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Figure 1: ReMoDiffuse is a retrieval-augmented 3D human motion diffusion model. Benefiting from the extra knowledge
from the retrieved samples, ReMoDiffuse is able to achieve high-fidelity on the given prompts.

Abstract

3D human motion generation is crucial for creative indus-
try. Recent advances rely on generative models with domain
knowledge for text-driven motion generation, leading to
substantial progress in capturing common motions. How-
ever, the performance on more diverse motions remains
unsatisfactory. In this work, we propose ReMoDiffuse, a
diffusion-model-based motion generation framework that
integrates a retrieval mechanism to refine the denoising
process. ReMoDiffuse enhances the generalizability and
diversity of text-driven motion generation with three key
designs: 1) Hybrid Retrieval finds appropriate references
from the database in terms of both semantic and kine-
matic similarities. 2) Semantic-Modulated Transformer
selectively absorbs retrieval knowledge, adapting to the
difference between retrieved samples and the target motion
sequence. 3) Condition Mixture better utilizes the retrieval
database during inference, overcoming the scale sensi-
tivity in classifier-free guidance. Extensive experiments
demonstrate that ReMoDiffuse outperforms state-of-the-art
methods by balancing both text-motion consistency and
motion quality, especially for more diverse motion gener-
ation. Project page: https://mingyuan-zhang.

� Corresponding author.

github.io/projects/ReMoDiffuse.html

1. Introduction

Human motion generation has numerous practical appli-
cations in fields such as game production, film, and virtual
reality. This has led to a growing interest in generating
manipulable, plausible, diverse, and realistic human mo-
tion sequences. Traditional modeling processes are time-
consuming and require specialized equipment and a signif-
icant amount of domain knowledge. To address these chal-
lenges, generic human motion generation models have been
developed to enable the description, generation, and modi-
fication of motion sequences. Among all forms of human-
computer interaction, natural language, in the form of text,
provides rich semantic details and is a commonly used con-
ditional signal in human motion generation.

Previous research has explored various generative mod-
els for text-driven motion generation. TEMOS uses a
Variational-Auto-Encoder (VAE) to synthesize detailed mo-
tions, utilizing the KIT Motion-Language dataset [17]. Guo
et al. [7] propose a two-stage auto-regressive approach for
generating motion sequences. More recently, diffusion
models have been applied to human motion generation due
to their strength and flexibility. MotionDiffuse [27] gener-
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ates realistic and diverse actions while allowing for multi-
level motion manipulation in both spatial and temporal di-
mensions. MDM [24] uses geometric losses as training
constraints to make predictions of the sample itself. While
these methods have achieved impressive results, they are not
versatile enough for uncommon condition signals.

Some recent works on text-to-image generation utilize
retrieval methods to complement the model framework,
providing an retrieval-augmented pipeline to tackle the
above issue [22, 4, 3]. However, simply transferring these
methods into text-driven motion generation fields is imprac-
tical due to three new challenges. Firstly, the similarity
between the target motion sequence and the elements in
database is complicated. We need to evaluate both seman-
tic and kinematic similarities to find out related knowledge.
Secondly, a single motion sequence usually contains several
atomic actions. It is necessary to learn from the retrieved
samples selectively. In this procedure, the model should be
aware of the semantic difference between the given prompt
and retrieved samples. Lastly, motion diffusion models are
sensitive to the scale in classifier-free guidance, especially
when we supply another condition, retrieved samples.

In this paper, we propose a new text-driven motion gen-
eration pipeline, ReMoDiffuse, which addresses the above-
mentioned challenges and thoroughly benefits from the re-
trieval techniques to generate diverse and high-quality mo-
tion sequences. ReMoDiffuse includes two stages: retrieval
stage and refinement stage. In the retrieval stage, we ex-
pect to acquire the most informative samples to provide
useful guidance for the denoising process. Here we con-
sider both semantic and kinematic similarities and suggest
a Hybrid Retrieval technique to achieve this objective. In
the refinement stage, we design a Semantics-Modulated
Transformer to leverage knowledge retrieved from an ex-
tra multi-modal database and generate semantic-consistent
motion sequences. During inference, Condition Mixture
technique enables our model to generate high-fidelity and
description-consistent motion sequences. We evaluate our
proposed ReMoDiffuse on two standard text-to-motion gen-
eration benchmarks, HumanML3D [7] and KIT-ML [17].
Extensive quantitative results demonstrate that ReMoDif-
fuse outperforms other existing motion generation pipelines
by a significant margin. Additionally, we propose several
new metrics for quantitative comparisons on uncommon
samples. We find that ReMoDiffuse significantly improves
the generation quality on rare samples, demonstrating its
superior generalizability.

To summarize, our contributions are threefold: 1) We
carefully design a retrieval-augmented motion diffusion
model which efficiently and effectively explores the knowl-
edge from retrieved samples; 2) We suggest new metrics to
evaluate the model’s generalizability under different scenar-
ios comprehensively; 3) Extensive qualitative and quantita-

tive experiments show that our generated motion sequences
achieve higher generalizability on both common and un-
common prompts.

2. Related Work
2.1. Diffusion Models

Diffusion models [10, 14] is a new class of gener-
ative models that have achieved impressive progress on
text-to-image generation tasks. Prafulla Dhariwal and
Alex Nichol [5] propose a diffusion model-based genera-
tive model, which first outperforms Generative Adversar-
ial Networks(GAN) and establishes a new state-of-the-art
text-driven image generation task. Their success with this
advanced generative model quickly attract attention from
worldwide researchers. GLIDE [13] designs classifier-free
guidance and proves its superiority compared to the CLIP
guidance used in previous works. DALL-E2 [19] attempts
to bridge the text embedding and image embedding from
the CLIP [18]. It includes another diffusion model which
tries to synthesize an image embedding from the text em-
bedding.

Recently, some works have focused on employing re-
trieval methods as complements to the model framework,
providing an idea to enhance the generalizability. KNN-
Diffusion [22] uses k-Nearest-Neighbors (kNN) to train an
efficient text-to-image model without any text, enabling the
model to adapt to novel samples. RDM [3] replaces the re-
trieval examples with the user-assigned images. Then it can
effectively transfer artistic style from these images into the
generated one. Re-Imagen [4] leverages knowledge from
the external database to free the model from memorizing
rare features, striking a good balance between fidelity and
diversity.

2.2. Text-Driven Motion Generation

Text-driven motion generation has witnessed significant
progress recently. Earlier works focus on learning a joint
embedding space between motion sequences and language
descriptions deterministically. JL2P [1] attempts to create a
joint embedding space by applying the same reconstruction
task on both text and motion embedding. Specifically, JL2P
encodes the input text and motion data separately by two
different encoders for each modality. A motion decoder is
then applied on both embeddings to reconstruct the origi-
nal motion sequences, which are expected to be the same as
the initial input. Ghosh et al. [6] further develop this idea
by manually dividing each pose sequence into an upper one
and a lower one to represent two different body parts. In ad-
dition, the proposed method integrates a pose discriminator
to improve the generation quality further. MotionCLIP [23]
attempts to enhance the generalizability of text-to-motion
generation. It enforces the motion embedding to be similar
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Figure 2: Overview of the proposed ReMoDiffuse. a) Hybrid retrieval database stores various features of each training
data. The pre-processed text feature and relative difference of motion length are sent to calculate the similarity with the
given language description. The most similar ones are fed into the semantics-modulated transformer (SMT), serving as addi-
tional clues for motion generation. b) Semantics-modulated transformer incorporates N identical decoder layers, including
a semantics-modulated attention (SMA) layer and an FFN layer. The figure shows the detailed architecture of SMA module.
CLIP’s extracted text features fprompt from the given prompt, features Rt and Rm from the retrieved samples, and current
motion features fΘ will further refine the noised motion sequence. c) To synthesize diverse and realistic motion sequences,
starting from the pure noised sample, the motion transformer repeatedly eliminates the noise. To better mix outputs under
different combinations of conditions, we suggest a training strategy to find the optimal hyper-parameters w1, w2, w3 and w4.

to the text and image embedding from critical poses. These
two embeddings are acquired from CLIP [18], which ex-
cels at encoding texts and images into a joint space. Conse-
quently, MotionCLIP can generate motion sequences with
unseen descriptions.

To improve the diversity of generated motion sequences,
previous works introduce variational mechanisms. TEMOS
[16] employs a Variational Autoencoder (VAE) [11] to re-
place the deterministic auto-encoder structures. Besides,
different from the recurrent neural networks in the previous
works, both motion encoder and motion decoder in TEMOS
is based on transformer architectures [25]. Guo et al. [7]
propose an auto-regressive conditional VAE, which is con-
ditioned on both the text feature and the previously gener-
ated frames. Given these conditions, the proposed pipeline
will generate four successive frames as a unit. TEACH [2]
also exploits auto-regressive models but in a larger length
range. It can synthesize a long motion sequence with the
given description and the previous sequence. Consequently,
it can generate motion sequences with different actions con-
tinuously. TM2T [8] regards the text-driven motion genera-
tion task as a translation task between natural languages and
motion sequences. Most recently, T2M-GPT [26] quantizes
motion clips into discrete tokens and use a transformer to
automatically generate later tokens.

Inspired by the success of diffusion models in text-to-

image generation tasks, some recent works have adapted
this advanced generative model to motion generation tasks.
MotionDiffuse [27] is an efficient DDPM-based architec-
ture for plausible and controllable text-driven motion gen-
eration. It generates realistic and diverse actions and al-
lows for multi-level motion manipulation in both spatial and
temporal dimensions. MDM [24] is a lightweight diffu-
sion model featuring a transformer-encoder backbone. It
makes predictions of the sample rather than the noise so
that geometric losses are supported as training constraints.
Although these methods have outstanding performances on
text-driven motion generation tasks, they are not versatile
enough for uncommon condition signals. In this paper, we
equip the diffusion model-based architecture with retrieval
capability, enhancing the generalizability.

3. Our Approach
In this paper, we present a Retrieval-augmented Motion

Diffusion model (ReMoDiffuse). We first describe the
overall architecture of the proposed method in Section 3.
The background knowledge about the motion diffusion
model will be discussed in Section 3.2. Then we will
introduce our proposed novel retrieval techniques and the
corresponding model structure in Section 3.3. Finally, we
will introduce the training objective and sampling strategy
in Section 3.5.
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3.1. Framework Overview

Figure 2 shows the overall architecture of ReMoDif-
fuse. We establish the whole pipeline based on MotionDif-
fuse [27], which incorporates diffusion models and a series
of transformer decoder layers. To strengthen its general-
izability, we extract features from two different modalities
to establish the retrieval database. During denoising steps,
ReMoDiffuse first retrieves motion sequences based on the
extracted text features and relative motion length. These
retrieved samples are then fed into the motion transformer
layers. As for each decoder layer, the noised sequence is re-
fined by Semantics-Modulated Attention (SMA) layers and
then absorbs information from the given description and the
retrieved samples. In the classifier-free generation process,
we have distinct outputs under different condition combina-
tions. To better fuse these outputs, we finetune our model on
the training split to find the optimal combination of hyper-
parameters w1, w2, w3 and w4. We will introduce these
components in the following subsections.

3.2. Diffusion Model for Motion Generation

Recently, diffusion models have been introduced into
motion generation [27, 24]. Compared to VAE-based
pipelines, the most popular motion-generative models in
previous works, diffusion models strengthen the genera-
tion capacity through a stochastic diffusion process, as ev-
idenced by the diverse and high-fidelity generated results.
Therefore, in this work, we build our motion generation
framework in a corporation with diffusion models.

Diffusion Models can be parameterized as a Markov
chain pθ(x0) :=

∫
pθ(x0:T ) dx1:T , where x1, · · · ,xT are

the noised sequences distorted from the real data x0 ∼
q(x0). All xt, where t = 0, 1, 2, . . . , T , are of the same
dimensionality. In the motion generation tasks, each xt can
be represented by a series of pose θi ∈ RD, i = 1, 2, . . . , F ,
where D is the dimensionality of the pose representation
and F is the number of the frames.

In the forward process of diffusion models, the computa-
tion of the posterior distribution q(x1:T |x0) is implemented
as a Markov chain that gradually adds Gaussian noises to
the data according to a variance schedule β1, · · · , βT :

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI).

(1)

To efficiently acquire xt from x0, Ho et al. [10] approxi-
mate q(xt) as x :=

√
ᾱtx0+

√
1− ᾱtϵ, where αt := 1−βt

and ᾱt :=
∏t

s=1 αs.
In diffusion models, the aforementioned forwarding

Markov chain is reversed to learn the original motion distri-
butions. Expressly, diffusion models are trained to denoise

noisy data xt into clean data x0. Following MDM [24], we
predict the clean state x0. The training target can be written
as:

Ex0,ϵ,t[x0 − S(xt, t, retr, text)], (2)

where retr and text denote the conditions of retrieved sam-
ples and the given prompts respectively. Here t ∈ U(0, T )
denotes the timestamp, which is uniformly sampled from 0
to the maximum diffusion steps T . S(xt, t, retr, text) in-
dicates the estimated clean motion sequence, given the four
inputs.

During the sampling process, we can sample xt−1 from a
Gaussian Distribution N (µθ(xt, t, c), βt), where c denotes
the condition of retr and text for simplicity. The mean of
this distribution can be acquired from xt and S(xt, t, c) by
the following equation:

µθ(xt, t, c) =
√
ᾱtS(xt, t, c) +

√
1− ᾱtϵθ(xt, t, c)

ϵθ(xt, t, c) = (
xt√
ᾱt

− S(xt, t, c))

√
1

ᾱt
− 1

(3)

Hence, on the basis of diffusion models, the text-driven mo-
tion generation pipeline should be able to predict the start
sequence x0, with the given conditions. In this paper, we
propose a retrieval technique to enhance this denoising pro-
cess. We will introduce how we retrieve motion sequences
and how to fuse this information.

3.3. Retrieval-Augmented Motion Generation

Basically, there are two stages in retrieval-based
pipelines. The first stage is to retrieve appropriate samples
from the database. The second stage is acquiring knowl-
edge from these retrieved samples to refine the denoising
process of diffusion models. We will thoroughly introduce
these two steps.

Hybrid Retrieval. To support this process, we need to
extract features for calculating the similarities between the
given text description and the entities in the database. Con-
sidering that the retrieval procedure is not differentiable, we
have to utilize pre-trained models instead of using learnable
architectures. An intuitive method is to generate text fea-
tures on both query text and the data points. Thanks to the
pre-trained CLIP [18], we can easily evaluate the semantic
similarities from language descriptions. Formally, for each
data point (texti,Θi), we first calculate f t

i = ET (texti) as
the text-query feature, where ET is the text encoder in the
CLIP model.

Text features usually encourage the retrieval process to
select samples with high semantic similarities. These fea-
tures play a significant role in retrieving suitable samples.
However, there is another kind of feature that is vital but
easily overlooked, the relative magnitude between the ex-
pected motion length and that of each entity in the database.
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Hence, the similarity score si between i-th data point and
the given description prompt and expected motion length
L is defined as below:

si =< f t
i , f

t
p > ·e−λ·γ ,

f t
p = Et(prompt), γ =

∥li − L∥
max{li, L}

,
(4)

where < ·, · > denotes cosine similarity between the two
given feature vectors, li is the length of the motion sequence
Θi. The similarity score si becomes larger when text-query
is closer to the prompt feature. When the expected motion
length is close to the length of one entity, the correspond-
ing si will also increase. This property is significant be-
cause the motion sequence with a similar length can provide
more informative features for the generation. λ is a hyper-
parameter to balance the magnitude of these two different
similarities.

To establish the retrieval database, we simply select all
the training data as entities. Given the number of retrieved
samples k, prompt, and motion length L, we sort all ele-
ments by the score si in Equation 4. Then the most k sim-
ilar ones are selected as the retrieved samples (texti,Θi)
and fed into the semantics-modulated attention components
in the motion transformer. We will illustrate the detailed
architecture in the next paragraph.

Network Architecture. Similar to MotionDiffuse [27]
and MDM [24], we build up our pipeline on the basis of
transformer layers as shown in Figure 2. In both semantics-
modulated attention modules and FFN modules, follow-
ing MotionDiffuse [27], we add a stylization block to fuse
timestamp t into the motion generation process. First, an
embedding vector et is obtained from the timestamp t. It
should be mentioned that the original design in MotionDif-
fuse also uses an embedding vector from the given prompt,
which is not suitable for classifier-free guidance. Then for
each block, a residual shortcut is applied between the in-
put X ∈ Rn×d and the output Y ∈ Rn×d, where n is the
number of elements and d is the dimensionality.

Two major difficulties should be resolved to better ex-
plore knowledge from the retrieved samples. First, in the
literature of motion diffusion models [27, 24], the resolu-
tion of motion sequences is not reduced through the denois-
ing process. The maximum length of one motion sequence
is around 200 frames in the HumanML3D [7] dataset, lead-
ing to a dramatic computational cost, especially when we
expect to retrieve more samples. Hence, efficiency is highly
prioritized for the information fusion component. Second,
the semantic relation between the retrieved samples and
given prompts is complicated. For example, ‘a person is
walking forward’ and ‘a person is walking forward slowly’
are highly similar. However, these two prompts will lead to
two distinct motion sequences regarding pace and intensity.

Therefore, the model should know which motion features
can be borrowed, guided by the difference between the lan-
guage descriptions.

Based on these observations, we design two encoders
to extract text features and motion features from the re-
trieved data, respectively. As for motion features, we expect
them to be capable of providing low-level information while
retaining the computational cost to an acceptable degree.
Therefore, we build up a series of encoder layers, which
include alternating Semantics-Modulated Attention(SMA)
modules and FFN modules. This motion encoder processes
raw motion sequences into usable ones. To reduce the
computational cost, we down-sample the sequence into 1/4
original FPS, which is denoted as Rm ∈ RF ′·k×D, where
F ′ is the number of frames after down-sampling and k is the
number of retrieved samples. This simple strategy greatly
decreases the computation with little information lost. As
for the text encoder, the feature Rt ∈ Rk×D from the last
token is supposed to represent the global semantic informa-
tion. Rm and Rt constitute the features we needed for the
purpose of retrieval-based augmentation.

Semantics-Modulated Attention. These extracted fea-
tures will be passed to the cross attention component, as
shown in Figure 2 . The noised motion sequence forms the
query vector Q ∈ RF×D. As for the key vector K and the
value vector V , we consider three sources of data: 1) The
motion sequence fΘ ∈ RF×D itself. As shown in Figure 2,
our proposed transformer does not contain a self-attention
module. Instead, we combine the function self-attention
into the SMA; 2) The text condition fprompt, which seman-
tically describes the expected motion sequence and is ex-
tracted as in MotionDiffuse [27]. Specifically, the prompt
is first fed into the pre-trained CLIP model to get a fea-
ture sequence, which is further processed by two learnable
transformer encoder layers; 3) Features Rm, Rt from the
retrieved samples. We simply concatenate fΘ, fprompt, R

m

for value vector V and fΘ, fprompt, [R
m;Rt] for key vec-

tor K. Here [·; ·] denotes the concatenation of both terms.
This design allows our proposed method to fuse low-level
motion information from the retrieved samples and also to
fully consider the semantic similarities. The acquired vec-
tors Q,K, V are sent to perform Linear Attention [21] for
efficient computation.

Stylization Block. Similar to MotionDiffuse [27] and
MDM [24], we build up our pipeline on the basis of trans-
former layers. In both semantics-modulated attention mod-
ules and FFN modules, following MotionDiffuse [27], we
add a stylization block to fuse timestamp t into the motion
generation process. First, an embedding vector et is ob-
tained from the timestamp t. Then for each block, a resid-
ual shortcut is applied between the input X ∈ Rn×d and the
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Figure 3: Architecture of the stylization block. This mod-
ule is adapted from MotionDiffuse [27]. We remove the
prompt embedding from the original design to better sup-
port classifier-free guidance. This module attempts to in-
ject the information of the current timestamp into the fea-
ture representation, which is necessary for denoising steps.
Specifically, the timestamp embedding et is fed into a series
of transformation layers. Two embeddings are generated af-
terward and serve as an additive offset and a multiplicative
offset to the original feature map, respectively.

output Y ∈ Rn×d, where n is the number of elements and
d is the dimensionality. The detailed structure is shown in
Figure 3.

3.4. Condition Mixture

Classifier-free guidance enables us to generate motion
sequences with both high fidelity and consistency with the
given text description. A typical formulation is described as
below:

ϵ = w · ϵθ(xt, t, text)− (w − 1) · ϵθ(xt, t), (5)

where w is a hyper-parameter to balance the text-
consistency and motion quality. In our proposed
retrieval-augmented diffusion pipeline, the given re-
trieved samples can be regarded as an additional
condition. Therefore, we get four estimations:
S(xt, t, retr, text), S(xt, t, retr), S(xt, t, text), S(xt, t).
We need four parameters to balance these items. To
achieve a better performance, here we suggest a Condition
Mixture technique to achieve this objective. Specifically,
given the pre-trained Semantics-Modulated Transformer
(SMT), we optimize the value of w1, w2, w3, w4 and get
the final output Ŝ as:

Ŝ =w1 · S(xt, t, retr, text) + w2 · S(xt, t, text)+

w3 · S(xt, t, retr) + w4 · S(xt, t).
(6)

Empirically, we find that the tendency of Frechet Incep-
tion Distance (FID) is similar to that of Precision when the
hyper-parameters are nearly optimal. Hence, we only at-
tempt to minimize the FID in this procedure.

Constrastive Model. To imitate the evaluator used in the
standard evaluation process, we train our contrastive model,

which aims at encoding the paired text descriptions and mo-
tion sequences into a joint embedding space. As for the mo-
tion encoder, we use a 4-layer ACTOR [15] Encoder. The
text encoder is identical to the one we used in ReMoDiffuse.
The only difference is that we require a sentence feature in-
stead of a sequence of word features. We train this con-
trastive learning model with the same loss in Guo et al. [7].
20K and 40K optimization steps are applied for the KIT-ML
and HumanML3D datasets, respectively.

Parameter Finetuning. As mentioned before, we only
use 50 denoising steps to generate motion sequences in the
inference stage. However, it is impractical to calculate the
gradient through such several forward times. To simplify
the problem, we divide all denoising steps into the first 40
steps and the last ten steps. In the first part, we use grid
search to find a better parameter combination. Specifically,
for Equation 6, we search w1 and w2 from [−5, 5] with step
0.5 to find the best parameter for each model. Here we use
inspiration from Re-Imagen [4] that set w4 = 0. Besides, to
retain the output’s statistics, we w1 + w2 + w3 + w4 = 1.
These two properties enable us to find the optimal combi-
nation by only searching the value of w1 and w2. The eval-
uation metric is the calculated FID between our generated
sequences and the natural motion sequences in the train-
ing split performed by our trained contrastive model. This
search aims to find an optimal combination of w1 and w2 to
achieve the lowest FID.

In the second stage, we use an end-to-end training
scheme to optimize w1, w2, and w3. w4 is acquired by
1 − w1 − w2 − w3. We use the Adam optimizer to train
our model on the training split for 1K steps to find the best
parameter combination.

We use the searched parameters during training to per-
form the first 40 denoising steps. After that, we auto-
regressively denoise the motion sequence with learnable
w1, w2 and w3. The training objective here is also reduc-
ing FID.

We use the Adam optimizer and train 1K steps for both
HumanML3D and KIT-ML datasets to find the best param-
eter combination.

3.5. Training and Inference

Model Training. Inspired by the classifier-free technique,
10% of the text conditions and 10% of the retrieval condi-
tions are independently randomly masked to approximate
p(x0). The training object is to minimize the mean square
error between the predicted initial sequence and the ground
truth, as shown in Equation 2. In the training stage, we
typically use a 1000-steps diffusion process.

Model Inference. During each denoising step, we use the
learned coefficients w1, w2, w3 and w4 to get Ŝ as Equa-
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Table 1: Quantitative results on the HumanML3D test set. For a fair comparison, all methods use the real motion length
from the ground truth as the extra given information. ‘↑’(‘↓’) indicates that the values are better if the metric is larger
(smaller). We run all the evaluations 20 times. x±y indicates that the average metric is x and the the 95% confidence interval
is y. The best result and the second best result are in red cells and blue cells, respectively.

Methods
R Precision↑

FID↓ MM Dist↓ Diversity↑ MultiModality↑
Top 1 Top 2 Top 3

Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
Guo et al. [7] 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

MDM [24] - - 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MotionDiffuse [27] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

T2M-GPT [26] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

Ours 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

Table 2: Quantitative results on the KIT-ML test set.

Methods
R Precision↑

FID↓ MM Dist↓ Diversity↑ MultiModality↑
Top 1 Top 2 Top 3

Real motions 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
Guo et al. [7] 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

MDM [24] - - 0.396±.004 0.497±.021 9.191±.022 10.847±.109 1.907±.214

MotionDiffuse [27] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

T2M-GPT [26] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.921±.108 1.570±.039

Ours 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

tion 6. To reduce the computation cost introduced by the
retrieved samples, we pre-process all fv

i , f
t
i , R

t, Rm to en-
sure no repeated computation for different syntheses.

Different from the training stage, we carefully reduce
the whole denoising process into 50 steps during inference,
which enables our model to generate high-quality motion
sequences efficiently.

4. Experiments

4.1. Datasets and Metrics

Datasets. We evaluate our proposed framework using the
KIT dataset [17] and the HumanML3D dataset [7], two
leading benchmarks in text-driven motion generation tasks.
KIT Motion Language Dataset is an open dataset combin-
ing human motion and natural language, which contains
3,911 motions and 6,363 natural language annotations. Hu-
manML3D is a scripted 3D human motion dataset that orig-
inates from and textually reannotates the HumanAct12 [9]
and AMASS datasets [12]. Overall, HumanML3D consists
of 14,616 motions and 44,970 descriptions.

Evaluation Metrics. We follow the performance mea-
sures employed in MotionDiffuse for quantitative evalua-
tions, namely Frechet Inception Distance (FID), R Preci-
sion, Diversity, Multimodality, and Multi-Modal Distance.
(1) FID is an objective metric calculating the distance be-
tween features extracted from real and generated motion se-
quences, which highly reflects the generation quality. (2) R-

precision measures the similarity between the text descrip-
tion and the generated motion sequence and indicates the
probability that the real text appears in the top k after sort-
ing, and in this work, k is taken to be 1, 2, and 3. (3) Diver-
sity measures the variability and richness of the generated
action sequences. (4) Multimodality measures the average
variance of generated motion sequences given a single text
description. (5) Multi-modal distance (MM Dist for short)
represents the average Euclidean distance between the mo-
tion feature and its corresponding text description feature.

4.2. Implementation Details

We use similar settings on HumanML3D and KIT-ML
datasets. As for the motion encoder, a 4-layer transformer
is used, and the latent dimension is 512. As for the text en-
coder, a frozen text encoder used in the CLIP ViT-B/32, to-
gether with 2 additional transformer encoder layers, is built
and applied. As for the diffusion model, the variances βt are
pre-defined to spread linearly from 0.0001 to 0.02, and the
total number of noising steps is set to be T = 1000. Adam
is adapted as the optimizer to train the model with a learn-
ing rate equal to 0.0002. 1 Tesla V100 is used for training,
and the batch size on a single GPU is 128. Pieces of training
on KIT-ML and HumanML3D are carried out for 40k and
200k steps respectively.

Pose representation in this work follows the schema used
by Guo et al. [7]. The pose is defined as a tuple of length
seven: (rva, rvx, rvz, rh, jp, jv, jr), where rva ∈ R is the
root angular velocity along Y-axis, and rvx, rvz ∈ R are the
root linear velocities along X-axis and Z-axis respectively.
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a) Guo et al. b) MotionDiffuse c) MDM d) ReMoDiffuse

Figure 4: Visual Comparison between previous works and ReMoDiffuse. We draw black lines to show the translation path.
As for both given conditions, only ReMoDiffuse conveys accurate action and path condition.

rh ∈ R is the root height. jp, jv ∈ RJ×3 are the local joints
positions and velocities. jr ∈ RJ×6 is the 6D local contin-
uous joints rotations. J denotes the number of joints, and in
HumanML3D and KIT-ML, J is 22 and 21 separately.

4.3. Main Results

Table 1 and Table 2 show the comparison between our
proposed ReMoDiffuse and four other existing works, in-
cluding recent diffusion models-based algorithms [24, 27],
one VAE-based generative model [7], and one GPT-style
generative model [26].

Compared to other diffusion model-based pipelines, our
proposed ReMoDiffuse achieves a better balance between
the condition-consistency and fidelity. It should be noted
that, ReMoDiffuse is the first work to achieve state-of-the-
art on both metrics, which demonstrates the superiority of
the proposed pipeline.

4.4. Ablation Study

Retrieval Techniques. First, we investigate the influence
of different retrieval techniques. To directly evaluate the
similarity between the target samples and the given sam-
ples, we use retrieved samples as generated results and cal-
culate the FID metric for them. We try different λ to bal-
ance the terms of semantic similarity and kinematic simi-
larity. The results are shown in Figure 5. λ = 0 means
that the kinematic similarity will not influence the retrieval
process, whose retrieval quality is unacceptable. This result
supports our claim that kinematic similarity is significant to
the retrieval quality. The optimal value of λ is 0.1 for both
KIT-ML and HumanML3D datasets.

Motion Refinement. We further evaluate the proposed
cross attention component of our retrieval-augmented mo-
tion generation. In Table 3, when using the text feature,
FID is enhanced remarkably. It strongly supports our claims
that text features are highly significant in hybrid retrieval,

Figure 5: The retrieval performance of different λ. λ is
used to balance semantic and kinematic similarity in the re-
trieval stage. A larger λ indicates the retrieval process fo-
cuses more on the kinematic similarity.
Table 3: Ablation of the proposed architecture. All re-
sults are reported on the KIT testset. ‘T’ and ‘M’ denote
the usage of semantic similarity and kinematic similarity
respectively. These two factors are considered in both re-
trieval and refinement stages.

Retrieval Attention #Samples Stride FID↓
a) - - - - 0.245±.008

b) T M 2 4 0.314±.012

c) T& M M 2 4 0.192±.008

d) T T & M 2 4 0.307±.010

e) T& M T& M 2 4 0.155±.006

f) T& M T& M 1 4 0.186±.008

g) T& M T& M 3 4 0.217±.009

which is not discussed in the text-to-image generation tasks.
Besides, the proposed retrieval techniques outperform the
baseline by a remarkable margin.

4.5. Analysis on More Diverse Generation

Metrics on Diverse Generation. To fairly compare the
generalization ability of our proposed ReMoDiffuse and
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other existing works, e.g. MotionDiffuse [27], we propose
several new metrics. Specifically, inspired by imbalanced
regression task [20], here we propose two variants of the
original Multimodality Distance. First, we give the defi-
nition of sample’s Rareness. As for a test prompt p, we
calculate its rareness rp as:

rp = 1−max
i

{< ET (ti), ET (prompt) >}, (7)

where ET denotes the text encoder in the CLIP [18] model,
ti is the motion description in the training set, and < ·, · >
represents the cosine similarity of the two given vectors. In-
tuitively, this formulation measures the maximum similarity
between the given prompt and training prompts. If this sim-
ilarity is larger, then the rareness will be lower, and vice
versa.

Based on the definition of rareness, we sort all samples
in increasing order and define the following metrics: 1) tail
5% MM, the average Multimodality Distance of the last 5%
samples; 2)balanced MM. we evenly divide the distance
space into 100 bins and then calculate the average distance
for each bin. Then balanced MM Dist denotes the average
distance of all bins. The minimum value is almost 0, mean-
ing some captions in the test split are similar to some of the
training split. The maximum value is less than 0.25. We di-
vide the whole distribution into 100 bins as the requirement
of our proposed balanced MM. Most test data concentrate
in interval [0.03, 0.07]. In supplementary material, we will
show the data distribution and some examples of different
raranesses.

Results and Analysis. Table 4 shows the generaliza-
tion ability of three different methods. As for the baseline
model, we simply drop out the retrieval technique. From
this table we can find that, with our proposed retrieval tech-
nique, ReMoDiffuse outperforms both the baseline model
and state-of-the-art methods by a remarkable margin.

4.6. Qualitative Results

To illustrate the effectiveness of ReMoDiffuse, we pro-
vide a qualitative comparison between previous works and
ReMoDiffuse. More examples are available in the project
page. As shown in Figure 4, ReMoDiffuse stands out as the
only approach that effectively conveys text descriptions that
involve both action and path information. In contrast, Guo
et al.’s method falls short in capturing path descriptions.
MotionDiffuse performs well in action categories, but it
lacks precision in providing path details. Meanwhile, MDM
captures path information, but its generated actions are in-
correct. In the examples evaluated, ReMoDiffuse demon-
strates its capability to appropriately structure and present
the content.

Table 4: Evaluation of Generalization Ability. All results
are reported on the KIT testset. The best results are in bold.

Method MM ↓ tail 5% MM ↓ balanced MM↓
MotionDiffuse 2.958 5.928 4.285

Baseline 3.371 6.173 4.661
Ours 2.814 5.439 4.028
∆ 0.557 0.734 0.633

Figure 6: The result of our user study.The results indicate
that our approach outperforms other methods significantly
in both of text-motion consistency and motion quality.

4.7. User Study

We randomly selected 25 samples from the Hu-
manML3D test set to compare Guo et al., MotionDiffuse,
MDM, and ReMoDiffuse. We collected 55 responses in to-
tal, and the results are shown in Figure 6. It can be seen
that in most cases, testers believed that the motions gener-
ated by our method were more consistent with the given text
descriptions, and the generated animations were more nat-
ural, which validates the superior quality of our proposed
motion generation framework.

5. Conclusion
In this paper, we present ReMoDiffuse, a retrieval-

augmented motion diffusion model for text-driven motion
generation. Equipped with a multi-modality retrieval tech-
nique, the semantics-modulated attention mechanism, and
a learnable condition mixture strategy, ReMoDiffuse effi-
ciently explores and utilizes appropriate knowledge from an
auxiliary database to refine the denoising process without
expensive computation. Quantitative and qualitative exper-
iments are conducted to demonstrate that ReMoDiffuse has
achieved superior performance in text-driven motion gener-
ation, particularly for uncommon motions.
Social Impacts. This technique can be used to create fake
media when combined with 3D avatar generation. The
manipulated media conveys incidents that never truly hap-
pened and can serve malicious purposes.
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