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Abstract

Recently, private inference (PI) has addressed the rising
concern over data and model privacy in machine learning
inference as a service. However, existing PI frameworks
suffer from high computational and communication over-
heads due to the expensive multi-party computation (MPC)
protocols, particularly for large models such as vision
transformers (ViT). The majority of this overhead is due
to the encrypted softmax operation in each self-attention
layer. In this work, we present SAL-ViT with two novel tech-
niques to boost PI efficiency on ViTs. Our first technique is a
learnable PI-efficient approximation to softmax, namely,
learnable 2Quad (L2Q), that introduces learnable scal-
ing and shifting parameters to the prior 2Quad softmax
approximation, enabling improvement in accuracy. Then,
given our observation that external attention (EA) presents
lower PI latency than widely-adopted self-attention (SA)
at the cost of accuracy, we present a selective attention
search (SAS) method to integrate the strength of EA and
SA. Specifically, for a given lightweight EA ViT, we leverage
a constrained optimization procedure to selectively search
and replace EA modules with SA alternatives to maximize
the accuracy. Our extensive experiments show that our
SAL-ViT can averagely achieve 1.28×, 1.28×, 1.14× lower
PI latency with 1.79%, 1.41%, and 2.08% higher accu-
racy compared to the existing alternatives, on CIFAR-10,
CIFAR-100, and Tiny-ImageNet, respectively.

1. Introduction

The past few years have seen the tremendous success
of transformer-based models in natural language process-
ing (NLP) [31], largely because of their self-attention (SA)
modules’ ability to effectively capture long-range depen-
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Figure 1. Performance comparison between prior works (Baseline,
MPCFormer [21], EA ViT [9], MPCViT [35]) and ours on CIFAR-
10. Note that the MPCFormer [21] was proposed on BERT that we
have adapted to ViT.

dencies. Recently, vision transformers (ViTs) extended this
success to computer vision tasks, including image classi-
fication [6, 11], object detection [2, 22], and semantic seg-
mentation [22, 37, 34], by outperforming convolutional net-
work architectures due to their lower inductive bias.

The success of ViT and other deep neural network mod-
els have motivated emerging machine learning inference
as a service (MLaaS), where a service provider trains the
model and commercializes the inference service for various
tasks including performing online diagnoses and financial
product recommendations [18, 24]. However, growing pri-
vacy concerns have impeded such commercialization. In
particular, clients may not wish to reveal their personal
data to the service provider while the service providers
wish to protect the details of their proprietary trained mod-
els [18]. In general, neither party wants to send sensitive
unencrypted information to the other party. To mitigate
these rising concerns, various private inference (PI) meth-
ods [26, 13, 25, 30, 12, 29] have been proposed that lever-
age techniques such as Homomorphic encryption (HE) and
secure multi-party computation (MPC) protocols to pre-
serve both the privacy of the client’s data and the inference
model’s intellectual property (IP).

While some existing works explored efficient PI on con-
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volutional neural networks (CNNs) [16, 20, 3] beyond only
parameter reduction [17, 19], the study of PI for trans-
formers has been less explored. A direct implementa-
tion of existing PI methods on ViTs incurs dramatically
higher latency and communication overhead than standard
inference, creating a significant roadblock in their wide-
range adaptation, especially in resource-constrained appli-
cations [35, 21]. The high latency can be largely attributed
to the softmax function, due to its high compute demand
in PI [35, 21]. Interestingly, a recent work on BERT mod-
els [21] addresses this challenge by replacing the softmax
with its 2nd order polynomial approximation, 2Quad [4].
Also, for ViTs, [35] formulates a neural architecture search
(NAS) algorithm to substitute the softmax with either the
2ReLU [26] or the scaling function [33].

However, these softmax approximations use a fixed con-
stant to re-weight the attention maps, limiting the repre-
sentation and thus costing accuracy. Because the heads at
different layers aim at capturing diverse relations between
patches, we hypothesize that a softmax approximation may
need adaptable parameters to freely re-weight the attention
map. With this motivation, we present a novel softmax ap-
proximation, namely, learnable 2Quad (L2Q), that has two
different types of learnable parameters, shifting and scaling,
enabling a fine-grained approximation of the softmax.
More specifically, we provide three granularities of L2Q
(global, head-wise, and element-wise) that differ in the de-
gree of sharing of the learnable parameters across various
instances of the approximation.

We further observe that, independent of the softmax ap-
proximation, the architecture of attention also plays a key
role in both PI latency and accuracy. We compare recent
attention architectures [32, 27, 7, 23, 9] and find that exter-
nal attention (EA) yields the lowest PI latency due to the
reduced involvement of softmax but at the cost of a sig-
nificant drop in accuracy compared to an all SA ViT base-
line. With this motivation, we propose to use a judicious
hybrid of EA and SA modules with our L2Q approximation
to achieve high accuracy while keeping the PI latency low.
In particular, given a specified SA module budget B and
an initial ViT Model incorporating both EA and SA at each
layer, we introduce a selective attention search (SAS). This
search determines which B layers should employ EA and
subsequently assigns SA to the remaining layers, all while
optimizing for maximum accuracy. Thus, SAS provides
a PI-friendly ViT architecture with a configurable hybrid
of SA and EA, where each attention variant uses the L2Q
approximation. We refer to the result as SAL-ViT, a PI-
friendly ViT obtained through a selective attention search
with a learnable softmax approximation.

We summarize our contributions as follows.

• We present a novel softmax alternative L2Q with fine-
grained learnability that presents higher accuracy than

existing softmax approximations, and a quadratic form
that presents low PI latency.

• We present a detailed analysis of the various attention
methods and their impact on PI latency and show that,
compared to baseline SA, EA [9] presents more than
1.95× lower PI latency at the cost of lower accuracy.

• We present a selective attention search (SAS) method
to yield PI-friendly hybrid ViT models with a judicious
mix of SA and EA, both leveraging our proposed L2Q.

Our experimental results show that our method outper-
forms the SOTA scheme MPCViT [35] by generating mod-
els with averagely 2.47%, 2.82% and 4.41% higher accu-
racy on CIFAR-10, CIFAR-100, and Tiny-ImageNet, re-
spectively, and with averagely 1.29×, 1.30×, 1.13× lower
PI latency on CIFAR-10, CIFAR-100, and Tiny-ImageNet,
respectively. From Figure 1, our method produces ViTs
with 1.14× lower PI latency compared to the lowest-PI-
latency technique, i.e., EA ViT [9], and with 0.79% higher
accuracy compared to the highest-accuracy PI ViT, i.e.,
MPCFormer [21] on CIFAR-10.

2. Background
2.1. Notations

In this paper, we use X ∈ R
N×m to denote an input

sequence of N tokens with each token represented as a m-
dimensional feature vector. There are three major com-
ponents for the input feature, i.e., Query (Q ∈ R

N×de ),
Key (K ∈ R

N×de ), and Value (V ∈ R
N×de ), ob-

tained from three learnable linear matrices WQ ∈ Rm×de ,
WK ∈ Rm×de , and WV ∈ Rm×de through Q = XWQ,
K = XWK , and V = XWV , where de is the embed-
ding dimension of Q, K, and V . We use A ∈ R

N×N

to denote the attention map, which is obtained by perform-
ing QKT . The re-weighted normalized attention map is
denoted as AN ∈ RN×N .

2.2. Private Inference

Several PI frameworks using secret sharing (SS), MPC
protocols, Garbled Circuits (GC), and oblivious transfer
(OB) have been proposed on convolutional neural networks
(CNNs) [13, 28, 25, 30, 12, 29, 36]. They observed that
the computation and communication bottleneck for PI on
CNNs is nonlinear functions like ReLU [8, 36]. Two ap-
proaches have been studied to address this challenge. The
first approach focuses on developing more efficient crypto-
graphic protocols for ReLU [8, 12]. The second approach is
to adapt the architecture of neural network models by either
replacing ReLU with a less-costly quadratic function [25]
or aggressively pruning ReLU [3, 16].

For transformers, in contrast, the major bottleneck is
the softmax function [21], which is seldom addressed
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Function Mathematical Description

softmax softmax(aij) =
eaij∑N

j=1 eaij+ϵ

⋆

2Quad [21] 2Quad(aij) =
(aij+c)2∑N

j=1 (aij+c)2

∗

2ReLU [26] 2ReLU(aij) =
ReLU(aij)∑N

j=1 ReLU(aij)+ϵ

⋆

scaling [33] Scale(Q,K,V ) = Q√
n
(K

T
√
n
V )

⋆ ϵ is a small value to avoid a zero denominator.
* c is a constant.

Table 1. Softmax approximations

in efforts focusing on CNN. One solution is to improve
the cryptographic protocols for transformers. For exam-
ple, Iron [10] develops efficient protocols for softmax,
GeLU, and LayerNorm, and proposes a customized HE-
based protocol to speed up high-dimensional matrix multi-
plication in transformers. An alternative approach is to de-
velop PI-friendly transformer architectures and softmax ap-
proximations, such as MPCViT [35] and MPCFormer [21].

2.3. Softmax Approximations

For PI on transformers, the softmax operation corre-
sponds to more than 67% and ∼80% of PI latency of a
BERT [21] and a ViT model [35], respectively. Several
approximations for the softmax function to mitigate the
high latency of PI on transformers have been proposed.
Given the Query, Key, Value matrices Q, K, V , and the
attention map A, Table 1 summarizes the softmax approx-
imations where aij represents the element located at row i
and in column j in A. MPCViT [35] systematically com-
pares the effects of these softmax alternatives in SA on vi-
sion tasks and concludes that 2ReLU provides the highest
accuracy, and the scaling function yields the lowest latency.

2.4. Attention Variants

While SA yields the benefits of capturing long-distance
dependencies, its computational and storage overheads in-
crease quadratically (O(N2)) with the size of the fea-
ture map [32]. To reduce these costs, attention variants
with linear complexity (O(N)) have been widely stud-
ied [27, 32, 7, 23, 9].

SA leverages the scaled dot-product with softmax nor-
malization to measure the similarity among Q, K, and V .
To reduce complexity, Linformer [32] learns to shrink the
length of Key and Value matrices via projections. Cos-
Former [27] replaces SA with a linear projection kernel and
a cosine-based re-weighting mechanism. Hamburger [7]
reformulates learning the global context as a low-rank com-
pletion problem and solves it via matrix decomposition.
SOFT [23] uses Gaussian kernel and exponential function
to replace SA and solves it via Newton-Raphson itera-
tion [5]. EA [9] leverages two lightweight external memo-
ries WEA

k and WEA
v to learn the most discriminative fea-
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Figure 2. Brief overview of SA and EA. (a) SA with softmax,
(b) EA with softmax, (c) SA with L2Q, (d) EA with L2Q.

tures across the entire dataset, and substitutes SA with two
linear layers and a normalization layer.

3. ViT Design for Latency Efficient PI
3.1. Motivation

While researchers have been aware of the high cost of
the softmax function in PI on transformers, the effect of
the attention architecture on PI latency has, to our under-
standing, yet to be explored.
Case study 1: We compare the latency of SA, shown in Fig-
ure 2(a), and its recent variants, including LinFormer [32],
CosFormer [27], Hamburger [7], SOFT [23] and EA [9],
to find the most PI-friendly attention architecture. In all
cases, we embedded the attention scheme in a 7-layer, 4-
head ViT model [11] and measured the PI latency for 10
inference queries on CIFAR-10 using CrypTen [15]. The
results, shown in Table 2, indicate that EA [9], illustrated in
Figure 2(b), yields the lowest PI latency among all variants.

The high PI latency of CosFormer [27] is due to the in-
troduction of sin and cos functions, which are expensive
in PI [15]. Attention variants based on low-rank matrix
decomposition and Gaussian kernel, i.e., Hamburger [7],
and SOFT [23], rely on iterations to solve the matrix de-
composition problem, which adds additional cost even if
they have linear complexity. While Linformer [32] contains
only projection and softmax, it still contains ∼2× more
softmax computations than EA. In EA, due to the reduced
size of tensor Wk, the size of the softmax input is ∼4×
smaller than SA, leading to the lowest PI latency. We thus
conclude that not all linear complexity approximations are
suitable for latency-efficient PI.
Case study 2: Although EA presents an advantage in re-
ducing PI latency, it requires the softmax function to
perform normalization. Ideally, replacing the softmax
function with its PI-friendly approximation will further re-
duce the PI latency overhead. We compare the PI latency
and accuracy on CIFAR-10 for different attention-softmax-
approximation combinations in Table 31. Table 3 shows EA
achieves significantly lower latency than SA but at the cost

1The training hyperparameters are provided in Section 4
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Attention Complexity PI Bottleneck Approx PI Lat. (s)

Self-attention O(N2) softmax 81.48

Linformer [32] O(N) softmax 66.27

CosFormer [27] O(N) cos/sin > 61.90∗

Hamburger [7] O(N) matrix decomposition > 59.49∗

SOFT [23] O(N) Gaussian kernel > 62.32∗

External attention [9] O(N) softmax 41.72

* We simplify the attention architecture and excluded the operations not
supported by CrypTen [15] are not counted.

Table 2. Comparison of attention variants on CIFAR-10

Attention Complex. Softmax App. Accuracy (%) Approx PI Lat. (s)

Self-
attention O(N2)

softmax 95.56 81.48

2Quad 95.12 51.12

2ReLU 95.24 52.30

scaling 94.79 47.78

External
attention O(N)

softmax 92.86 41.72

2Quad 92.20 33.64

2ReLU 92.73 33.94

scaling 33.45 32.71

Table 3. Performance comparison of SA and EA with various soft-
max approximations on CIFAR-10.

of a significant drop in accuracy. Therefore, a naive combi-
nation of EA with PI-friendly softmax approximations is not
an ideal solution when high accuracy is desired.

Based on these observations, we propose to optimize PI
on ViT by adopting a PI-friendly softmax approximation
and selectively using SA. In particular, we present a selec-
tive attention search (SAS) algorithm that begins with a hy-
brid EA-SA ViT model and judiciously selects between EA
and SA at each layer to get balance between PI latency and
accuracy. Below, we first describe an improved PI-friendly
softmax approximation L2Q. Then, we detail our SAS for
the ViT architecture with a mix of SA and EA, both of
which use the proposed L2Q.

3.2. Learnable 2Quad (L2Q)

For attention modules, a general form of re-weighted
normalization of the attention map is as follows,

R(aij)∑
j R(aij) + ϵ

, (1)

here R is a re-weighting function and ϵ is a small posi-
tive value to avoid a zero denominator. While the widely-
adopted softmax normalization function uses an expo-
nential function for the re-weighting, its high PI latency has
inspired the research on faster alternatives.

To ensure better convergence, the normalized attention
map is suggested to be positive, which implies the re-
weighting function should produce non-negative outputs,
and the re-weighting function should be differentiable [27,
14]. Moreover, a well-shaped non-linear re-weighting func-
tion stabilizes and amplifies the difference among the atten-
tion map elements more than a linear one [27]. Due to the
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Figure 3. The proposed L2Q with various levels of granularity.

nature of normalization, the summation of each row in AN

equals one. While 2Quad satisfies all these requirements,
the linear part of the re-weighting function in 2ReLU and
the linear scaling function make their performance un-
stable. For example, EA ViT only achieves an accuracy
of 33.45% on CIFAR-10 with the scaling function as
shown in Table 3. A similar performance drop is observed
in our experiment on 2ReLU in Section 4.2 (see Figure 6).

A drawback of 2Quad is that it applies a universal con-
stant c, as shown in Table 1, for all heads and layers in ViT.
In general, multi-head transformer models can capture dif-
ferent relations between tokens in X [31]. Similarly, in
ViT, the heads at different layers have varying attention dis-
tances. The average attention distance generally increases
as the information passes through the model [6], and the
distance can vary across heads within and across layers.

Therefore, we present a learnable re-weighting of the at-
tention maps, referred to as learnable 2Quad (L2Q), that
introduces a learnable shifting parameter matrix C and a
learnable scaling parameter matrix D for each head to im-
prove the re-weighting ability of 2Quad. We use Dlh and
Clh to represent the introduced learnable matrices at layer
l, head h. The formal description of our L2Q on attention
map A at layer l head h is as follows,

L2Q(aij) =
(dlhij × aij + clhij )

2∑
j(d

lh
ij × aij + clhij )

2 + ϵ
, (2)

where dlhij and clhij are learnable elements in Dlh and Clh,
respectively. With this learnability, L2Q can find a better
re-weighted attention distribution for each attention map.
The implementation of L2Q in SA and EA is shown in Fig-
ure 2(c) and (d).

We present three levels of granularity for L2Q, namely,
global, head-wise, and element-wise, as shown in Figure 3.
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Figure 4. Overview of the proposed SAS.

Global L2Q applies the same pair of learnable shifting and
scaling parameters for all attention maps across all the lay-
ers. Namely, dlhij = d, clhij = c,∀i, j, l, h, where d and c
are two scalars. Head-wise L2Q shares the same pair of
learnable parameters for all elements in head h at layer l,
i.e., dlh = dlhij , c

lh = clhij ,∀i, j, where dlh and clh are the
learnable scalars for layer l head h. The most fine-grained,
element-wise L2Q, has a dlhij and a clhij for each element aij
in the attention map at head h of layer l. In SAL-ViT, we
use element-wise L2Q unless otherwise stated.

3.3. Selective Attention Search (SAS)

The overview of our SAS approach is shown in Fig-
ure 4. We initialize a ViT model with both EA and SA at
each transformer layer and introduce a matrix α ∈ RL×H ,
where L is the number of layers and H is the number of
heads per layer, of learnable attention selection parameters
to help decide between SA and EA for each layer. By re-
placing softmax in SA and EA modules with element-
wise L2Q we obtain a ViT model with a mix of SAL2Q and
EAL2Q modules. The SAL2Q modules help achieve high
classification accuracy at the cost of high PI latency, and
EAL2Q modules yield moderate accuracy with relatively
low PI latency. Our SAS supports two levels of granular-
ity, layer-wise, referred to as SAS-L, and head-wise, re-
ferred to as SAS-H. SAS-L defines a coarse-grained search
space where each transformer layer uses either SAL2Q or
EAL2Q. SAS-H makes a finer-grained replacement of
EAL2Q by deciding whether to use SAL2Q at each head.

We denote a ViT model M parameterized by Θ as
MΘ, the input feature of a transformer layer l as xl, the
parametric SA function as fs, and the parametric EA func-
tion as fe. For SAS, the output of lth transformer layer can
be formally expressed as:

zl =
∥∥H
h=1

(αlhf
s
lh(xl) + (1− αlh)f

e
lh(xl)), (3)

where
∥∥K
k=1

(ak) = a1
∥∥a2∥ · · ·∥∥ak represents the concate-

nation of all aks.
Specially, in SAS-L, all heads in the same transformer

layer share the same attention selection parameter, i.e.,
αlh = αl,∀h, where αl is a scalar of the attention selec-
tion parameter at layer l. SAL-ViT adopts SAS-L unless
otherwise stated.

SAS aims to obtain a ViT model with high accuracy and
as few SAL2Q modules as possible. We set an upper bound
B for the number of SAL2Q modules, referred to as the
SAL2Q budget, and formulate the training process as a con-
strained optimization problem:

min
Θ,α

L(MΘ,α(X), y) s.t.
∑
l,h

1(αlh ≥ α′) ≤ B, (4)

where X and y are the input and corresponding label, 1
refers to the indicator function, and α′ is the threshold for
binarizing αlh. With an SAL2Q budget B, the threshold α′

equals the B-th highest αlh.
We solve this optimization problem by separating the

procedure of binarization and simplify as follows:

min
Θ,α

L(MΘ,α(X), y) + λ
∑
l,h

(||αlh||1), (5)

where λ is a hyper-parameter that helps balance the two loss
terms. Here, the l1-regularization term tries to minimize
the number of SAL2Q modules while the first term tries to
maximize accuracy.

Our SAS algorithm is shown in Algorithm 1. In the NAS
phase (line 2 - line 6), the network parameter Θ and atten-
tion selection parameter α are updated simultaneously with
the loss function in Equation 5. α thus learns the impor-
tance of replacing an instance of EAL2Q with SAL2Q to
lower the accuracy loss, such that replacing an EAL2Q at
the location with a higher αlh yields higher accuracy than
replacing one with a lower αlh. The NAS loop terminates
when the number of NAS epochs hits the predefined limit
ENAS . Then, the top B αlh are frozen to 1 and the re-
maining ones are frozen to 0 (line 7). After this step, SAS
obtains a ViT containing both SAL2Q and EAL2Q mod-
ules. Finally, SAS fine-tunes the hybrid model’s network
parameters Θ (line 8-line 12).

4. Experiments
Experimental setup. We conduct extensive experiments
with a compact variant of ViT, namely, compact convolution
transformer (CCT) [11] on four datasets, i.e., CIFAR-10,
CIFAR-100, Tiny-ImageNet, and ImageNet. The {# heads,
# depth, # hidden dimension} for CIFAR, Tiny-ImageNet,
and ImageNet are set to be {4, 7, 256}, {12, 9, 192}, and
{6, 14, 384}, respectively. The kernel size for CCT convo-
lutional layer are kept to be 3 for CIFAR and 7 for the other
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Algorithm 1 Selective attention search (SAS)
Inputs: An untrained ViT model MΘ,α, SAL2Q budget
B, the number of epoch for NAS phase ENAS , the number
of fine-tune epoch EFT .
Output: A trained ViT model with hybrid self-attention and
external attention.

1: MΘ,α.train()
2: epoch = 0
3: while epoch < ENAS do
4: Update (Θ, α) via ADAM optimizer for one epoch
5: epoch+ = 1
6: end while
7: Freeze(α) // set top B of αlh to 1 and all others to 0.
8: epoch = 0
9: while epoch < EFT do

10: Update Θ via ADAM optimizer for one epoch
11: epoch + = 1
12: end while
13: return M

two dataset with higher resolution. For CIFAR and Tiny-
ImageNet we use a batch size of 256, while for ImageNet
use use it to be 168, and use the same image augmenta-
tions as outlined in [11]. We use an Nvidia A100 GPU for
training. We measure PI latency using CrypTen [15] under
the semi-honest threat model [25] on a 8-Core Intel CPU
with 16 GB RAM. Layers such as LayerNorm and dropout,
which cannot be seamlessly transitioned from PyTorch to
CrypTen, are omitted from the reported latency measure-
ments. Consequently, the PI latency reported is an approx-
imate estimation. Nevertheless, the latency comparison re-
mains equitable since we retain a consistent setup for all
candidate models.

Experiments on SAS. We set parameters ENAS and
EFT , representing the number of epochs for the NAS phase
and fine-tuning phase, respectively, as follows: ENAS =
600 and EFT = 600 for CIFAR-10/100; ENAS = 50
and EFT = 600 for Tiny-ImageNet; and ENAS = 50
and EFT = 100 for ImageNet. We configure the hyper-
parameter λ at 0.1, and initialize all attention selection co-
efficients in α to 0.1. The Adam optimizer is employed
in both phases. For CIFAR-10/100 and Tiny-ImageNet, we
use a learning rate of 0.0006 and a weight decay of 0.06.
For ImageNet, these are set at 0.0005 and 0.05, respectively.

Experiments on L2Q. These tests do not include the
search phase. Training parameters mirror those in the fine-
tuning phase after SAS.

4.1. Comparison of SAL-ViT with Prior-Art

In this section, we quantify the advantages of our pro-
posed SAL-ViT. Note that SAL-ViT adopts SAS-L and
element-wise L2Q, the SAL2Q budgets of 1, 2, and 3 in-

dicate that SAS-L searches for 1, 2, and 3 entire lay-
ers to be implemented by SAL2Q, respectively. The
attention-softmax-approximation combinations of the base-
line and prior PI-efficient ViT frameworks, namely, MPC-
Former [21] (with and without knowledge distillation
(KD)), MPCViT [35] (with and without KD), and EA
ViT [9], are presented in Table 4.

The results show that SAL-ViT cosnsitently presents
lower latency with similar or better accuracy. More pre-
cisely, our SAL-ViT models yield up to 2.23×, 2.25×, and
2.24× lower latency, and up to 0.36%, 0.5%, 1.89% higher
accuracy than the baseline ViT on CIFAR-10, CIFAR-100,
and Tiny-ImageNet, respectively. Our SAL-ViT achieves
up to 1.40×, 1.41×, and 1.16× lower latency, and 0.80%,
1.16%, and 4.12% higher accuracy than MPCFormer [21]
on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respec-
tively. Moreover, SAL-ViT presents lower PI latency than
EA ViT [9] while increasing accuracy by more than 3% on
the three datasets. As MPCViT [35] can configure the trade-
off between PI latency and accuracy, we compare SAL-ViT
to the MPCViT variants with the lowest latency and high-
est accuracy, respectively. For the lowest latency, SAL-
ViT further lowers latency by 1.32×, 1.35×, and 1.11× on
CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively,
with comparable accuracy. On the other hand, compared
to the highest accuracy MPCViT model, SAL-ViT achieves
an average increase of 0.6% in accuracy with up to 1.32%
lower PI latency.

Figures 1 and 5 show that SAL-ViT provides a bet-
ter accuracy-latency trade-off than the existing alternatives.
Note that SAL-ViT, without KD, outperforms MPCViT and
MPCFormer with KD. Additionally, Table 5 shows the re-
sults on ImageNet, where SAL-ViT presents 1.62× lower
PI latency compared to the baseline model, demonstrating
its effectiveness on large-scale dataset.

4.2. Ablation Study on SAS2

The effects of SAL2Q location selection. Recall that the
NAS phase in our proposed SAS determines which layers
or heads are important and should be replaced with SA to
achieve higher accuracy. This section illustrates the value
of this phase. In particular, after our proposed SAS-L ter-
minates with a specific αl for each layer l, we set a number
of SA budget (B) layers with with the highest αl to be SA.
We compare this to an alternative algorithm that takes B
layers with the lowest αl, referred to as worst-case SAS-L
(SAS-L-WC). As detailed in Table 6, SAS-L outperforms
SAS-L-WC for all tested SAL2Q budgets on all datasets.
This result shows that αl of each layer indeed reflects the
value of replacing the encoding with SAL2Q.

2We use models with 4 heads in these studies, maintaining other hyper-
parameters from previous descriptions.
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Work Attention Softmax
Approx.

CIFAR-10 CIFAR-100 Tiny-ImageNet

#SA1

/#EA
Approx Lat.

(s)
Acc.
(%)

#SA1

/#EA
Approx Lat.

(s)
Acc.
(%)

#SA1

/#EA
Approx Lat.

(s)
Acc.
(%)

Baseline SA softmax 7/0 81.48 95.56 7/0 81.20 77.36 9/0 142.87 61.60

MPCFormer [21]
(w/o KD) SA 2Quad 7/0 51.12 95.12 7/0 51.02 76.70 9/0 74.31 59.37

MPCFormer [21]
(w/ KD) SA 2Quad 7/0 51.12 95.13 7/0 51.02 77.07 9/0 74.31 60.84

EA [9] EA softmax 0/7 41.72 92.86 0/7 41.54 74.39 0/9 84.08 59.27

MPCViT2 [35]
(w/o KD) SA Hybrid3 7/0

50.94 93 .38

7/0

51.33 75 .38

9/0

76.14 59 .02
50.03 93 .21 50.46 74 .45 74.34 58 .39
49.13 93 .01 49.59 74 .51 72.54 58 .05
48.23 92 .86 48.72 73 .17 70.74 56 .75

MPCViT2 [35]
(w/ KD) SA Hybrid3 7/0

50.94 94 .27

7/0

51.33 77 .76

9/0

76.14 63 .03
50.03 94 .22 50.46 76 .92 74.34 63 .45
49.13 94 .08 49.59 76 .93 72.54 63 .38
48.23 93 .59 48.72 76 .40 70.74 62 .65

SAL-ViT (Ours) Hybrid4 L2Q
3/4 40.65 95.92 3/4 40.76 77.62 3/6 66.21 63.49
2/5 38.44 95.69 2/5 38.97 77.86 2/7 65.41 62.12
1/6 36.47 95.14 1/6 36.14 76.12 1/8 63.88 61.77

1 The number of layers implemented by SA / the number of layers implemented by EA.
2 The italic accuracy values are taken from the paper [35]. All reported latencies are obtained using CrypTen [15] where as [35] used SecretFlow [1].
3 A mix of 2ReLU and scaling. 4 A mix of SAL2Q and EAL2Q.

Table 4. Performance comparison on CIFAR-10, CIFAR-100, and Tiny-ImageNet.
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Figure 5. Performance comparison between prior works (Baseline,
MPCFormer [21], EA ViT [9], MPCViT [35]) and ours (SAS-L +
element-wise L2Q) on CIFAR-100 and Tiny-ImageNet.

Method Attention Softmax
Approx.

ImageNet

#SA/#EA Approx Lat. (s) Acc. (%)

Baseline SA softmax 14/0 728.22 77.22

SAL-ViT (ours) Hybrid L2Q 11/3 450.87 75.51

Table 5. Performance of SAL-ViT on ImageNet.

SAS-L vs. SAS-H. Table 6 also compares the perfor-
mance of SAS-L and SAS-H. The results show that SAS-L
presents higher accuracy than SAS-H despite SAS-H hav-
ing a finer-grained search space. This is potentially because
the fine-grained search space makes training more difficult.
A similar phenomenon was observed in [35] in which a
finer-grained search space of softmax approximations led

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

#SAL2Q
1

/#EAL2Q

Acc.
(%)

#SAL2Q
1

/#EAL2Q

Acc.
(%)

#SAL2Q
1

/#EAL2Q

Acc.
(%)

SAS-L
-WC

12/16 95.16 12/16 74.53 12/24 61.91

8/20 94.47 8/20 75.12 8/28 60.21

4/24 94.05 4/24 75.38 4/32 58.81

SAS-L
12/16 95.92 12/16 77.62 12/24 64.14

8/20 95.69 8/20 77.86 8/28 63.18

4/24 95.14 4/24 76.12 4/32 62.53

SAS-H
12/16 95.77 12/16 77.15 12/24 63.15

8/20 95.57 8/20 76.72 8/28 62.33

4/24 95.11 4/24 76.26 4/32 61.53

1 The number of heads implemented with SAL2Q modules / the number
of heads implemented with EAL2Q modules.

Table 6. Performance comparison of SAS-{L-WC, L, and H}.

to lower accuracy. It is important to note that the PI latency
of SAS-L and SAS-H are equal because the latency is only
a function of the number of SAL2Qs.

Contribution of L2Q in SAS. In this experiment, we show
that the softmax approximation impacts the performance
of our SAS-L, and more specifically, that the proposed
element-wise L2Q outperforms its counterparts. We com-
pare the latency and accuracy of SAS-L variants that use
softmax, 2Quad, 2ReLU, and our element-wise L2Q
in both SA and EA in Figure 6, where our SAS-L with
element-wise L2Q presents the highest average accuracy on
the three datasets. While our element-wise L2Q shows ob-
viously lower PI-latency than softmax and 2ReLU , it
presents competitive PI-latency with 2Quad. This exper-
iment also proves that 2ReLU is not a stable re-weighted
normalization, as mentioned in Section 3.2, because it col-
lapses on Tiny-ImageNet.
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Figure 6. Performance comparison of SAS with softmax,
2Quad, 2ReLU and the proposed L2Q.
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Figure 7. Accuracy comparison of L2Qs with different levels of
granularity in ViT on CIFAR-10, CIFAR-100, and Tiny-Imagenet.
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Figure 8. Accuracy of L2Q with various learnable parameters in
normal ViT on CIFAR10, CIFAR-100, and Tiny-Imagenet.

4.3. Ablation Study on L2Q

Comparison of L2Q with different granularities. We
present and compare the results of three L2Q granularities,
i.e., element-wise, head-wise, and global, in Figure 7. The
results show that as the granularity becomes finer-grained,
the corresponding accuracy increases in all datasets, which
suggests that finer-grained learnability yields better opti-
mized attention re-weighting, thus improving accuracy.
Effect of shifting and scaling parameters in L2Q. To un-
derstand the importance of shifting and scaling parameters,
we conducted three different experiments on element-wise
L2Q. The first one uses both learnable shifting parameters
in C and scaling parameters in D, the second one only uses
the learnable shifting parameters in C, and the third exper-
iment only uses the learnable scaling parameters in D. As
shown in Figure 8, the model with both shifting and scaling
parameters provides better accuracies on the three datasets
than the models with only one set of learnable parameters,
showing efficacy of both being learnable.
Analysis of learned parameters. We present the variance
and range of the learnable parameters for each layer in Fig-
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Figure 9. Variance and the range of learned shifting and scaling
parameters on CIFAR-100.

Method B #Param. (M) #FLOPs (M) CIFAR-10 CIFAR-100

Baseline - 3.76 1904.75 95.56 77.36

MPCFormer[21] - 3.76 1906.58 95.13 77.07

MPCViT [35] - 3.76 1903.65 94.27 77.76

EA ViT [9] - 2.47 1370.77 92.86 74.39

SAL-ViT
(ours)

3 4.74 1601.33 95.92 77.62

2 4.06 1523.54 95.69 77.86

1 3.38 1447.78 95.14 76.12

Table 7. Compare SAL-ViT with other techniques in terms of the
number of parameters, the number of FLOPs, and accuracy on
CIFAR-10/100.

ure 9. Notice that the range of the learned elements in C and
D in all layers is significant, suggesting the benefit of learn-
ing specific attention scaling and shifting values in L2Q.

4.4. The Number of Parameters and FLOPs

The number of parameters and FLOPs, and accuracies
on CIFAR-10 and CIFAR-100 for prior techiques and SAL-
ViT are presented in Table 7. Even though element-wise
L2Q in SAL-ViT comes at the cost of additional param-
eters, the compact architecture of EA more than compen-
sates for this increase. In total, SAL-ViT yields higher ac-
curacy than prior PI-efficient techniques MPCFormer [21]
and MPCViT [35] with around 1.19× fewer FLOPs and up
to 1.26× more parameters. Note that the number of added
parameters and FLOPs does not affect PI latency.

5. Summary and Conclusions

In this work, we present SAL-ViT, which leverages a
novel softmax approximation and selective attention search
to boost the efficiency of private inference on ViTs. Our ex-
tensive experiments show that the proposed SAL-ViT can
effectively reduce PI latency and improve image classifica-
tion accuracy. To the best of our knowledge, SAL-ViT sets
a new state of the art in PI on ViT. Note that research on im-
proving MPC protocols for ViT, e.g., Iron [10], is orthogo-
nal to our work, and can be applied on top of SAL-ViT. Our
future work includes applying the proposed approximations
to emerging foundation models and generative applications.
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