyze the sensitivity of different modules to quan-
tization in Table 1. It can be seen that the backbone and
the encoder parts of the network are more sensitive, while
quantization of the neck and the decoder parts only brings a
slight disturbance to the accuracy. We want to note that,
based on the sensitivity analysis, it is possible to apply
mixed-precision quantization to better preserve the sensi-
tive modules, but we leave this as future work since it is
beyond the scope of this paper.

We then analyze the influence of different quantization
bitwidth on the final performance. In Table 2, directly ap-
plying PTQ with less than 8-bit precision will lead to a sig-
nificant accuracy drop, especially when quantized to W4A4
the results become pure noise with around 0 mAP. As can
be observed from Table 2, performing QAT is necessary in
order to preserve the accuracy while achieving ultra-low bit
quantization.
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Table 4: QD-BEV results compared to previous methods or baselines.

Input Size Model Model Size(MB) BOPS(Tera) NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

450×800

BEVFormer-T[23] 126.8 62.33 0.354 0.253 0.899 0.294 0.655 0.657 0.216

BEVFormer-T-DFQ[29] 31.7 3.90 0.340 0.236 0.949 0.296 0.651 0.671 0.217

BEVFormer-T-HAWQv3[40] 15.9 1.46 0.348 0.234 0.949 0.304 0.568 0.661 0.209

BEVFormer-T-PACT[7] 15.9 1.46 0.347 0.234 0.919 0.289 0.604 0.671 0.216

QD-BEV-T (Ours) 15.9 1.46 0.372 0.255 0.882 0.321 0.543 0.599 0.214

720×1280

BEVFormer-S[23] 225.6 236.13 0.479 0.370 0.722 0.279 0.407 0.438 0.220

BEVFormer-S-DFQ[29] 56.4 14.76 0.467 0.356 0.751 0.283 0.405 0.451 0.222

BEVFormer-S-HAWQv3[40] 28.2 5.53 0.467 0.356 0.751 0.287 0.419 0.449 0.208

BEVFormer-S-PACT[7] 28.2 5.53 0.461 0.351 0.750 0.275 0.422 0.507 0.196

QD-BEV-S (Ours) 28.2 5.53 0.479 0.374 0.716 0.290 0.389 0.474 0.210

900×1600

BEVFormer-B[23] 262.9 667.39 0.517 0.416 0.672 0.273 0.370 0.393 0.197

BEVFormer-B-DFQ[29] 65.7 41.71 0.486 0.384 0.771 0.274 0.378 0.427 0.206

BEVFormer-B-HAWQv3[40] 32.9 15.64 0.485 0.376 0.727 0.288 0.381 0.434 0.202

BEVFormer-B-PACT[7] 32.9 15.64 0.480 0.374 0.735 0.291 0.392 0.458 0.201

QD-BEV-B (Ours) 32.9 15.64 0.509 0.406 0.691 0.285 0.360 0.410 0.190

Figure 3: The training process of QD-BEV. Progressive QAT with 4 stages is performed in the first 60 epochs, then the view-
guided distillation is conducted together with QAT to steadily enhance the performance. The pink line in the figure represents
the baseline NDS. Note that swapping VGD with pure QAT or other distillation methods (for example, CWD [33]) will lead
to undesirable results, as we show in the last 20 epochs in this figure, compared with Figure 1 and Figure 5.

4.2.2 QAT results

To address the severe accuracy degradation of PTQ, we ap-
ply QAT to better adapt the models towards 4-bit quanti-
zation. In all our experiments, the standard QAT method
which directly quantizes the whole network to the target
bitwidth will lead to unstable QAT processes, causing gra-
dient explosion or a rapid decrease in accuracy in large
models (for example, the W4A6 BEVFormer-Base has only
0.07 mAP). Based on this observation, we hypothesize that
the quantization perturbation introduced in standard QAT

is too large to be recovered. As such, we apply progres-
sive QAT to constrain the quantization perturbation along
the training process. A comparison of the performance be-
tween progressive QAT and standard QAT with the same
number of training epochs is presented in Table 3. We can
see that progressive QAT consistently outperforms standard
QAT by a large margin (up to 5% mAP) in BEVFormer-
Tiny and BEVFormer-Small, and achieves an even larger
performance gain on BEVFormer-Base. To better validate
our analyses, we plot the training curve of progressive QAT
as the first 60 epochs in Figure 3, where W4A6 quantization
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Table 5: QD-BEV results on BEVDepth[21] and PETR[24].

W A Model mAP↑ NDS↑

32 32 BEVDepth-T[21] 0.330 0.435

8 8 BEVDepth-T-DFQ[29] 0.281 0.377

4 6 BEVDepth-T-HAWQ[40] 0.136 0.206

4 6 BEVDepth-T-PACT[7] 0.270 0.362

4 6 QD-BEVDepth-T (Ours) 0.301 0.394

32 32 PETR-r50dcn[24] 0.317 0.366

8 8 PETR-r50dcn-DFQ[29] 0.290 0.343

4 6 PETR-r50dcn-HAWQ[40] 0.162 0.216

4 6 PETR-r50dcn-PACT[7] 0.268 0.320

4 6 QD-PETR-r50dcn (Ours) 0.288 0.334

is conducted on BEVFormer-Tiny. We separate the progres-
sive QAT into 4 stages and iteratively quantize a new mod-
ule in each stage. As can be seen, there is an NDS drop at
beginning of each stage, corresponding to the quantization
perturbation introduced by quantizing each new module.

Despite the merits of progressive QAT, we want to note
that it still suffers from unstable training and performance
degradation. As illustrated in Figure 1 which corresponds to
the last 20 epochs in Figure 3, progressive QAT keeps going
up and down after reaching a plateau, while training curves
of VGD show a rising trend with much better stability.

4.3. Main Results of QD-BEV

In order to obtain better accuracy and stability, we ap-
ply view-guided distillation with the floating-point model
as the teacher and the quantized model as the student. The
effect of VGD on W4A6 quantization of BEVFormer-Tiny
is shown in Figure 3. Note that we separate VGD from
progressive QAT in the first 60 epochs for a clearer compar-
ison and illustration, and VGD is actually a plug-and-play
function that can always be jointly applied with QAT, as
we do in the last 20 epochs. Benefiting from knowledge
in both the image domain and the BEV domain, QD-BEV
networks are able to fully recover the quantization degrada-
tion, and even outperform the floating-point baselines. As
shown in Table 4, the NDS and mAP of the model outper-
form previous floating-point baselines as well as quantized
networks. Since there are no existing results for compact
BEV networks, we implement standard quantization meth-
ods DFQ [29], HAWQv3 [40] and PACT [7] on BEVFormer
as a comparison. We apply W8A8 quantization for DFQ

Figure 4: Visualization of QD-BEV results and the compar-
ison with results obtained by BEVFormer.

(DFQ is a PTQ method, lower bitwidth will lead to intolera-
ble accuracy degradation) and W4A6 for QAT methods and
QD-BEV models. As a comparison, QD-BEV can achieve
0.509 NDS with only 32.9 MB model size, which is similar
to the size of BEVFormer-T-DFQ (0.340 NDS) and much
smaller than BEVFormer-Tiny (126.8 MB, 0.354 NDS).

Preliminary tests were run on PETR [24] and
BEVDepth [21] models using our method in figure 5.
Performance did not match BEVFormer, but still sur-
passed conventional quantization methods, highlighting the
method’s potential despite varying results.

In Figure 4, we show the visualization results of the QD-
BEV-Base model on the nuScenes val dataset, and compare
them with the results of BEVFormer-Tiny and the ground
truth. As can be seen, more objects are detected by QD-
BEV-Base, and the 3D boxes predictions are more accurate
than BEVFormer-Tiny. More visualizations are provided in
the supplementary material.

4.4. Streaming perception result

In the context of autonomous driving, streaming percep-
tion [19] is critical for enabling models to make rapid and
precise decisions in real time. High latency will degrade
the streaming perception because it will cause a delay be-
tween the sensory data and the neural network output. To
enhance streaming perception, quantization is a necessary
technique that compresses the model size, reduces compu-
tational load, and accelerates the inference process. In Ta-
ble 6, we demonstrate the significant impact of quantization
on the sAP metric in autonomous driving scenarios. As we
can see, QD-BEV models show consistent improvements
in sAP compared to the floating-point counterparts and the
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Table 6: sAP of QD-BEV models compared to baselines.

Input Size Model W A mAP↑ sAP↑

450×800

BEVFormer-T[23] 32 32 0.253 0.228

BEVFormer-T-DFQ[29] 8 8 0.236 0.230

QD-BEV-T (Ours) 4 6 0.255 0.251

720×1280

BEVFormer-S[23] 32 32 0.370 0.249

BEVFormer-S-DFQ[29] 8 8 0.356 0.322

QD-BEV-S (Ours) 4 6 0.374 0.350

900×1600

BEVFormer-B[23] 32 32 0.416 0.136

BEVFormer-B-DFQ[29] 8 8 0.384 0.290

QD-BEV-B (Ours) 4 6 0.406 0.337

(a) mAP curve. (b) NDS curve.

Figure 5: The training curve of VGD versus CWD [33].
CWD uses only one type of features, referred to as cwd-img
(image feature) and cwd-bev (bev feature), respectively.

quantized baselines.

5. Ablation study
In Figure 5, we conduct an ablation study where we com-

pare view-guided distillation with the cases using only dis-
tillation on the image feature, and only on the BEV feature,
respectively. The method is referred to as CWD [33]. For
a fair comparison, we apply the same pre-training weights
and hyperparameters such as the temperature and the learn-
ing rate. From the figure, it can be found that view-guided
distillation has a clear advantage over the CWD methods. In
both the mAP and NDS curves, VGD has a more obvious
and stable upward trend, and achieves better final results.

6. Conclusion
In this work, we systematically study both PTQ and QAT

on BEV networks and showcase the major problems they
are facing. Based on our analyses, we propose a view-
guided distillation (VGD) method that can stabilize the
QAT process and enhance the final performance by lever-

aging information from both the image domain and the
BEV domain. With VGD as a plug-and-play function that
can be jointly applied when quantizing BEV models, QD-
BEV can close the accuracy gap or even outperforms the
floating-point baselines. On the nuScenes datasets, the 4-bit
weight and 6-bit activation quantized QD-BEV-Tiny model
achieves 37.2% NDS with only 15.8 MB model size, out-
performing BevFormer-Tiny by 1.8% with an 8× model
compression.
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